2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Synthesis and verification of robust-adaptive safe controllers

Simin Liu*! Kai S. Yun*2

Abstract— Safe control with guarantees generally requires
the system model to be known. It is far more challenging to
handle systems with uncertain parameters. In this paper, we
propose a generic algorithm that can synthesize and verify safe
controllers for systems with constant, unknown parameters. In
particular, we use robust-adaptive control barrier functions
(raCBFs) to achieve safety. We develop new theories and
techniques using sum-of-squares that enable us to pose synthesis
and verification as a series of convex optimization problems. In
our experiments, we show that our algorithms are general and
scalable, applying them to three different polynomial systems of
up to moderate size (7D). Our raCBFs are currently the most
effective way to guarantee safety for uncertain systems, achiev-
ing 100% safety and up to 55% performance improvement over
a robust baseline.

I. INTRODUCTION

Although much work has been done on safety for known
systems, comparatively little work has been done for systems
whose dynamical models cannot perfectly be known. These
uncertain systems are a challenging domain for safe control
on both a theoretical and methodological level. Effective
safe controllers must meet two demands: (1) provide mathe-
matical guarantees of safety and (2) be high-performance,
interfering minimally with other control objectives (i.e.,
stabilizing, tracking). Currently, many safe control synthesis
methods for uncertain systems either lack guarantees or
only obtain safety at a high cost to performance. Secondly,
algorithms for controller search should be both generic and
tractable, so they can handle many different systems of
varying dimensions. This work aims to address all of these
requirements.

The technique we use is “sum-of-squares programming”
(SOSP) [1, 2]. Any robust-adaptive CBF (raCBF) produced
by our SOSP-based algorithm is guaranteed to provide safety.
SOSP allows us to pose the search for a valid raCBF, given
a partially-known system and a safety requirement, as a
constrained optimization problem. This optimization problem
can be broken down into a series of convex optimization
problems, which can each be solved with an off-the-shelf
semidefinite program (SDP) solver.

Typically, uncertain systems are handled with adaptive,
robust, or robust-adaptive control [3]. We choose the robust-
adaptive paradigm, which combines the merits of robust and
adaptive control. In adaptive control, the controller depends
on estimates of the unknown system. Typically, the system
will be estimated online and the controller adapts with each
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Fig. 1: Two of our three test systems: cartpole with unknown
joint friction and quadrotor with unknown drag coefficients.

new estimate. In adaptive fashion, our raCBF is a function of
the estimated parameters as well as the state. This raCBF is
also paired with a special parameter estimation law. This
controller structure allows it to effectively select a CBF
online with the choice of parameter. The robust-adaptive
scheme leverages this to attain selective conservatism: more
conservative CBFs are only “selected” when necessary, like
when the state suddenly moves toward danger.

The raCBF also incorporates elements of robust control.
In robust control, the controller only depends on worst-case
disturbance bounds. Our raCBF follows robust principles by
accounting for maximum estimation error. However, it is able
to account for it in a less conservative way compared to ro-
bust CBF (rCBF), as it assumes parameter estimation occurs.
Ultimately, these differences lead our synthesized raCBF to
perform better. That is, it provides safety while minimally
hindering control efficiency at tasks like stabilization and
tracking.

Our contributions are as follows:

o Propose the first verification and synthesis methods for
adaptive-type safe controllers for uncertain systems.

« For verification: derive convex-equivalent conditions for
an raCBF to provide safety.

o For synthesis: design a multi-phase algorithm which
yields a valid raCBF with a locally optimal invariant
set.

o Illustrate our algorithm’s genericness and scalability by
applying it to three examples with varying dynamics,
dimensions (< 7D), and safety specifications.

o Illustrate our synthesized raCBF’s safety and superior
performance (up to 55% improvement over robust base-
line) in simulation.

II. RELATED WORKS

In this section, we briefly survey existing works on safety
for uncertain systems. We primarily focus on CBF works.

