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Abstract— This paper is concerned with open quantum sys-
tems whose dynamic variables have an algebraic structure,
similar to that of the Pauli matrices for finite-level systems.
The Hamiltonian and the operators of coupling of the system to
the external bosonic fields depend linearly on the system vari-
ables. The fields are represented by quantum Wiener processes
which drive the system dynamics according to a quasilinear
Hudson-Parthasarathy quantum stochastic differential equation
whose drift vector and dispersion matrix are affine and linear
functions of the system variables. This setting includes the zero-
Hamiltonian isolated system dynamics as a particular case,
where the system variables are constant in time, which makes
them potentially applicable as a quantum memory. In a more
realistic case of nonvanishing system-field coupling, we define
a memory decoherence time when a mean-square deviation of
the system variables from their initial values becomes relatively
significant as specified by a weighting matrix and a fidelity
parameter. We consider the decoherence time maximization over
the energy parameters of the system and obtain a condition un-
der which the zero Hamiltonian provides a suboptimal solution.
This optimization problem is also discussed for a direct energy
coupling interconnection of such systems.

I. INTRODUCTION
The distinctions of quantum mechanics [10], [15] from

classical (deterministic and stochastic) dynamics, exploited
as potential resources in the development of quantum infor-
mation and quantum computation technologies [12], come
from the noncommutative operator-valued nature of quantum
dynamic variables and quantum probability (where classical
probability measures are replaced with quantum states in
the form of density operators [6]). In the case of finite-
level systems, which are particularly relevant to the above
applications, quantum mechanical operators act on a finite-
dimensional complex Hilbert space and are organised as
square matrices, with Hermitian matrices representing real-
valued physical quantities. If the quantum system variables
(together with the identity matrix) form a basis in the ap-
propriate matrix space (as do the Pauli matrices [15] on the
qubit space C2), their pairwise products are affine functions
of the same set of variables, thus reducing any function
(for example, a polynomial) of such variables to an affine
function. This algebraic structure and the structure constants
are preserved over the course of time regardless of whether
the quantum system is isolated from its environment or is
open and interacts with the external fields and other systems.

In the case of open quantum dynamics, the energetics of the
system and its interaction with the surroundings is specified
by the system Hamiltonian and the operators of coupling of
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the system to the external fields. In the presence of the alge-
braic structure, the Hamiltonian and the coupling operators
are, without loss of generality, linear and affine functions
of the system variables, parameterized by an energy vector
and coupling parameters. In the framework of the Hudson-
Parthasarathy calculus [8], [13], this leads to quasilinear
quantum stochastic differential equations (QSDEs) [2], [16]
whose drift vector depends affinely and the dispersion matrix
depends linearly on the system variables, which resembles the
classical SDEs with state-dependent noise [21].

In particular, if the energy and coupling parameters vanish,
so that the quantum system is isolated and has zero Hamil-
tonian, then not only the Hamiltonian, but all the system
variables are conserved in time, thus forming a set of (in
general noncommuting) quantum variables which store their
initial values. However, because of the unavoidable system-
field coupling, the quantum memory property can hold only
approximately and over a bounded time interval. The energy
exchange between the system and its environment produces
quantum noise [4] (with decoherence effects; see for example,
[18] and references therein), making the system variables drift
away from their initial conditions even if the energy vector
(and hence, the Hamiltonian) is zero. The time when this
deviation becomes relatively significant on a “typical” scale
of the initial system variables suggests a performance index
for the system as a temporary quantum memory (see [3], [22]
and references therein for other settings).

In the present paper (see its preprint [20] for full proofs),
we use the tractability of the second and higher-order moment
dynamics for the system variables [16] (in the case of
external fields in the vacuum state [13]) and the fundamental
solutions of quasilinear QSDEs in the form of time-ordered
exponentials. Similarly to [19], this leads to a practically
computable memory decoherence time, defined in terms of
a weighted mean-square deviation of the system variables
from their initial values and involving a weighting matrix
along with a dimensionless fidelity parameter. We propose
a problem of maximizing the decoherence time over the
energy and coupling parameters of the system and discuss its
approximate version using a quadratically truncated Taylor
series expansion of the decoherence time over the fidelity
parameter. With respect to the energy vector, this approximate
decoherence time maximization is organized as a quadratic
optimization problem which admits a closed-form solution.
The latter provides a condition on the coupling parameters
under which the zero energy vector is a suboptimal solution
of the decoherence time maximization problem. We apply this
optimization approach to a direct energy coupling intercon-
nection of such systems.
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II. ISOLATED QUANTUM SYSTEM WITH AN
ALGEBRAIC STRUCTURE

