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Abstract— In wafer scanners, moving average and mov-
ing standard deviation constitute time-domain measures that
quantify scanning stage performance in terms of overlay
and imaging. Though for control design a frequency-domain
interpretation would be desirable to have, for moving standard
deviation such an interpretation is not easily found. As a
practical solution, an analytical expression for the response
to single sinusoidal input will be derived. For data from an
industrial scanning stage the usefulness of such an expression
and the insights obtained from it will be discussed.

I. INTRODUCTION

In wafer scanners, i.e., the lithography tools for the
manufacturing of microchips, moving average and moving
standard deviation are key operations for control perfor-
mance specification [1]. Moving average filtering of the stage
tracking errors is done to specify how well a new layer
is exposed on top of a previous layer of the wafer, the
latter is known as machine overlay (positioning accuracy of
the exposure) and on-product overlay (positioning accuracy
of the exposed features). Specifying overlay is done as
microchips are constructed layer by layer. Alignment with
respect to a previous layer is essential for the integrated
circuits to work, i.e., overlay impacts yield. Typical overlay
specifications are 2-2.5 nanometer for memory and logic.

Moving standard deviation is used to express imaging. It
refers to how features from a reticle containing a blueprint
of the microchip are translated to features on the wafer. This
translation relies (among others) on the principles of light
diffraction, the wavelength, the properties of the optics like
numerical aperture, and the photosensitive properties of resist
that require a certain threshold in accumulated exposure dose
[2], [3]. Improved imaging associates with less blurring of
features [4]. Specifications on moving standard deviation of
stages are in the range of a few nanometers or less.

To better understand the moving average and moving stan-
dard deviation operations in terms of stage tracking errors, a
frequency-domain perspective is adopted [5]. The frequency-
domain properties of a moving average operation are largely
known [6], [7] and resemble to some extent those of a first-
order low-pass filter. In the absence of superposition the
moving standard deviation operation viewed as a nonlinear
input-output system does not admit a Laplace transform. As
such a frequency-domain interpretation is lacking, though
many practitioners tend to give the moving standard de-
viation operation high-pass filter properties [1]. The main
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contribution of this paper is an analytical expression of
the moving standard deviation its response to sinusoidal
input. Such an expression allows for a frequency-domain
interpretation that offers insights in the response obtained
from numerically computing the moving standard deviation
operation for representative inputs. This will be show-cased
on tracking error data taken from an industrial stage system.

The paper is further organized as follows. In Section
II the moving average operation will be discussed. This
is followed in Section III by a discussion on the moving
standard deviation operation along with the derivation of
its nonlinear frequency response. In Section IV the results
will be demonstrated on measured time-series obtained from
an industrial scanning stage system. In Section V the main
conclusions will be summarized.

II. MOVING AVERAGE

In wafer scanners moving average is used as a measure for
machine overlay [2, Section 5.7], i.e., the accuracy by which
one layer of a wafer (upon reentering the wafer scanner) can
be exposed on top of the previous layer.

Definition 2.1: In continuous time, the moving average
operation MA{e(t)} maps the tracking error signal e to the
moving average signal eMA via the linear (but non-causal)
mapping

eMA(t)≜
1

τslit

∫ t+τslit/2

t−τslit/2
e(τ)dτ, (1)

with time constant τslit > 0; see also [8].
For wafer scanners, τslit represents the exposure time, which
is defined as the ratio between slit length dslit > 0 of the light
source and scanning velocity vmax > 0, i.e., τslit = dslit/vmax.
To study the properties of the moving average operation in
frequency domain, consider the next result.

Theorem 2.1: Let F{e(t)} and F{eMA(t)}, respectively,
denote the Fourier transforms of the tracking error signal e
and the moving average signal eMA from (1). The moving
average frequency response function MA then reads

MA(ω)≜
F{eMA(t)}
F{e(t)}

=
2

ωτslit
· sin

(
ωτslit

2

)
, (2)

which equals the (normalized) cardinal sine function
sin(πx)/πx with x = f τslit , and f = ω/2π .
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Proof: The proof follows from