Theory of (r/a)-CBFs: these works mathematically define
novel forms of CBF (like robust [4, 5, 6] and adaptive [7, 8,
9] CBFs). This category has a different focus than synthesis
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and verification (systematically generating CBFs). Hence,
works in this category typically just use hand-derivation
to find CBFs for toy systems, which is an approach that
is difficult, if not impossible, to apply to more complex
systems.

Verification and synthesis of (r/a)-CBFs: this category,
which our work belongs to, deals with developing new
theories and algorithms for systematically checking and gen-
erating safety functions. While synthesis of ordinary CBFs
(i.e., for known systems) has been explored extensively [10,
11, 12], to our knowledge, there are very few works for
robust CBF synthesis [13] and none for adaptive synthesis.
Our work is one of a handful that synthesize CBFs for
uncertain systems, and the first to synthesize an adaptive-
type CBF. While our synthesis technique carries guarantees
of correctness, there are ad-hoc synthesis works which do
not [14, 15]. There are also sample-based methods for veri-
fication, which are unable to scale past SD due to the curse
of dimensionality [15]. Compare this to our SOSP-based
verification scheme, which has polynomial time complexity
and can scale to 7D and possibly beyond.

Online optimization of (r/a)-CBFs: this body of work
typically assumes a valid CBF already exists. Ordinary CBFs
compute safe control inputs using quadratic programs (QPs)
solved at each time step [16, 17]. Works in this category
investigate how best to pose this online optimization (i.e.,
possibly as a different type of program, like a second-order
cone program) for new forms of CBFs [18, 19, 20]. Note
that one advantage of our robust-adaptive formulation is that
it can still be applied with a QP, which is simple and fast to
solve.

Ad-hoc safe controllers: these are works which can-
not guarantee safety, because they cannot prove that an
admissible safe control input exists for all states and all
realizations of the unknown system [21, 22, 23]. By contrast,
our approach can ensure that there exists a safe control input
for all possible conditions, therefore guaranteeing system
safety.

Non-CBF approaches: there are bodies of work on
using HJB reachability [24] or set-based methods [25, 26]
to compute robust backward or forward reachable sets.
However, a significant drawback of these methods is they
scale poorly, often not beyond SD.

III. PROBLEM FORMULATION

A. Safe control for uncertain systems
In this first subsection, we define the problem of safe
control for uncertain systems. We also outline system as-
sumptions and our definition of safety. We consider a system
that is affine in the unknown parameters and the control

input:

= f(z) — Ax)0 + g(z)u (D
ueEU,zEX,0cO (2
where f, g, A are polynomial functions in z and x € X C

R*u e CR™ 0 € © C RP. We also assume the set
of admissible inputs and the robust parameter range are both

hyperrectangles (i.e., u < u < @ and § < 0 < 0). We want to
enforce safety of this system in the sense of “set invariance”.

Definition 1 (Set invariance). A set Z is forward invariant
if all trajectories starting inside I remain inside the set for
all time.

The set X is provided as part of the problem speci-
fication and is represented implicitly using continuous and
smooth functions b;(z) : R” — R:

Definition 2 (Safety specification).
Xafe = {2|bi(z) >0, Vi=1,...,t} 3)

B. Robust-adaptive CBFs

In this second subsection, we summarize the raCBF for-
mulation and outline the constraints that valid raCBFs must
satisfy. We choose the formulation in [27], which is less
conservative than [4, 5, 6, 7, 9] and compatible with more

nominal controllers than [8]. The raCBF has the form ¢(z, é)
where it depends on not only the state, but also on_the

estimate of the unknown parameters. The estimate, 0, is
initialized with a guess and then updated online according
to:

0 =w(p)A)" Vad(z,0), @)
_ v(p)

Vv(p) é(z,0) +n

_J0if Vip(z,0)T0>0

" =¢Vé(x, 0)T v A ()T Vad(x, 0)] otherwise
where +y is an admissible adaptation gain, v(p) is a scaling
function such that 1 < v(p) < ¢ < oo for ( > 1 and
also Vv(p) > 0. Also, 0,0, € R are design parameters.
We assume that 6 belongs to a bounded set ©. For many
systems, we can easily provide a guess for © based on
domain knowledge [3].