In the Heisenberg quantum dynamics picture [15], physical
quantities are represented by quantum variables ξ (t), which
are linear operators on a Hilbert space H depending on time
t > 0, while the quantum probabilistic structure is specified
by a fixed positive semi-definite self-adjoint density operator
(a quantum state) ρ = ρ†< 0 of unit trace Trρ = 1 on H along
with the expectation Eξ := Tr(ρξ ). As in [16], we consider
a quantum system with dynamic variables X1(t), . . . ,Xn(t)
which are self-adjoint operators on H, assembled into a
column-vector X := (Xk)16k6n with an algebraic structure

X(t)X(t)T = α +
n

∑
`=1

β`X`(t), t > 0, (1)

whereby every pairwise product X jXk is an affine function of
X1, . . . ,Xn. Here, α := (α jk)16 j,k6n = αT ∈ Rn×n and β` :=
(β jk`)16 j,k6n = β ∗` ∈ Cn×n are constant real symmetric and
complex Hermitian matrices, respectively, with (·)∗ := (·)T

the complex conjugate transpose. In (1), the matrix α is
identified with its tensor product α⊗I =(α jkI )16 j,k6n with
the identity operator I on the space H, and, in a similar fash-
ion, β`X` := (β jk`X`)16 j,k6n is an (n×n)-matrix of operators
which are “rescaled” copies of X`. The matrices β1, . . . ,βn
are sections of an array β := (β jk`)16 j,k,`6n ∈ Cn×n×n. Their
imaginary parts are real antisymmetric matrices

Θ` := (θ jk`)16 j,k6n := Imβ` =−Θ
T
` ∈ Rn×n (2)

forming the corresponding sections of the (n×n×n)-array
Θ := (θ jk`)16 j,k,`6n := Imβ ∈ Rn×n×n. (3)

The latter specifies the canonical commutation relations
(CCRs) for the system variables (at the same but otherwise
arbitrary moment of time):

[X ,XT] := ([X j,Xk])16 j,k6n = 2iΘ ·X , (4)
where [ξ ,η ] := ξ η −ηξ is the commutator of linear oper-
ators. Here, for any array γ := (γ jk`)16 j,k,`6n ∈ Cn×n×n with
sections γ` := (γ jk`)16 j,k6n ∈Cn×n and γ•k• := (γ jk`)16 j,`6n ∈
Cn×n, and any vector u := (u`)16`6n of n quantum variables
on H, we use the following product:

γ ·u :=
n

∑
`=1

γ`u` = [γ•1•u . . . γ•n•u], (5)

which yields an (n×n)-matrix of quantum variables, with the
columns γ•k•u. Accordingly, the rightmost sum in (1) can be
represented as β ·X . We will also employ a different product

γ �u := [γ1u . . . γnu], (6)
which, as mentioned in [16], is associated with (5) by

(γ ·u)v = (γ � v)u = [γ1 . . . γn](u⊗ v) (7)
(with ⊗ the Kronecker product) for any vectors u, v of n
quantum variables with zero cross-commutations: [u,vT] = 0.

An example of n = 3 quantum variables with the algebraic
structure (1) is provided by the Pauli matrices [15]

σ1 :=
[

0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
=−iJ, σ3 :=

[
1 0
0 −1

]
, (8)

which are traceless Hermitian matrices on the Hilbert space
H :=C2 of a qubit as the simplest finite-level quantum system,
where

J :=
[

0 1
−1 0

]
(9)

spans the subspace of antisymmetric (2× 2)-matrices. The
structure constants for (8) form the identity matrix α of

order 3 and an imaginary (3×3×3)-array β :
α = I3, β = iΘ. (10)

Here, in accordance with (3), the CCR array Θ ∈
{0,±1}3×3×3 consists of the Levi-Civita symbols θ jk` = ε jk`,
and its sections

Θ1=

[
0 0 0
0 0 1
0 −1 0

]
, Θ2=

[
0 0 −1
0 0 0
1 0 0

]
, Θ3=

[
0 1 0
−1 0 0
0 0 0

]
(11)

in (2) form a basis in the subspace of antisymmetric (3×3)-
matrices, with (Θ � u)v being the cross product of vectors
u,v ∈ R3, where Θ � u = [Θ1u Θ2u Θ3u] =

[
0 −u3 u2

u3 0 −u1
−u2 u1 0

]
is the infinitesimal generator for the group of rotations in R3

about u (as an angular velocity vector) in view of (6), (11).
The set {I2,σ1,σ2,σ3} is a basis in the four-dimensional real
space of complex Hermitian (2×2)-matrices which describe
self-adjoint operators on the qubit space C2.