F{eMA(t)}=
∫

∞

−∞

{
1

τslit

∫ t+τslit/2

t−τslit/2
e(τ)dτ

}
︸ ︷︷ ︸

a∗b

e− jωt︸ ︷︷ ︸
c

dt

=
∫

∞

−∞

e(t)︸︷︷︸
a

{
1

τslit

∫ t+τslit/2

t−τslit/2
e− jωτ dτ

}
︸ ︷︷ ︸

b∗c

dt,
(3)

which gives

F{eMA(t)}=
∫

∞

−∞

e(t)
{

1
τslit

∫ t+τslit/2

t−τslit/2
e− jωτ dτ

}
dt

=
∫

∞

−∞

e(t)
τslit

{
− 1

jω
e− jωτ

∣∣∣∣t+τslit/2

t−τslit/2

}
dt

=
2

ωτslit

∫
∞

−∞

e(t)
{

e− jωt
(

1
2 j

e jωτslit/2 − 1
2 j

e− jωτslit/2
)}

dt

=
2

ωτslit
· sin

(
ωτslit

2

)
·
∫

∞

−∞

e(t) · e− jωtdt︸ ︷︷ ︸
F{e(t)}

,

(4)

and which completes the proof.
Some useful properties of MA in (2) are:

1) MA(ω)→ 1, for ω → 0,
2) |ω ·MA(ω)| ≤ η with uniform bound η > 0, because

MA(ω) ∝ 1/ω , for ω → ∞,
3) MA(ω) is real-valued, giving zero phase shift for

ωτslit/2 ∈ [2iπ,π + 2iπ) with i ∈ N, and minus 180
degrees phase shift for ωτslit/2 ∈ [π +2iπ,2(i+1)π),

4) no spectral content at ωi = 2πi/τslit , i ∈ N\{0}.

To illustrate these properties, consider the Bode diagram in
Fig. 1 of the moving average filter operation in (1). The figure
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Fig. 1: Bode diagram of MA(ω) in (2) with τslit = 0.5.

also shows the frequency response function of a first-order
low-pass filter L p

1 (ω) ∈Cn (grey curve) and its real-valued

counterpart L p,zp
1 (ω) ∈ Rn with zero phase (dashed curve):

L p
1 (ω) =

1
jωτslit/2+1

L p,zp
1 (ω) =

∣∣L p
1 (ω)

∣∣= 1√
ω2τ2

slit/4+1
.

(5)

Note that for ω → ∞, |MA(ω)| ≤ |L p
1 (ω)| = |L p,zp

1 (ω)|,
which indicates first-order low-pass properties of |MA(ω)|.

Remark 2.1: For harmonic input e(t) = êsin(ωt), time-
domain integration of (1) gives

eMA(t) =
1

τslit

∫ t+
τslit

2

t− τslit
2

êsin(ωτ)dτ

=− 1
ωτslit

· êcos(ωτ)|t+
τslit

2
t− τslit

2

=− 1
ωτslit

·

 êcos
(

ωt +
ωτslit

2

)
︸ ︷︷ ︸

c(α+β )=c(α)c(β )−s(α)s(β )

c(α−β )=c(α)c(β )+s(α)s(β )︷ ︸︸ ︷
−êcos

(
ωt − ωτslit

2

) 
=

2
ωτslit

· sin
(

ωτslit

2

)
︸ ︷︷ ︸

=MA(ω)

·êsin(ωt),

(6)

which matches with the frequency response function MA of
Theorem 2.1.

From tracking control perspective, it is important to note
that the physical interpretation of tracking error through
the moving average filter operation is compromised by (a)
low-pass (amplitude) filtering, (b) zero amplitude at integer
multiples of ω = 2π/τslit , and (c) its alternating change of
sign (phase). Since MA(ω) → 1, for ω → 0, alignment,
or DC tracking, is captured by moving average, hence its
relation with overlay.

The moving average operation MA in (2) naturally trans-
lates to autospectral density functions.

Definition 2.2: Let Gee denote the one-sided autospectral
density function of the error signal e, and G MA

ee denote the
corresponding autospectral density function of signal eMA.
Then both are defined as

Gee(ω)≜
2
T

E
{
|F{e(t)}|2

}
, and

G MA
ee (ω)≜

2
T

E
{
|F{eMA(t)}|2

}
,

(7)

with E{·} the expected value of the argument, and T > 0 the
record length.
For finite record length T , consider the mappings of the
tracking error signal e, with e = eMA = 0 outside t ∈ [0,T ],
onto the root-mean-square values erms and erms

MA , or

erms
(MA) =

√
1
T

∫ T

0
e2
(MA)(t)dt =

√
1
T

∫
∞

−∞

e2
(MA)(t)dt

=

√
2
T

∫
∞

0
|F{e(MA)(t)}|2dω ≜

√∫
∞

0
G(MA)

ee (ω)dω,

(8)
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with the relation between Gee and GMA
ee given by

G MA
ee (ω) =

2
T

E

{∣∣∣∣2sin(ωτslit/2)
ωτslit

F{e(t)}
∣∣∣∣2
}

=
2
T
· 4sin2(ωτslit/2)

ω2τ2
slit

·E
{
|F{e(t)}|2

}
=

4sin2(ωτslit/2)
ω2τ2

slit︸ ︷︷ ︸
=1−γ(ω)

Gee(ω).