Theorem 1. Define the set I = {x € X,0 € © | ¢(z,0) >
%@Té} where 0 is the maximum possible estimation error.

6 =6—0, where 6 € [0 : 0. Then, an raCBF must satisfy the
following constraints to ensure invariance of Ig:

sup { Vo (w, 0)(f ~ A0+ gu) } > ~ a(9(x, ) ~ £076) ()
$(x,0) >0 = bi(z) >0,Vi=1,...,t. (8)

Proof. Eq. (7) by Thm. 1 in [27] and Eq. (8) by defintion
of safety. O

p [=op + wy(2)], 5)

6

Eq. (7) says that the raCBF must be a function that defines
a robust invariant set under the true dynamics. Specifically,
the robust set Ig is invariant iff there always exists an admis-
sible input to repel the state from the set boundary. This is
implied by Eq. (7), which requires sup,,.,, ¢ > 0 (repulsion)
when ¢ = %éTé (state at the boundary). Now, typically,
the invariant set is considered {z|¢ > 0}. The robust set
is shrunk from this typical set by a margin proportional to
the maximum estimation error. Intuitively, this triggers safe
control earlier than is typical, which mitigates the impact of
estimation error.

Additionally, the raCBF must obey the safety specification.
Eq. (8) says that the raCBF may define an invariant set that is
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no larger than Xg,p. Often, X, itself cannot be an invariant
set. There will be some states within X, that will leave the
set for any admissible control input.

Given a valid raCBF, a controller design is immediate.
We simply apply the raCBF as an optimization-based safety-
filter on top of a nominal control policy. Since any control
input satisfying Eq. (7) will keep the system safe, this filter
simply projects the nominal control signal to the space of u
satisfying Eq. (7).

Definition 3 (raCBF quadratic program (raCBF-QP)). Given
nominal controller u,f = 7(x),

s 2
L | trer — ©)

Vao(w,0)(f - A0+ gu) = —a (¢(x,0) - £070) . (10)

Notice that the filtered input is computed using the es-
timated dynamics. This is why we require the raCBF, and
the filtered input, by consequence, to be robust to estimation
error.

IV. PRELIMINARIES: SOSP

We use sum-of-squares programming (SOSP) as the op-
timization framework for verification and synthesis. In the
following section, we briefly summarize key definitions and
theorems for SOSP. In general, checking polynomial non-
negativity is NP-hard. However, checking that some p(z) €
R, (the set of polynomials in n variables) is an SOS
polynomial (Def. 4) is completely tractable [28].

Definition 4 (Sum-of-squares polynomial). A polynomial
p(z) is SOS if p(x) = 3, qi(x)? for some polynomials g;.
Clearly, this implies p(x) > 0. We denote the set of SOSP
as X.

Hence, a popular kind of optimization problem is the
SOSP, which has constraints of this form (enforcing a
polynomial to be sum-of-squares).

Definition 5 (Sum-of-squares program). An SOSP is a
convex optimization problem of the following form for a
given cost vector ¢ € RP*4

min ¢'w (11)
aé(x)+2wja()62 Vi=1,...,q
Vjelp
where a}(z) € R,.

12)

The definition above says that an SOSP constrains ¢
polynomials to be sum-of-squares. These polynomials may
have variable coefficients (wé) and the objective is linear
in these coefficients. Next, we introduce the cornerstone
theorem, the Positivstellensatz (P-satz), which allows us to
transform all different kinds of constraints (e.g., logical
implications of polynomial inequalities) into the standard
SOSP constraint form of Eq. (12).