Returning to the general case of quantum system variables
satisfying (1), we note that their algebraic structure reduces
any polynomial of the system variables to an affine function.
Therefore, the Hamiltonian, which determines the internal
energy of the quantum system [15], is assumed, without loss
of generality, to be a linear function of the system variables:

H := ETX , (12)
where E ∈ Rn is an energy vector. As in the classical case
[1], adding a constant cI , with c∈R, to H is redundant. The
Hamiltonian H completely specifies the Heisenberg evolution
of the isolated quantum system according to the ODE

Ẋ = i[H,X ] =−i[X ,XT]E = 2(Θ ·X)E = A0X , (13)
where ˙( ) := d/dt is the time derivative. Here, the matrix
A0 ∈ Rn×n results from a combination of (12) with (4)–(7):

A0 := 2Θ�E = 2[Θ1E . . . ΘnE], (14)
and its linear dependence on E is represented in vectorized
form [11] as

vec(A0) = 2fE, f := [ΘT
1 . . . ΘT

n ]
T. (15)

Due to the antisymmetry of the matrices Θ1, . . . ,Θn in (2),
the columns 2ΘkE of A0 in (14) are orthogonal to the energy
vector E, so that

ETA0 = 2[ETΘ1E . . . ETΘnE] = 0. (16)
The latter leads to Ḣ =ETẊ =ETA0X = 0 which is a manifes-
tation of the property Ḣ = i[H,H] = 0 that the Hamiltonian
of an isolated system is a conserved operator regardless of
a particular dependence of H on X . Furthermore, if E = 0
(that is, when the system Hamiltonian (12) vanishes), not
only H is preserved in time, but so also are the system
variables X1, . . . ,Xn themselves. The conservation of a set
of noncommutative quantum variables (rather than a single
Hamiltonian) can be regarded as a quantum mechanical
resource for making such a system potentially applicable as
a quantum memory. A less restrictive condition is provided
by a nondecaying dependence of X(t) on X(0), as t → +∞,
considered below.

From (16), it follows that E ∈ ker(AT
0 ). Hence, if E 6= 0,

then E is an eigenvector of AT
0 with zero eigenvalue, which

implies that detA0 = 0. Furthermore, the eigenvectors of A0
with nonzero eigenvalues can only be in the hyperplane with
the normal E since imA0 := A0Cn ⊂ E⊥ := {v ∈ Cn : ETv =
0}. By [17, Theorem 5.1], if the matrix α in (1) is positive
definite (as exemplified by (10) for the Pauli matrices (8)),
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then for any energy vector E ∈ Rn, the matrix A0 in (14) is
diagonalizable and its spectrum is on the imaginary axis iR
and symmetric about the origin (moreover, detA0 = 0 with
necessity if the dimension n is odd). In this case, the system
variables perform oscillatory motions or are static (which
corresponds to purely imaginary or zero eigenvalues of A0,
respectively) with no dissipation because the dependence of
X(t) = etA0X(0) on the initial condition X(0) from (13) does
not fade away, as t→+∞, and X(t) does not “lose memory”
about X(0).

The issues of “initializing” and “retrieving” the system
variables, which correspond to the “write” and “read” mem-
ory operations, are beyond the scope of this paper. Instead,
we will discuss the effect of (usually dissipative) coupling
between the system and its environment (such as other
quantum systems and external fields), which forces the system
variables evolve in time even if the Hamiltonian is zero.

III. OPEN QUANTUM SYSTEM
Compared to the isolated quantum system dynamics (13),

a more realistic setting is provided by an open version of
the system shown schematically in Fig. 1. The internal and

system�� WY

Fig. 1. An open quantum system with the input and output fields W , Y .

output variables of the open quantum system evolve in time
according to the Hudson-Parthasarathy QSDEs [2], [16]:
dX = (AX +b)dt +B(X)dW, dY = (CX +d)dt +DdW, (17)

which are quasi-linear and linear, respectively. Here, A ∈
Rn×n, b ∈ Rn, C ∈ Rr×n, d ∈ Rr, D ∈ Rr×m are constant
matrices and vectors, with r 6 m even, while B(X) is an
(n×m)-matrix of self-adjoint operators, depending linearly
on the system variables as specified below. The QSDEs (17)
are driven by a vector W := (Wk)16k6m of quantum Wiener
processes which are time-varying self-adjoint operators on a
symmetric Fock space [14] F representing the input bosonic
fields. In contrast to the components of the classical Brownian
motion [9] in Rm, the quantum processes W1, . . . ,Wm do not
commute with each other and have a complex positive semi-
definite Hermitian Ito matrix Ω = Ω∗ < 0:

dWdW T = Ωdt, Ω := Im + iJ, J := Im/2⊗J, (18)
where J is given by (9). The matrix J = ImΩ specifies the
two-point CCRs [W (s),W (t)T] = 2imin(s, t)J for the quantum
Wiener process W for any s, t > 0. Also, Y := (Yk)16k6r in
(17) is a vector of r time-varying self-adjoint operators on the
space H, which are selected from the full set of the output
fields produced by the interaction of the system with the input
fields. The feedthrough matrix D consists of conjugate pairs
of r rows of a permutation (m×m)-matrix, so that, without
loss of generality, Y has the quantum Ito matrix DΩDT =
Ir + iIr/2⊗ J in view of (18) and the Ito product rules (in
particular, Y includes all the output fields if r =m and D= Im).
The corresponding system-field space