(9)

Observation 2.1: From (9) it is clear that erms
MA has no

contribution from frequencies f = i/τslit with i ∈ N\{0}
where 1− γ(ω) = 0, though Gee(ω = 2π f ) may display a
significant rate-of-change in power at these frequencies.
The frequency-dependent gain 0 ≤ γ(ω) ≤ 1, where γ(0) =
0, represents zero-phase high-pass filtering, which is shown
in Fig. 2 with τslit = 0.5. Alternatively, 1− γ(ω) represents
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Fig. 2: High-pass properties of γ(ω) with τslit = 0.5.

zero-phase low-pass filtering; see Appendix A for the local
minima of γ(ω) derived at 2αi/τslit with i ∈ {1,2,3,4, . . .}.

III. MOVING STANDARD DEVIATION

In wafer scanners the moving standard deviation filter
operation is used as a measure for imaging [1], i.e., the
degree of blurriness of the exposed features on a wafer,
which is for example expressed by line-edge roughness.

Definition 3.1: In continuous time, the moving standard
deviation operation MSD{e(t)} maps the tracking error sig-
nal e to the moving standard deviation signal eMSD, or
e 7→ eMSD, via the root-mean-square (non-causal) mapping

eMSD(t)≜

√
1

τslit

∫ t+
τslit

2

t− τslit
2

(e(τ)− eMA(t))2dτ ≥ 0. (10)

Lemma 3.1: Given Definitions 2.1 and 3.1, (10) equals

eMSD(t) =

√
1

τslit

∫ t+
τslit

2

t− τslit
2

e2(τ)dτ − e2
MA(t). (11)

Proof: Given (1) and (10), it follows that

e2
MSD(t) =

1
τslit

∫ t+
τslit

2

t− τslit
2

e2(τ)dτ

−2eMA(t)
1

τslit

∫ t+
τslit

2

t− τslit
2

e(τ)dτ + e2
MA(t)

=
1

τslit

∫ t+
τslit

2

t− τslit
2

e2(τ)dτ − e2
MA(t).

(12)

Taking the square root completes the proof.

From Lemma 3.1 (and apart from the overall square root)
the moving standard deviation error signal eMSD can be
interpreted as the difference between the moving average
of the squared tracking error and the squared value of the
moving average of the tracking error itself. As a result, if eMA
is small within some time interval t ∈ [t1, t2], eMSD tends to
the root-mean-square value of the error signal e in that same
time interval.

The root-mean-square value erms
MSD of the moving standard

deviation error signal eMSD follows from the next result.
Proposition 3.1: For eMSD(t) = 0 outside t ∈ [0,T ] and for

finite but sufficiently large record length T/τslit ≫ 1,

erms
MSD ≜

√
1
T

∫ T

0
e2

MSD(t)dt

≊
∫

∞

0

γ(ω)︷ ︸︸ ︷{
1− 4sin2(ωτslit/2)

ω2τ2
slit

}
Gee(ω)dω.

(13)

Proof: For eMSD 7→ erms
MSD, it follows that

erms
MSD ≜

√
1
T

∫ T

0
e2

MSD(t)dt =

√
1
T

∫
∞

−∞

e2
MSD(t)dt

=

√√√√ 1
T

∫
∞

−∞

{
1

τslit

∫ t+
τslit

2

t− τslit
2

e2(τ)dτ − e2
MA(t)

}
dt

≊
√

1
T

∫
∞

−∞

{
e2(t)− e2

MA(t)
}

dt (with T/τslit ≫ 1).

(14)

Using (9), (14) becomes

erms
MSD ≊

√∫
∞

0
{Gee(ω)−GMA

ee (ω)}dω

=

√∫
∞

0
γ(ω)Gee(ω)dω.