Theorem 2 (Positivstellensatz [29]). Given polynomials

{fi,- s frb {91,---,9¢}, and {h1,... . hy} in Ry, the
following are equivalent:

(a) The set

fiz) >0,.... fr(x) 20

xe€R™ g1(z) #0,...,9:(x) #0

hi(z) =0,...,hy(z) =0
is empty.
(b) There exist polynomials f € P(f1,....fr),9 €
M(g1,...,9t),h € Z(hy,..., hy) such that

f+d*+h=0 (13)
where M(g1,...,9:) is the multiplicative monoid gener-

ated by the g;’s and consists of all their finite products;

P(f1,..., fr) is the cone generated by the f;’s:
leZy,s; € Xy,
P(fla""f’!‘ _{SO_‘_ZSll berlvo..7fT’)}
and finally, T(hy, ..., hy) is the ideal generated by the h;’s:
T, h) = {3 mmelpe e R} (14)

The P-satz allows us to convert statements in the form
of (a) to the form of (b), which can then straightforwardly
be turned into an SOSP-type constraint. However, it is
often inconvenient to apply P-satz directly, since it generates
complex constraints (e.g., the cone adds 2" terms, each with
a polynomial multiplier). Instead, we can use a simplification
of P-satz called the S-procedure:

Definition 6 (S-procedure [28]). A sufficient condition for
proving p(x) > 0 on the semi-algebraic set K = {z €
R™|b1(z) > 0,...,by(x) > 0} is the existence of polynomi-
als ri(x),i=0,...,m that satisfy

(1+ro(x))p(x) = Y ri(z)bi(z) € B (15)
i=1
ri(x) €X,i=0,...,m (16)

Frequently, we simplify this condition further by taking
ro(x) = 0. Together, the concepts from this section allow
us to write the constraints which define valid raCBFs in the
form of SOSP constraints, which makes them amenable to
verification and synthesis.

V. METHODOLOGY

In the following sections, we show how a valid raCBF can
be characterized using several SOSP constraints. With this,
we can pose raCBF verification as an SOSP; this allows
us to efficiently certify whether a given raCBF is valid.
Additionally, we propose an algorithm for synthesizing an
raCBF, given the partially unknown system and the safety
definition. The algorithm is a sequence of SOSPs that are
iteratively solved until convergence.

A. raCBF verification

In this section, we derive an SOSP that allows us to verify
if a given raCBF satisfies Theorem 1. Our goal is to convert
Eq. (7), (8) into the form of Eq. (12).

Looking first at Eq. (7), we see that it requires us to
show that for all x € X,0 € O, there exists some u € U
satisfying the constraint. The “exists” quantifier complicates
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the conversion, as theorems like P-satz and S-procedure can
only support “for all” quantifiers. However, it turns out that
for any z, we can identify which v € U achieves the
supremum in Eq. (7) - call it u*(z). Therefore, we only
need to check whether Eq. (7) is satisfied for v*(z) for all
x.

We derive u*(z) by regarding Eq. (7) as a constrained
optimization over the input u. In fact, it is a special kind of
optimization problem with an affine objective and a compact,
convex constraint set. Hence, the maximizer always occurs
at a vertex of the constraint set [30], v/ where v/ € {u;, @W; }.
For each z, we can further identify which vertex is the max-
imizer. First, we write Eq. (7) more clearly in control-affine
form. Let c(z,0) := V.o (x,0)(f — Af) + a(¢(x,0) — 5-070)
and d(z, 0) := V. ¢(x,0)g(x), so that Eq. (7) can be rewritten
as sup, ¢y c(, ) +d(z, §)u. Fori = 1,...,m, if d(x,0); > 0,
i.e., the i entry of vector d(z,f) is nonnegative, then
uf(x) = @; and vice versa. There are then 2™ groups of
2 with distinct sign patterns on d(x,#) that have distinct
maximizers u*(x). Hence, we can write 2™ constraints for
all the groups of =z.

We give an example for m = 1, although the general case
is an immediate extension. We have two constraints:

Ve e X,0 €O, st ¢(x,0) > :
d(z,0) >0 = c(x,0) + d(x,6) 0, (17
d(z,0) <0 = c(z,0) + d(z,0) 0. (18)

Applying the S-procedure gives us the following SOSP
constraints:

c+du—s1d—sa(p— 7)€ X, (19)
c+du+ ssd—s4(p—07) €L, (20)
Likewise, we can also apply the S-procedure to (8) to
yield:
q[)(at,@)—ribi ex, Vi=1,...,t, r, € X.

$1,89 € X,
S3,84 € 2.

