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Abstract— In this paper, we present a study of a mobility
game with uncertainty in the decision-making of travelers
and incorporate prospect theory to model travel behavior. We
formulate a mobility game that models how travelers distribute
their traffic flows in a transportation network with splittable
traffic, utilizing the Bureau of Public Roads function to establish
the relationship between traffic flow and travel time cost. Given
the inherent non-linearities and complexity introduced by the
uncertainties, we propose a smooth approximation function to
estimate the prospect-theoretic cost functions. As part of our
analysis, we characterize the best-fit parameters and derive an
upper bound for the error. We then show the existence of an
equilibrium and its its best-possible approximation.

I. INTRODUCTION
Emerging mobility systems (e.g., connected and automated

vehicles (CAVs), shared mobility) provide the most intrigu-
ing opportunity for enabling users to monitor transportation
network conditions better and make efficient decisions for
improving safety and transportation efficiency. The data
and shared information of emerging mobility systems are
associated with a new level of complexity in modeling and
control [1]. The impact of selfish or irrational social behavior
in routing networks of cars has been studied in recent years
[2]–[4]. Other efforts have addressed how people learn and
make routing decisions with behavioral dynamics [5]. The
problem of how travelers often have to make decisions
under the uncertainty of experiencing delays, especially when
uncertainties directly affect travel time in a transportation
network, has not been adequately approached yet. Hence,
our problem of interest is to study in a game-theoretic
setting these interactions and analyze the equilibrium of the
travelers’ decisions under uncertainties [6]. We study the
interactions of a finite group of players that seek to travel in a
transportation network (with a unique origin-destination pair)
comprised of roads with splittable traffic. A key characteristic
of our approach is that we incorporate prospect theory, a
behavioral model that captures the perceptions of utility
under uncertainty (how likely and how much).

Some of the existing game-theoretical literature in control
and transportation theory assumes that the players’ behavior
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follows the rational choice theory, i.e., each player is a
risk-neutral and utility maximizer. This makes transportation
models unrealistic, as unexpected travel delays can lead to
uncertainty in a traveler’s utility. There is strong evidence
from empirical experiments that show how humans’ choices
and preferences systematically may deviate from the choice
and preferences of a game-theoretic player under the ratio-
nal choice theory [7]. For example, humans compare the
outcomes of their choices to a known expected amount of
utility (called reference) and make their final decision, using
that reference to assess their losses or gains asymmetrically.
Prospect theory has laid down the theoretical foundations to
study such biases and the subjective perception of risk in the
utility of humans [7], [8]. This theory has been recognized as
a closer-to-reality behavioral model for the decision-making
of humans in different engineering problems [9]–[11].

In general, one of the standard approaches to alleviate
congestion in a transportation system has been managing the
travel demand and supply while also taking into considera-
tion the scarce resources. Such approaches focus primarily on
traffic routing, which aims to optimize the routing decisions
in a transportation network [12]. Another approach is game
theory that allows us to investigate the impact of selfish
routing on efficiency and congestion [13] and assign travelers
routes to minimize travel time under a Nash Equilibrium
(NE) [14]–[18]. A fundamental theoretical approach in al-
leviating congestion is routing/congestion games [19], [20],
which are a generalization of the standard resource-sharing
game of an arbitrary number of resources in a network.

In this paper, we use Prelec’s probability weighting func-
tion and an S-shaped value function to model how travelers
perceive traffic uncertainties and their travel gains/losses. So,
our first contribution is incorporating prospect theory into
an atomic routing game with splittable traffic to capture a
realistic version of the travelers’ decision-making regarding
travel time costs. The S-shaped value function is adopted
to represent the curvature of the travel time cost function
and account for the travelers’ perception of gains/losses in
travel time according to a reference point (defined using the
US Bureau of Public Roads function). To address prospect
theory’s mathematical intractabilities, our second contribu-
tion proposes a smooth approximation function that estimates
the non-linear piecewise prospect-theoretic cost functions.
Thus, we can estimate how travelers perceive gains/losses
and probabilities in travel time costs. This work is focused
on establishing the fitness of the approximation function,
proving the existence of at least one NE in pure strategies.
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The remainder of the paper is structured as follows.
In Section II, we present the mathematical formulation of
the proposed game-theoretic framework. In Section III, we
derive the theoretical properties of the proposed framework,
and finally, draw conclusions in Section IV.