(15)

Observation 3.1: erms
MSD in (13) equals high-pass filtering

of Gee by γ(ω), recall Fig.2. For ω →∞, erms
MSD solely depends

on the rate-of-change in power of Gee as γ(ω)→ 1.
Observation 3.2: The value erms

MSD includes frequency con-
tributions from frequencies fi = i/τslit , with i ∈ N\{0}, in
contrast to erms

MA in (9), recall Observation 2.1. The autospec-
tral density function Gee at these frequencies is fully taken
into account, i.e., γ(ωi = 2π fi) = 1, see Fig.2.

Though the value erms
MSD in (13) can be related to high-pass

filtering of Gee by γ(ω), the relation between F{eMSD(t)}
and F{e(t)} is not given by any linear transfer. However, for
harmonic input e(t) = êsin(ωt), the interpretation of a fre-
quency response of the moving standard deviation operation
can be obtained by the following result, which constitutes
the main contribution of this paper.

Theorem 3.1: Let e(t) = êsin(ωt), with ê > 0, then

eMSD(t)
ê

=

√
1
2
− cos(2ωt)sin(ωτslit)

2ωτslit
+(γ(ω)−1)sin2(ωt).

(16)
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Proof: From (11), it follows that

e2
MA(t)+ e2

MSD(t)

=
1

τslit

∫ t+
τslit

2

t− τslit
2

(êsin(ωτ))2dτ

=
1

τslit

{
ê2

2
τ − ê2

4ω
sin(2ωτ)

∣∣∣∣t+
τslit

2

t− τslit
2

=
ê2

τslit

τslit

2
− 1

4ω
sin(2ωt +ωτslit)︸ ︷︷ ︸

s(α+β )=s(α)c(β )+c(α)s(β )

s(α−β )=s(α)c(β )−c(α)s(β )︷ ︸︸ ︷
+

1
4ω

sin(2ωt −ωτslit)


=

ê2

2
− ê2 cos(2ωt)sin(ωτslit)

2ωτslit
.

(17)

Using e2
MA(t) = (1− γ(ω))ê2 sin2(ωt) completes the proof.

Theorem 3.1 shows that the response of the moving standard
deviation operation to a sinusoidal input, i.e., the power
inferred by e(t) = êsin(ωt), is partially transferred to a DC
component and partially to a component at double the input
frequency ω as well as multiples thereof. None of its power
is transferred to a component at the input frequency ω itself,
which is in contrast to any linear frequency response. Other
properties of (16) are:

1) eMSD ∝ ê, i.e., homogeneity of degree 1,
2) eMSD = 0 for ω = 0, and
3) eMSD → erms

MSD = ê/
√

2 for ω → ∞.
Corollary 3.1: For harmonic error signals e(t) = êsin(ωt)

with ê > 0 and ω ≥ 0, eMSD(t) in (16) is strictly bounded by

η(ω)ê ≤ eMSD(t)≤ η̄(ω)ê, (18)

with

η(ω) = min


√

1
2
− sin(ωτslit)

2ωτslit
,

√
γ(ω)− 1

2
+

sin(ωτslit)

2ωτslit

 ,

η̄(ω) = max


√

1
2
− sin(ωτslit)

2ωτslit
,

√
γ(ω)− 1

2
+

sin(ωτslit)

2ωτslit

 .

(19)
Proof: For arbitrary ω ∈ R≥0, the extremes in the

argument of (16) are found as roots of

d
dt

{
1
2
− 1

2ωτslit
cos(2ωt)sin(ωτslit)+(γ(ω)−1)sin2(ωt)

}
= sin(2ωt)

(
− 1

τslit
sin(ωτslit)+ω(γ(ω)−1)

)
= 0.

(20)

Evaluating (16) at these roots, which are located at 2ωt = iπ ,
with i ∈ N, gives two type of solutions:

1
2
− sin(ωτslit)

2ωτslit
, if 2ωt ∈ {0,2π,4π,6π, . . .}, or

γ(ω)− 1
2
+

sin(ωτslit)

2ωτslit
, if 2ωt ∈ {π,3π,5π,7π, . . .}.

(21)

For any value ω ∈R≥0, (18) satisfies the bounds in (19).
η̄ can be used to define the following frequency response
magnitude for the moving standard deviation operation.