2n

Theorem 3 (raCBF verification). For the case where m =
1', a polynomial (b(x,é) is a valid raCBF, providing set
invariance and finite-time convergence in {z|¢p > B}, if
there exists S1.4,1; such that the convex constraints in Eq. (7)
and (8) are satisfied. This can be determined by seeing if the
SOSP consisting of constraints (19), (20), (21) is feasible.

Proof. If there exists such sy.4,7;, then by Def. 6, Thm. 1
is satisfied. O]

B. raCBF synthesis

In this section, we provide an algorithm for synthesizing
an raCBF given the partially known system (Eq. 1), the
safety definition (Eq. 3), and a feasible initialization for
the raCBF. We would like to find qb(:c,é) satisfying The-
orem 1, where ¢ is now a polynomial of fixed degree over
x,0 with variable coefficients. However, with ¢ containing
optimization variables, Eq. (19), (20) are no longer convex,
but bilinear. This requires us to apply bilinear alternation on

IThe case for general m is an immediate extension, but omitted for
notational brevity.

Algorithm 1 Synthesis of raCBFs via a sequence of three
SOSPs

Start with qS(O),Hl(O),@fLO),c(O) = 00,7 = 0, converged=False.
Denote the objective value as @,
while not converged do
Ellipsoid £ « P1(¢™, 6", 65)
Multipliers s;(z, 0), r:(z,0) + P2(¢(i), 91(1)7 09, Séi))
Aol 0;””, 65”1),0(”1) «— P3(s;(x,0),r:(x,0), Séi))

if |t — ()| < ¢ then
converged < True
end if
end while

these constraints, which form the basis of our Alg. 1. We
optimize the multipliers s;(z,6),r;(z,¢) in Phase 2 and the
raCBF ¢(x,0) in Phase 3 and continue back and forth.

Phase 2

min ¢
84,7 €EX,tER

c+di—s1d—s200—p07) €D
c+du+ssd—sa(p—p7)eX
b—rib €S, Vi=1,... .t
t—¢—s5(0 —x"Px)ex

(22)

Ctrl fltr feas. constrs

Subset constraints

Ellipsoid constraint

1-¢(0,0) e X Anchor constraint
Phase 3 (23)
ol 1O O

c+du—s1d—s2(9—07)€X
c+du+ssd—ss(p—p7)eD
o—rib;eX [ Vi=1,...,t
t—¢—s5(0 —x' Px)eX
1—-¢(0,0) e X

While bilinear alternation alone would yield a valid raCBF,
we’d also like the raCBF to capture a large invariant set.
A larger invariant set means the system is less restricted,
providing the nominal controller more flexibility. Thus, our
optimization needs to also maximize the size of the invariant
set Z%. To do this, we follow [12]. To increase its size, we
perform several steps in each iteration. First, we find the
largest ellipsoid & := {x | 2" Pz < 6} contained within Z;
(solve Phase 1 for the maximum ellipsoid radius §). Then,
we optimize the raCBF so that the margin between & and Ig
is as large as possible (Phase 2). This effectively increases
the size of Ig over the iterations. We also add an “anchor
constraint”, which limits the maximum value of the raCBF.
This helps us avoid a trivially optimal raCBF with large
values but a small invariant set.

Ctrl fitr feas. constrs

Subset constraints
Ellipsoid constraint

Anchor constraint

Phase 1

max r
JER,s0EX

st. d —x' Px— sgp € %

(24)
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Another challenge posed by synthesis is the requirement
for a feasible initialization. That is, we need to supply a
raCBF already satisfying Eq. (7), (8) when using bilinear
alternation. Generally, this initialization is something that
can be computed straightforwardly, but has a trivially small
invariant set. Then, the idea is for synthesis to enlarge
the invariant set, while maintaining validity, until it has a
reasonable size. We can easily provide such an initialization
if the robust range © is small. In that case, we can use the
control Lyapunov function (CLF) corresponding to a linear
quadratic regulator (LQR) which stabilizes to an equilibrium
point in Xj,p. This initialization will intrinsically have some
robustness to perturbation [31]. However, in the general case,
the robust range © will have moderate size.