H := H0⊗F (19)
is the tensor product of the initial system space H0 (for the
action of X1(0), . . . ,Xn(0)) and the Fock space F. Accordingly,
the system-field quantum state on H is assumed to be in the
form

ρ := ρ0⊗υ , (20)

where ρ0 is the initial system state on H0, and υ is the
vacuum field state [13] on F. Whereas the internal energy of
the open quantum system is specified by the Hamiltonian H in
(12) as before, the system-field coupling (through the energy
exchange between the system and the external quantum fields)
is captured by a vector

L := MX +N (21)
of m self-adjoint coupling operators, which are affine func-
tions of the system variables parameterized by M ∈ Rm×n,
N ∈Rm. The coefficients of the QSDEs (17) are computed in
terms of the structure constants from (1), the CCR matrices
in (2), (18) and the energy and coupling parameters in (12),
(21) as follows (see [16, Theorem 3.1] and [2, Lemma 4.2
and Theorem 6.1]):

A := A0 + Ã, b :=−2fTvec(MTJMα), (22)

B(X) := 2(Θ ·X)MT, C := 2DJM, d := 2DJN. (23)
Here, use is also made of the products (5), (6) for the CCR
array Θ from (3) with the vector X of system variables and
E +MTJN ∈Rn, along with the isolated dynamics matrix A0
in (14) and the auxiliary matrix f from (15). The remaining
part of the matrix A in (22) is given by

Ã := 2Θ� (MTJN)+2
n

∑
`=1

Θ`MT(Mθ`••+ JMReβ`••), (24)

which is a quadratic function of the coupling parameters M,
N. In view of (14), (24), for any fixed M, N, the matrix A in
(22) belongs to a proper (whenever n > 1) affine subspace
im(Θ�) + Ã ⊂ Rn×n since the dimension of the subspace
im(Θ�) := Θ�Rn = {Θ�u : u ∈ Rn} does not exceed n.

If the system is uncoupled from the environment (that is,
M = 0, N = 0 in (21)), then Ã, b, B(X), C, d in (22)–(24)
vanish. In this case, A = A0 as given by (14), the first QSDE
in (17) reduces to the ODE (13), and the second QSDE takes
the form dY = DdW , whereby the system has no effect on the
output field Y . In the presence of system-field coupling, the
matrix A in (22), which depends on the coupling parameters
M, N through Ã in (24), can be made nonzero even in the
zero-Hamiltonian case of E = 0 (when A0 = 0).

By [16, Theorem 3.2], the system variables, as a solution
of the quasi-linear QSDE in (17), can be represented as

X(t) = E (t,0)X(0)+
∫ t

0
E (t,s)dsb, t > 0, (25)

in terms of an (n× n)-matrix E (t,s) := (E jk(t,s))16 j,k6n of
self-adjoint operators on the Fock space F defined for any
t > s> 0 by the leftwards time-ordered operator exponential

E (t,s) :=←−exp
∫ t

s
(Adτ +2Θ� (MTdW (τ))). (26)

The columns E•k(t,s) := (E jk(t,s))16 j6n of the matrix E (t,s)
form the fundamental solutions of the homogeneous QSDE

dtE•k(t,s) = AE•k(t,s)dt +B(E•k(t,s))dW (t)

= (Adt +2Θ� (MTdW (t)))E•k(t,s), (27)
which is obtained by representing the first QSDE in (17) as
dX = (Adt + 2Θ � (MTdW ))X + bdt (in view of (7) and the
commutativity [X ,dW T] = 0 between the system variables and
the future-pointing Ito increments of W ) and removing the
vector b. For any k = 1, . . . ,n, the QSDE (27) is initialized at
the kth standard basis vector in Rn as E•k(s,s) = (δ jk)16 j6n,
with δ jk the Kronecker delta, so that E (s,s) = In. Due to the
continuous tensor-product structure of the Fock space F and
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the vacuum field state assumption in (20), the quantum vari-
ables E jk(t,s) commute with and are statistically independent
of X`(s) for all j,k, ` = 1, . . . ,n and t > s > 0. In the case
of vacuum input fields being considered, the diffusion term
B(E•k)dW is a martingale part of the QSDE in (27) and does
not contribute to its averaging, which yields

EE (t,s) = e(t−s)A, t > s> 0 (28)
(see [16, Eq. (4.20)]). This suggests that the dependence
of X(t) in (25) on the initial condition X(0) through the
term E (t,0)X(0) decays exponentially fast, as t → +∞, if
the matrix A is Hurwitz. In the latter case, there is a limit