Definition 3.2: For e(t) = êsin(ωt) = e(t +Tp) and corre-
sponding periodic eMSD(t) = eMSD(t +Tp), with period time
Tp = 1/ f , f = ω/2π , the frequency response magnitude is
defined as

|MSD(ω)|≜ ∥eMSD(t)∥∞

∥e(t)∥∞

= η̄(ω). (22)

Finally, the bounds in (18) can be transformed into

ηo f f (ω)≜
η(ω)+ η̄(ω)

2
,ηosc(ω)≜

η̄(ω)−η(ω)

2
(23)

with η(ω) = ηo f f (ω)−ηosc(ω), and
η̄(ω) = ηo f f (ω)+ηosc(ω),

(24)

where ηo f f (ω) represents at each ω the positive (and static)
off-set part of eMSD(t) = eMSD(t+Tp), with period time Tp =
1/ f , f = ω/2π , whereas ηosc(ω), represents the magnitude
of the oscillatory part.

The presented frequency-dependent functions: |MA(ω)|
from (2), γ(ω) from Fig. 2, η̄(ω) and η(ω) from (19),
|MSD(ω)| from (22), as well as ηo f f (ω) and ηosc(ω) from
(23) are depicted in Fig. 3 where τslit = 0.5. The seemingly

0 2 4
1

8
2

12
3

16
4

20

0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Bode (magnitude) diagram for harmonic input only.

high-pass properties of |MSD(ω)|= η̄(ω) largely stem from
the frequency-dependent off-set values in ηo f f (ω). Namely,
the oscillatory part of eMSD(t) = eMSD(t + Tp) captured by
ηosc(ω) evidently shows low-pass behavior for ω ≥ 2π .
Analytic expressions for the zeros of the oscillatory part are
derived in Appendix B, e.g., for βi with i ∈ {1,2,3,4, . . .}.

Remark 3.1: In absence of superposition, |MSD(ω)| lacks
the interpretation of a frequency response function and as
such does not apply to inputs having multiple frequency
components.

IV. STAGE CONTROL EXAMPLE

To demonstrate the properties of the moving average
and moving standard deviation filter operations consider

3517



measured data collected from a short-stroke wafer stage
of a wafer scanner; see [1] for a more detailed descrip-
tion of the working principle of wafer scanners and their
components. The data are shown in Fig. 4 and represent
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Fig. 4: Mean tracking error e and spread from 8 realizations.

the mean tracking error signal e (red curve) in the time
interval t ∈ [0,0.1] seconds of 8 individually measured time-
series along with the resulting spread (grey intervals). The
sampling frequency is fs = 5 kHz. The measured signals
result from repeating an identical reference profile r of which
its (scaled) acceleration characteristics are shown (dashed
black). For non-zero acceleration the wafer stage is preparing
for exposure. For zero acceleration levels, exposure takes
place under constant (scanning) velocity, see the indicated
interval t ∈ [0.0388,0.0818] seconds.

The data from Fig.4 after post-processing are shown in
Fig. 5, which contains both the unfiltered (mean) error signal
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Fig. 5: Moving average; eMA (red) from (1), mean tracking
error e (grey), and L p,zp

1 {e} (black) from (5).

e (in gray) as well as the error signal eMA (in red) obtained

from a discrete-time moving average operation related to (1)
with τslit = 9.2×10−3 seconds. Notice that 5000×9.2×10−3

gives 46 samples in the moving average window. As such,
the first zero of the moving average filter is found at
f = 5000/46 = 108.7 Hz, which is a factor 20 below the
sampling frequency, hence the validity of the continuous-
time definition in (1). The figure also shows the error signal
L p,zp

1 {e} (black) related to the first-order low-pass filter
operation with zero phase as in (5). It can be concluded
that eMA partly shows first-order low-pass characteristics but
these characteristics significantly differ from the first-order
low-pass filter operation with zero phase in (5). In terms
of magnitude, the moving average filter removes more low-
frequency contents than justified by a first-order low-pass
filter, and, in terms of phase, there appear multiple intervals
where the moving average signal eMA has opposite sign
compared to the measured error signal e.

Fig. 6 contains both the unfiltered (mean) error signal e(t)
(gray) as well as the error signal eMSD(t) (red) obtained
from applying a discrete-time version of the moving stan-
dard deviation operation in (10) with τslit = 9.2× 10−3s. It
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Fig. 6: Moving standard deviation; eMSD (red curve) from
(10), mean tracking error e (grey curve), eMA (black curve)
from (1), erms

MSD (red lines) from (13), and erms (black lines)
from (8).

can be concluded that eMSD shows low-pass characteristics
regarding the high-frequency contents of e(ω), i.e., the
oscillatory part ηosc(ω) in (23), which is in line with the
discussion regarding Definition III. Moreover, eMSD tends to
the root-mean-square value erms

MSD ≤ erms in subsequent time
intervals; a record length of T = 0.1s is ten times larger
than τslit = 9.2 × 10−3s thereby validating the assumption
underlying Proposition 13. This is especially clear toward the
end of the scanning interval; recall the discussion on Lemma
(3.1) and notice the moving average error eMA(t)≈ 0 in the
interval t ∈ [0.05,0.08] seconds. Prior to scanning, eMA ̸= 0
and erms

MSD < erms, i.e., both low- and high-frequency content
contribute to the power of the tracking error signal e.