To handle this, we consider a small robust range at
initialization, so that we may use our LQR-based CLF
initialization. Then, we maximize this robust range over
the iterations (Phase 3). In our experiments, the ultimate
robust range produced by our algorithm is always equal to
the desired range. However, we have found, for example,
that the algorithm is unable to increase the robust range to
double the desired size. This is not a significant issue though,
since robust control is generally not recommended when the
desired range is large [3].

TABLE I
Results for Feedback Simulations

Toy 2D | Cartpole | Quadrotor

Safety Test 100% | 100% 100%

(% safe trajectories) ° ¢ ¢

Performance Test
(% improvement of raCBF 7.014% 54.953%
over rCBF on task metric)
VI. RESULTS

In this section, we synthesize raCBFs for three different
systems: toy 2D, cartpole, and quadrotor. We show that our
algorithm is quite general, producing valid raCBFs for a
variety of dynamics and safety specifications. We also com-
pare closed-loop performance in simulation for our robust-
adaptive controller and a baseline robust controller [13]. We
find that our robust-adaptive safety filter ensures 100% safety
while also interfering less with the nominal controller. This
means it achieves significantly better performance on com-
bined safety-stabilization and safety-tracking tasks. Finally,
we also show that our method scales better than the baseline,
handling systems of 7D as opposed to 2D.

In particular, we run two sets of experiments with the
simulated closed-loop system:

1) Safety test: ensure the system does not leave the
invariant set under an adversarial nominal controller,
which tries to drive the system out. Trials vary the
initial state and the true parameter(s) value(s).

2) Performance test: measure stabilizing/tracking perfor-
mance on combined safety-(stabilizing/tracking) task.
Compare with baseline, a robust CBF [13]. Trials
vary the true parameter(s) value(s). The cartpole’s task

metric is time to reach the goal and the quadrotor’s

task metric is the average trajectory tracking error.
We use 200 random trials for each test. Results are listed
in Table I and analyzed further in the following subsec-
tions. All the experimental hyperparameters can be found
in the Appendix (Sec. VIII). To solve the SOSPs, we use
SOSTOOLS [32] with Mosek [33] on a 3.00GHz Intel(R)
Core(TM) 19-9980XE CPU with 16 cores and 126GB of
RAM. For all examples, the initial raCBF is derived from
an LQR-based CLF that stabilizes the system to the origin.
Specifically, we use the solution S of the algebraic Riccati
equation of the system linearized about the origin to define
the CLF V (z) = 27 Sz and the raCBF ¢ (z) = ¢ — V(z),
where € € Ry is chosen experimentally.

?rajectories for 2D Toy System Safety Test

Safe Set b(x)
——Final ¢;(z,0)
- - - Final ¢y(x,0)

Fig. 2: Random trajectories generated by the safety test.
Observe that all stay within the invariant set (in red).

A. Toy 2D
We use the 2D toy system from [34]:

. [xe — a3 —z? 0
=0 [ [
with © € [0.8,1.5] and u € [—2,2]. The safety definition is
Xate = {z | b(x) := 1 — (22 + 22) > 0}.
Our synthesized raCBF attains 100% safety on this system.
Observe in Fig. 2 that the trajectories under the safety-
filtered adversarial controller never leave the system despite

the parametric uncertainty.

(25)

B. Cartpole

For the cartpole system (Fig. 1), we transform the stan-
dard trigonometric dynamics [35] to polynomial form by
redefining the states as [, , v, sin(1)), cos(1))+1]. For these
new states, we require sin®(1)) + cos?()) = 1, which we
incorporate into the SOSP using the S-procedure [36]. The
unknown parameter is the friction coefficient at the joint.
We let © € [0.28,0.31], following [37] and w € [—5,5] N.
The safety definition confines the pole angle to be small:
Kate == {sin*(%) — sin®*(v) > 0}.