µ∞ := lim
t→+∞

µ(t) =−A−1b (29)

for the mean vector of the system variables, which is com-
puted (regardless of the spectral properties of A) by averaging
(25) and using (28) as

µ(t) := EX(t) = etA
µ(0)+ψ(t)b. (30)

Here, use has also been made of an Rn×n-valued function [5]

ψ(t) :=
∫ t

0
esAds =

+∞

∑
k=1

tk

k! Ak−1 = (etA− In)A−1, (31)

where the last equality holds if detA 6= 0. The matrix expo-
nential etA is also present in the following alternative form of
the solution of the first QSDE in (17) (with bdt +B(X)dW
being regarded as a forcing term added to the right-hand side
of the homogeneous QSDE dX = AXdt):

X(t) = etAX(0)+ψ(t)b+Z(t). (32)
Here, due to the input field W being in the vacuum state υ

on F (and regardless of whether A is Hurwitz), the response

Z(t) :=
∫ t

0
e(t−s)AB(X(s))dW (s) (33)

of the system variables to W is a zero-mean quantum process
on the system-field space H in (19), uncorrelated with X(0):

EZ(t) = 0, E(Z(t)X(0)T) = 0. (34)
However, X(t) in (32) depends on X(0) not only through the
term etAX(0) but also through the process Z(t), whereas in
(25), the dependence X(0) 7→ X(t) is captured in E (t,0)X(0)
since E (t,s) in (26) is independent of X(0) for any t > s> 0.
By comparing (25) with (32) and using (28), (31), the process
Z in (33) can be expressed as

Z(t) = Ẽ (t,0)X(0)+
∫ t

0
Ẽ (t,s)dsb (35)

in terms of centered versions of the exponentials E in (26):
Ẽ (t,s) := E (t,s)− e(t−s)A, EẼ (t,s) = 0. (36)

Note that (34) also follows from (35), (36) by the commuta-
tion and statistical properties of (26) mentioned above.

With the view of employing the system as a quantum
memory (aiming to retain its initial variables without dis-
sipation), of particular interest are those energy and coupling
parameters E, M, N in (12), (21) for which at least some of
the eigenvalues of A in (22) are zero or purely imaginary. On
the other hand, in the absence of dissipation (that is, when the
matrix A is not Hurwitz), the processes Z(t) in (32) or E (t,s)
in (25), which play the role of quantum noises contaminating
the dependence of X(t) on X(0), grow with time t. These
qualitatively different scenarios (when A is Hurwitz and when
its spectrum is imaginary) can be analyzed in a unified fashion
in terms of a signal-to-noise ratio which quantifies the relative
size of a useful part of X(t) carrying information about X(0).

IV. MEAN-SQUARE DEVIATION FROM INITIAL
CONDITIONS

By (32), the deviation of the system variables at time t > 0
from their initial values takes the form

ξ (t) := X(t)−X(0) = (etA− In)X(0)+ψ(t)b+Z(t). (37)
Its typical “size” can be quantified by a weighted mean-square
functional

∆(t) := E(ξ (t)T
Σξ (t)) = 〈Σ,Reϒ(t)〉, (38)

where 04 Σ = ΣT ∈Rn×n is a given weighting matrix which
specifies the relative importance of the system variables, and
〈·, ·〉 is the Frobenius inner product generating the Frobenius
norm ‖ · ‖ of matrices [7]. Here, use is made of the second-
moment matrix

ϒ(t) := E(ξ (t)ξ (t)T) = ϒ(t)∗ < 0, (39)
which enters (38) only through its real part because of
the orthogonality between the subspaces of symmetric and
antisymmetric matrices, whereby 〈Σ, Imϒ(t)〉 = 0. Without
loss of generality, the weighting matrix can be factorized as

Σ := FTF, F ∈ Rν×n, ν := rankΣ6 n, (40)
so that ∆(t) in (38) “penalizes” ν independent linear combi-
nations of the system variables of interest specified by real
coefficients comprising the rows of the full row rank matrix
F . By (34), (37), the matrix (39) takes the form

ϒ(t) =(etA− In)Π(etAT − In)+(etA− In)µ(0)bT
ψ(t)T

+ψ(t)bµ(0)T(etAT− In)+ψ(t)bbT
ψ(t)T+V (t). (41)

Here, Π is the second-moment matrix of the initial system
variables, computed by averaging both sides of (1) and using
(3)–(5) along with (30) as

Π := E(X(0)X(0)T) = P+ iΘ ·µ(0), (42)
P := ReΠ = α +Reβ ·µ(0). (43)