In terms of power spectral density (PSD) analysis, Fig.
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7 demonstrates that: (a) eMSD is a measure of power that
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Fig. 7: Cumulative power spectral densities (PSD); eMSD
(red) from (10), e (grey), and eMA (black) from (1) along
with the (scaled) filters MA (thin black) and ηosc (thin red).

through its DC contribution captures most of the root-mean-
square value of erms

MSD ≤ erms, (b) both eMSD and eMA show
low-pass properties when compared to the unfiltered tracking
error e, and (c) at the roots ωi of |MA(ωi)|, |ηosc(ωi)| = 0,
eMA and eMSD show no change of power while e does.

V. CONCLUSIONS
As main takeaway of the moving average and moving

standard deviation analysis in frequency domain it was found
that both operations have a frequency response that has
properties that can be partly explained by first-order low-
pass filtering. Different are the specific frequencies related
to the moving time interval where the frequency response
has no frequency content at all. Also, the phase shift of
the frequency response alternates for different frequencies
between zero and 180 degrees meaning that the moving
average error signal can have opposite signs when compared
to the unfiltered tracking error signal. The moving standard
deviation operation provides a moving estimate of power of
its mainly high-frequency content.

APPENDIX A
The frequency-dependent gain γ(ω) in Fig. 2 has local

minima at frequencies ωi where{
∂γ(ω)

∂ω

}
ω=ωi

=−4sin(ωiτslit/2)cos(ωiτslit/2)
ω2

i τslit
+

8sin2(ωiτslit/2)
ω3

i τslit
= 0

=⇒ tan
(

ωiτslit

2

)
=

ωiτslit

2
.

(25)

As (25) has no solutions in closed form, one has to reside
to numerical approximation, see Table I. These minima are
shown in Fig. 2 for ω > 0 and τslit = 0.5 at ωi = 4αi, i ∈
N\{0}. Notice that limi→∞ αi = (i+0.5)π , i ∈ N\{0}.

TABLE I: Numerically approximated local minima of γ(ω)
as solutions of tan(αi) = αi with ωi = 2αi/τslit .

i αi γ(ωi)
1 1.430π 0.811
2 2.459π 0.934
3 3.471π 0.967
4 4.477π 0.980
5 5.482π 0.987
· · ·
n (n+0.5)π 1

APPENDIX B
The oscillatory part of eMSD(t) represented by ηosc(ω) is

zero at frequencies ω = ωi, which are the roots of√
γ(ω)− 1

2
+

sin(ωτslit)

2ωτslit
=

√
1
2
− sin(ωτslit)

2ωτslit
. (26)

First, ωi = 0 gives MSD(0) = 0, which follows from
limβ→0 sin(β/2)/β = 1/2 with β = 2ωτslit . Second, (26) has
a solution at ω →∞, for which holds that limω→∞ ηo f f (ω) =
1/
√

2. Third, ωi = 2π fi with fi = i/τslit , i ∈ N\{0}, render
MSD(ωi) = 1/

√
2 as γ(ωi) = 1 and sin(ωiτslit) = 0. Fourth,

solutions are found at βi = 2ωiτslit = 2αi/τslit , as (26) yields

γ(ωi)−1+
sin(βi/2)

βi
=− sin(βi/2)

βi

=⇒ tan(αi) = αi, αi = ωiτslit/2.
(27)

The values of βi = 4αi (with αi from Table I) and MSD(ωi)
are shown in Table II.

TABLE II: Numerically approximated local minima of
|MSD(ωi)| as solutions of tan(αi) = αi.

i βi = 4αi |MSD(ωi)|
1 4 ·1.430π 0.6901
2 4 ·2.459π 0.7013
3 4 ·3.471π 0.7042
4 4 ·4.477π 0.7053
5 4 ·5.482π 0.7059
... ↓ ↓
n 4 · (n+0.5)π 1/

√
2
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