In Fig. 3, we plot the invariant set along (9,9). First,
observe that the shape of the set is sensible: it is an ellipsoid
with primary axis 6 = —0, meaning it considers the pole

2262



10 Initial & Final Invariant Sets for Cartpole
\ ‘ —Initial ¢($5

——Final ¢(z, 0)
- - - Final ¢y(z,0)

-10

Fig. 3: Note the significant increase in size from the initial
to final invafiant sets. Also, observe that the final raCBF
depends on 6 in an intuitive way.

swinging to the vertical as safe and vice versa. Secondly,
note that the synthesized raCBF depends meaningfully on 9.
Comparing the invariant sets for ¢(x, 8) (low joint friction)
and ¢(z, é) (high joint friction), we can see that the former
set is larger. This makes sense, since for low joint friction, the
pole is more responsive and easily controlled. Finally, notice
that the initial invariant is almost negligibly small, but the
final set is quite large. We conclude that our algorithm is
very effective at growing the invariant set.

As for the closed-loop simulations, raCBF attains 100%
safety, even with an adversarially unsafe nominal controller.
We also synthesize a robust CBF according to [13]. In the
performance test, we implement a nominal controller which
controls the cart to reach position Z4.4;. Then, the nominal
controller is either layered with an raCBF-based or an rCBF-
based safety filter, both of which prevent the pole from
tipping.

Overall, the raCBF controller reaches the goal 7.014%
faster. One reason for this is that the raCBF has a larger
invariant set (Fig. 4), which allows larger pole angles during
safe operation (Fig. 5) and hence larger cart acceleration.
The difference in invariant set size can be explained as
follows: while both raCBF and rCBF are robust to maximum
estimation error, the raCBF is able to account for this error in
a more moderate way, since it assumes parameter estimation
is possible.

The second reason raCBF reaches the goal faster is its use
of parameter estimation. The parameter adaptation law ren-
ders the raCBF selectively conservative, whereas the rCBF
is always conservative (always operating under worst-case
assumptions). To see this, observe Fig. 6. The law adapts the
parameters toward values that increase conservatism when
the state becomes increasingly unsafe. This happens at times
~ 3,7,9 seconds, when the pole changes direction as the cart
oscillates around the goal. This pivot causes the parameter
estimate to grow to @, which corresponds to the smallest and
thus most conservative invariant set (Z;) among the family of
invariant sets {Ig,é € O}. On the other hand, when the state
is relatively safe, minimal conservatism is applied. This is the
case when the pole is static. At those points, the parameter
estimate is § = 0, corresponding to the largest invariant set
in the family of invariant sets.

raCBF vs rCBF
Final Invariant Sets for Cartpole

——Final raCBF ¢;(, Omia)
——Final rCBF ¢(x)

Fig. 4: Notice that raCBF’s invariant set is much larger
than the baseline’s, which accounts for the difference in the
performance test.

raCBF vs rCBF :
Cart Position z vs. Time

raCBF vs rCBF :
Pole Angle ¢ vs. Time

/k 3.2 —r1raCBF ||
—1rCBF ¢
—Vygoul
-.—';J:
T 31l
—raCBF z/| 3
—r1rCBF z A
—Zgoal
0 3.05
0 5 10 0 5 10
Time (sec) Time (sec)

Fig. 5: Detailed analysis of one trial from cartpole’s perfor-
mance test.

C. Quadrotor

This system is a planar quadrotor (Fig. 1) that we trans-
form from the typical trigonometric dynamics [38] redefining
the states as [i,y,&,x,y,sin(w),cos(z/)) — 1]. We handle
the transformation in much the same way as the cartpole
(Sec. VI-B). The system has two unknown parameters,
which are the drag coefficients in = and y that range from
[0,0.01], roughly following the physical values from [39].
The propeller thrusts are limited to [—4, 4] mg. The safety
definition enforces the system to avoid walls on the left and
right: Xsope = {2 |z € [-1,1]}.