In (41), use has also been made of the second-moment matrix

V (t) := E(Z(t)Z(t)T) =
∫ t

0
e(t−s)A

Λ(s)e(t−s)AT
ds, (44)

where Λ describes the averaged quantum Ito matrix for the
diffusion term B(X)dW in (17) and is computed by combining
(23) with the antisymmetry of the matrices (2):

Λ(t):=E(B(X(t))ΩB(X(t))T)=−4
n

∑
j,k=1

E(X j(t)Xk(t))Θ jMT
ΩMΘk

= 4fT((α +β ·µ(t))⊗ (MT
ΩM))f (45)

(cf. [16, Eq. (4.38)]), with Ω the quantum Ito matrix of W
in (18) and the matrix f from (15). The function V in (44)
satisfies the Lyapunov ODE

V̇ (t) = AV (t)+V (t)AT +Λ(t), (46)
with V (0) = 0. Hence, its first two derivatives at t = 0 are

V̇ (0) = Λ(0), V̈ (0) = AΛ(0)+Λ(0)AT + Λ̇(0), (47)
where

Λ̇(0) = 4fT((β · (Aµ(0)+b))⊗ (MT
ΩM))f (48)

in view of (45) and since the mean vector (30) satisfies the
ODE µ̇ = Aµ + b. By substituting (40)–(43) into (38), the
mean square deviation takes the form

∆(t) =‖F(etA− In)
√

P‖2 +2bT
ψ(t)T

Σ(etA− In)µ(0)

+ |Fψ(t)b|2 + 〈Σ,ReV (t)〉. (49)
The Taylor series expansion of ∆, truncated to its quadratic
part, is given by

∆(t) = ∆̇(0)t + 1
2 ∆̈(0)t2 +O(t3), as t→ 0+, (50)
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where the first two derivatives of ∆ from (49) at t = 0 are
computed as
∆̇(0) =〈Σ,Reϒ̇(0)〉= 〈Σ,ReΛ(0)〉, (51)

∆̈(0) =〈Σ,Reϔ(0)〉= 2‖FA
√

P‖2 +4bT
ΣAµ(0)+2|Fb|2

+ 〈Σ,AReΛ(0)+ReΛ(0)AT +ReΛ̇(0)〉
=〈Σ,2APAT+2A(ReΛ(0)+2µ(0)bT)+ReΛ̇(0)〉+2|Fb|2

(52)
by using (31), (47), (48). While the short-time expansion
(50) (along with (51), (52)) holds regardless of the spectral
properties of A, the asymptotic behaviour of (49) at the
other extreme, as t → +∞, depends on whether the system
is dissipative. Indeed, if A is Hurwitz, then limt→+∞ etA = 0
and limt→+∞ ψ(t) =−A−1 in (31), and hence, (29), (44), (49)
imply that limt→+∞ ∆(t) = ‖F

√
P‖2− 2µT

∞Σµ(0)+ |Fµ∞|2 +
〈Σ,P∞〉. Here, P∞ :=

∫ +∞

0 etAReΛ∞etAT
dt is the infinite-horizon

controllability Gramian of the pair (A,
√

ReΛ∞) satisfying the
algebraic Lyapunov equation (ALE) AP∞+P∞AT+ReΛ∞ = 0
obtained from a steady-state version of (46) by using Λ∞ :=
limt→+∞ Λ(t) = 4fT((α +β ·µ∞)⊗ (MTΩM))f for (45).

V. QUANTUM MEMORY DECOHERENCE TIME
The quantum system performance in retaining the initial

variables can be described in terms of a “memory decoher-
ence” time during which the system variables do not deviate
too far from their initial values. Similarly to [19], the weighted
mean-square deviation approach of (38) suggests such time
to be defined as

τ(ε) := inf
{

t > 0 : ∆(t)> ε‖F
√

P‖2}, (53)
with the convention inf /0 := +∞. Here, ε > 0 is a small di-
mensionless parameter specifying the relative error threshold
for the mean-square deviation ∆(t) of X(t) from X(0) with
respect to a reference quantity

E(X(0)T
ΣX(0)) = 〈Σ,P〉= ‖F

√
P‖2, (54)

which uses (42), (43). To eliminate from consideration the
trivial case of F

√
P = 0 (which is possible if (40) holds with

ν < n, when the matrix F has linearly dependent columns),
we assume that

F
√

P 6= 0. (55)
The memory decoherence time τ(ε) in (53) is a nondecreasing
function of the fidelity parameter ε > 0 satisfying τ(0) :=
limε→0+ τ(ε) = 0. Furthermore, τ(ε)> 0 for any ε > 0 since
∆(t) is a continuous function of t > 0, with ∆(0) = 0. From
(50), it follows that τ(ε) is asymptotically linear, as ε→ 0+,
and its right-hand derivative at ε = 0 is given by

τ
′(0) := lim

ε→0+

τ(ε)
ε

= ‖F
√

P‖2
∆̇(0)

= ‖F
√

P‖2
〈Σ,ReΛ(0)〉 . (56)

Here, the denominator ∆̇(0), found in (51) and always non-
negative, is also assumed to be nonzero in what follows:

〈Σ,ReΛ(0)〉> 0. (57)
The quantity τ ′(0) resembles the signal-to-noise ratio since
the numerator in (56) pertains to the initial condition X(0) as a
useful “signal” to be stored (see (54)), while the denominator
involves the diffusion matrix Λ(0) from (45) associated with
the quantum noise. However, note that Λ(0) depends on P
as well and that τ ′(0) in (56) has the physical dimension of
time. By using both leading terms from (50), the asymptotic
relation (56) can now be extended to

τ(ε) = τ̂(ε)+O(ε3), τ̂(ε) := τ
′(0)ε + 1

2 τ
′′(0)ε2, (58)

as ε → 0+, where the second-order right-hand derivative
τ ′′(0) of τ at ε = 0 is obtained by matching the truncated
expansions as

τ
′′(0) =− ∆̈(0)τ ′(0)2

∆̇(0)
=− ∆̈(0)‖F

√
P‖4

〈Σ,ReΛ(0)〉3 , (59)

with ∆̈(0) given by (52). In contrast to τ ′(0) in (56), the
quantity τ ′′(0) depends not only on the coupling matrix M,
but also on the energy and coupling vectors E, N from (12),
(21) through the matrix A in (22) which enters (59) only
through ∆̈(0) from (52).

A relevant performance criterion for the quantum memory
system is provided by the maximization of the decoherence
time (53) (or its second-order approximation τ̂(ε) in (58)) at
a fixed fidelity level ε:

τ(ε)−→ sup . (60)
The resulting optimization problem is over those of the energy
and coupling parameters E, M, N of the system which are
allowed to be varied in a particular setup. The matrix F (and
hence, Σ) in (40) can be an additional parameter over which
τ(ε) is maximized. For example, F can be varied so as to
find a particular subset of the system variables X1, . . . ,Xn (or
their linear combinations) which are retained with the given
relative accuracy ε for a longer period of time (53) than the
others.

VI. DECOHERENCE TIME SUBOPTIMIZATION
Since the memory decoherence time τ(ε) in (53) is a

complicated function of the energy, coupling and weighting
parameters, we will consider an approximate version of the
optimization problem (60), which makes advantage of the
smallness of ε and the following convexity properties with
respect to the energy vector E. Note that the second-order
approximation τ̂(ε) of τ(ε) in (58) depends on the matrix A
in a concave quadratic fashion, inheriting this property from
τ ′′(0) in (59) since ∆̈(0) in (52) is a convex quadratic function
of A. Due to A in (22) depending affinely on the energy vector
E in view of (14), (24), ∆̈(0) is a convex quadratic function
of E. Therefore, at least asymptotically, for small values of
ε , the maximization (60) tends to favour “localized” values
of E as specified by a suboptimal solution of this problem
below.

Theorem 1: Suppose the fidelity level ε in (53) and the
weighting matrix Σ in (40) are fixed along with the matrix P
in (43), and the conditions (55), (57) are satisfied. Then for
any given coupling parameters M, N of the system (17) in
(21), the energy vector E in (12) delivers a solution to the
problem

τ̂ −→ sup, E ∈ Rn, (61)
of maximizing the approximate decoherence time τ̂(ε) in (58)
if and only if

2RE +K = 0. (62)
Here, 0 4 R = RT ∈ Rn×n and K ∈ Rn are auxiliary matrix
and vector computed as

R :=fT(P⊗Σ)f, (63)

K :=fTvec
(
Σ
(
ÃP+ 1

2 ReΛ(0)+bµ(0)T))
+(〈fΣfT,Re((β · (Θ ·µ(0))•k)⊗ (MT

ΩM))〉)16k6n (64)
using the structure constants in (1), the CCR array Θ in (3)
and the matrix f from (15) along with (22), (24), (45). �
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By (62), the zero energy vector E = 0 is an optimal solution
of (61) (and thus a suboptimal solution of (60) for small
values of ε) if and only if K in (64) vanishes. The condition
K = 0 is a quadratic constraint on the coupling parameters
M, N under which E = 0 is beneficial for maximizing the
memory decoherence time of the system in the framework
of the approximation τ(ε) ≈ τ̂(ε) in (58). Beyond the zero-
Hamiltonian case, if R in (63) is positive definite, the op-
timal value of E in (61) is uniquely found from (62) as
E = − 1

2 R−1K. The above setting provides one of possible
decoherence time control formulations which can also be
considered for interconnections of finite-level systems, similar
to those of open quantum harmonic oscillators [18], [19].