Our synthesis is able to handle a system of this moderate
size (7D), producing an raCBF that ensures safety in 100% of

raCBF : 6, Pole Angle vs. Time
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Fig. 6: Analysis of parameter estimation for cartpole’s per-
formance test.
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raCBF vs rCBF: Quad Tracking

3 ——————
— — Ref. Traj.
9 Pie el \ raCBF Traj. | |
Ve rCBF Traj.
4 T T Walls
1t /
1 ele aleale \
— ] \
é 0 | SEREIENE 1
= \ !
\ ele =leels 1
-1 \ /
\ le aleale /
\ /
-2 S OHE . 4
= = = -1
-3

z (m)
Fig. 7: raCBF enables closer trajectory tracking than rCBF
and is therefore more performant.

the randomized trials of the safety test (Table I). The raCBF
also has a large invariant set, which is evidenced by how
it can track trajectories closely to the wall (Fig. 7). On the
other hand, the robust CBF from [13] cannot be applied to a
system of this size. However, in order to produce some point
of comparison, we transfer the key parts of their formulation
into our SOSP algorithm. Essentially, this just modifies the
control filter feasibility constraints in phases 2 and 3 of our
algorithm. This allows us to produce a result after six hours
of optimization, which we use in the following performance
test.

In the performance test, both controllers attempt to track
a trajectory that crosses the walls. The nominal tracking
controller is gain-scheduled LQR. As we can see, our raCBF
offers an 54.95% improvement over the robust controller. In
Fig. 7, we note that while our raCBF allows the quadrotor to
approach the wall, the robust CBF, which has a much smaller
invariant set in the x dimension, restricts the quadrotor to
around x = 0. We can conclude that raCBF performs better
and currently scales better than rCBF. More work will be
required to get rCBF to scale moderately.

VII. CONCLUSION

In this paper, we proposed the first verification and synthe-
sis methods for adaptive-type safe controllers for uncertain
systems. We proved that the constraints characterizing a valid
raCBF can be written as an SOS program, and showed we
can devise a multi-phase algorithm to synthesize an raCBF.
Then, in our experiments, we illustrated that our algorithm
is generic and scalable with three examples with varied
dynamics, dimensions (up to 7D), and safety specifications.
We empirically confirmed our theoretical safety guarantees
by showing that 100% of trajectories under the safe controller
are safe. Finally, we showed that our raCBF provides up to
~ 55% task performance improvement over the baseline. In
the future, we are interested in extending synthesis to systems
with time-varying unknown parameters.
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VIII. APPENDIX

TABLE II

Computation Lengths for Synthesis

2D Toy

Cartpole

Quadrotor

Total Time (sec)

23

655

68,934

Total Iterations

11

159

337

Avg. P1 Time (sec) 0.1

0.12

0.87

Avg. P2 Time (sec) 1

2.8

74

Avg. P3 Time (sec) 0.8

1.2

130

TABLE

I

Synthesis & Estimation Hyperparameters

2D Toy

Cartpole

Quadrotor

Deg. ¢(z, 0)

3

3

3

5

-1.0

-0.5

-0.1

0.1

0.01

0.01

10.0

10.0

10.0

atan(p) + 1

atan(p) + 1

atan(p) + 1

100

100

1000

1

1

1

<
M SRR

1

1

1

p range

[0,10]

[0,10]

[0,10]

A. System Parameters

e Cartpole: m. = 1kg, m, = 0.1kg, { = 0.5m

e Quadrotor: m = 0.486kg, r = 0.25m, I = 0.00383kg-m>

B. Final raCBF

2D toy: ¢(z,0) = (0.3666)02 + (0.07823)0z1 + (0.0007759)0:x>
—(1.673)22 — (2.005)x1 2 — (1.726)2% — (0.8380)0— (0.09071) 1
— (0.0007912)z5 + 1.098

Cartpole: ¢(z,0) = (23.24)0% 4 (0.0002120)0z, — (22.73)022
—(0.04065)x3 + (1.136)x321 — (10.06) 23 — (8.015) 23 — (12.98)0
+(10.27) 22 + 2.785

Quadrotor: ¢(z,0) = (—2.663)07 — (0.06829)0,0,

+ (0.05703)0; 25 + (0.3199)H3 — (0.08092)f222 — (0.7239)z3
+ (0.03167)z123 — (1.138)z124 + (3.074) 121 — (0.01136)3
+(0.02167)z324 — (0.1209)x321 — (1.462)23 + (2.118)z421
— (5.706) 27 — (5.308)23 + (0.06482)2> + 0.9881
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