VII. DECOHERENCE TIME CONTROL BY DIRECT
ENERGY COUPLING

The decoherence time optimization for a quantum system
with an algebraic structure is applicable to interconnections
of such systems. As an illustration, consider two systems
(for example, interpreted as a plant and a controller) from
[17, Section 9], which have a direct energy coupling between
them and interact with external bosonic fields; see Fig. 2. The

system1 system2- �-�W (1) W (2)

Fig. 2. An interconnection of two quantum systems, which have external
input quantum Wiener processes W (1), W (2) and interact with each other
through a direct energy coupling.

external fields are modelled by quantum Wiener processes
W (1), W (2) (of even dimensions m1, m2) on symmetric Fock
spaces F1, F2, respectively. They form an augmented quantum
Wiener process W :=

[
W (1)

W (2)

]
of dimension m := m1 +m2 on

the composite Fock space F := F1 ⊗ F2 with the quantum
Ito matrix Ω =

[
Ω1 0
0 Ω2

]
in (18) and the individual Ito tables

dW (s)dW (s)T = Ωsdt. Here, Ωs := Ims + iJs and Js := Ims/2⊗J,
with the matrix J from (9), so that J =

[
J1 0
0 J2

]
in accordance

with W (1), W (2) commuting with each other. The systems
have initial spaces Hs and vectors X (s) of ns dynamic variables
on the composite system-field space H :=H0⊗F, with H0 :=
H1⊗H2 (so that [X (1),X (2)T] = 0) and the algebraic structure

X (s)X (s)T = α
(s)+β

(s) ·X (s), s = 1,2, (65)
along with the CCR arrays Θ(s) := Imβ (s). The system
interconnection is endowed with an augmented vector X of
n := n1 +n2 +n1n2 quantum variables (cf. [2, Example 2]):

X :=
[
X (1)T X (2)T X (12)T

]T, X (12) := X (1)⊗X (2), (66)
which has an algebraic structure (1), with the joint structure
constants in α , β computed in [17, Lemma 9.1] in terms
of the individual constants from (65), so that, for example,

α =

[
α(1) 0 0

0 α(2) 0
0 0 α(1) ⊗α(2)

]
. The augmented energy vector is

E :=
[
E(1)T E(2)T E(12)T

]T, (67)
where E(s) ∈ Rns are the individual energy vectors, and
E(12) ∈Rn1n2 specifies the direct coupling Hamiltonian H12 :=
E(12)TX (12) in the total Hamiltonian H := H1 + H2 + H12,
where Hs := E(s)TX (s). The parameters of coupling of the
interconnected system to the augmented quantum Wiener
process W are specified by the individual coupling parameters
M(s) ∈ Rms×ns , N(s) ∈ Rms as

M :=
[

M(1) 0 0
0 M(2) 0

]
, N :=

[
N(1)

N(2)

]
. (68)

The resulting A, b, B(X) in the first QSDE of (17) for the
augmented system are found in [17, Theorem 9.2].

If the energy and coupling parameters of the constituent
systems in Fig. 2 are fixed, while the direct energy coupling
vector E(12) can be varied, the latter can be found by solving
the approximate decoherence time maximization problem

τ̂ −→ sup, E(12) ∈ Rn1n2 (69)
as a reduced version of (61), with the individual energy vec-
tors E(s) in (67) being fixed. A solution of this decoherence
time control problem is provided below as a corollary of
Theorem 1. To this end, we partition the matrix R in (63)
and the vector K in (64) for the augmented system as

R :=
[
∗ ∗ ∗
∗ ∗ ∗

R1 R2 R12

]
, K :=

[
∗
∗

K12

]
, (70)

where Rs ∈Rn1n2×ns , 04R12 =RT
12 ∈Rn1n2×n1n2 , K12 ∈Rn1n2 ,

and the “∗”s denote irrelevant blocks. They are independent
of the energy vector E, inheriting this property from R, K.

Theorem 2: Suppose the system interconnection in Fig. 2,
specified by (65)–(68), satisfies the assumptions of The-
orem 1. Then the direct energy coupling vector E(12) in
(67) is a solution of the problem (69) with the approximate
decoherence time τ̂ in (58) for the augmented system if and
only if

2R12E(12)+Q = 0. (71)
Here, Q ∈ Rn1n2 is an auxiliary vector which is computed as

Q := K12 +2
2

∑
s=1

RsE(s) (72)
in terms of (70). �

If R12 in (70) is positive definite, the optimal value of
E(12) in (69) is found from (71) uniquely as E(12) =− 1

2 R−1
12 Q

and depends on the individual energy vectors E(s) in an
affine fashion since so does the vector Q in (72). Although
Theorem 2 is concerned with a direct energy coupling of
two systems, this approach to memory decoherence time op-
timization is extendable to more complicated interconnections
of several multiqubit systems involving both direct and field-
mediated coupling, which will be discussed elsewhere.
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