II. MODELING FRAMEWORK

We consider a routing game with a finite non-empty set
of players I, |I| = n ∈ N. Each player i may represents
a class of travelers that could use connected and automated
vehicles (CAVs) and who control a significant amount of
traffic, say xi ∈ R≥0. Thus, we interpret xi as the repre-
sentation of the flow of traffic that player i contributes to a
transportation network. We define traffic flow in this setting
as the number of vehicles passing through each point in the
network over time. This decision variable is non-negative
as players (or the travelers) make trips using their vehicle
over time in the transportation network. This is in contrast
to non-atomic routing games, where players only control an
infinitesimal amount of traffic. We also assume that traffic
is splittable. Travelers seek to travel in a transportation
network represented by a directed multigraph G = (V, E),
where each node in V may represent different city areas or
neighborhoods (e.g., Braess’ paradox network). Each edge
e ∈ E may represent a road. For our purposes, we think
of G = (V, E) as a representation of a smart city network
with a road infrastructure. Any player i ∈ I seeks to travel
from an origin o ∈ V to a destination d ∈ V . So, all players
are associated with the same unique origin-destination pair
(o, d) ∈ V × V . Next, each player may use a sequence of
edges that connects the OD pair (o, d). We define R ⊂ 2E

as the set of routes available to any player i ∈ I, where
their route ri consists of a sequence of edges connecting
the origin-destination pair (o, d). We are interested in how
such players may compete over the routes in the network for
routing their traffic flows (this is a multiple-route traffic flow
decision-making problem).

Since each player i ∈ I seeks to route their traffic
represented by flow xi in the network G, we define, for each
i ∈ I, the set of actions as

Xi =

{
xi ∈ R|R|

≥0 :
∑
ri∈R

xri
i = x̄i

}
, (1)

where xi = (x
r1i
i , x

r2i
i , . . . , x

r
|R|
i

i ), x̄i ∈ R≥0 is the total flow
of player i, and rki denotes the k-th route in the network.

Remark 1. Note here that each player i controls their traffic
flow xi, which we represent as a vector since player i may
choose to use different routes in the transportation network,
thus sending traffic x

rki
i for some k. The total traffic flow

controlled by player i is finite, though. And so, we represent
this by introducing x̄i.

We write X = X1 × X2 × · · · × Xn for the Cartesian
product of all the players’ action sets. We also write x−i =
(x1, x2, . . . , xi−1, xi+1, . . . , xn) for the action profile that

excludes player i ∈ I. Next, for the aggregate action profile,
we write x = (xi, x−i), x ∈ X .

Definition 1. The flow on edge e ∈ E is the sum of relevant
components of all players’ traffic flows that have chosen a
route that includes edge e, i.e., fe(x) =

∑
i∈I
∑

ri∋e x
ri
i .

In our routing game where each player i ∈ I chooses
their traffic flow vector xi over a common set of routes R,
if player i chooses to send traffic xri

i along route ri, then
this traffic will be distributed along all the edges in this route
ri. This is because a traveler’s traffic on some route ri is a
single quantity among all the route’s edges.

Next, we introduce a travel time latency function to
capture the cost that players may experience. Intuitively,
we capture the players’ preferences for different outcomes
using a “cost function,” in which players are expected to
act as cost minimizers. For each e ∈ E , we consider non-
negative cost functions ce : R≥0 → R≥0. We assume that
the cost functions at each edge e are convex, continuous, and
differentiable with respect to fe. One standard way to define
in an exact form ce is by the US Bureau of Public Roads
(BPR) function, as it is a commonly used model for the
relationship between flow and travel time. Mathematically,
we have, for any edge e ∈ E ,

ce(fe) = c0e

(
1 +

3

20

(
fe

fCRT
e

)4
)
, (2)

where c0e is the free-flow travel time and fCRT
e is the critical

capacity of traffic flow on road e. Note that the BPR function
is non-linear, continuous, differentiable, strictly increasing,
and strictly convex for fe ≥ 0.

Definition 2. If the maximum flow on edge e ∈ E is fmax
e ∈

R>0, then for the critical flow, fCRT
e , on edge e ∈ E we

have fCRT
e < fmax

e .

Next, for some route ri of any player i, its cost is the
sum of the costs on the edges that constitute route ri, i.e.,
cri(x) =

∑
e∈ri

ce(fe(x)). The total cost for player i is

ci(x) =
∑
ri∈R

cri(x) =
∑
ri∈R

[∑
e∈ri

ce(fe)

]
, (3)

where fe(x) =
∑

i∈I
∑

ri∋e x
ri
i .

The game is fully characterized by the tuple M =
⟨I, (Xi)i∈I , (ci)i∈I⟩. This non-cooperative routing game is
a simultaneous-move game where players make decisions
simultaneously and commute in (o, d) of network G. Players
behave selfishly and aim to minimize their costs (e.g., travel
time latencies). Naturally, players compete with each other
over the available yet limited routes and how to utilize them
in the transportation network. Indirectly, players make route
choices that satisfy their travel needs (modeled through traffic
flow). Next, we clarify “who knows what?” in M. All players
have complete knowledge of the game and the network. Each
player knows their own information (action and cost) as
well as the information of other players. At equilibrium, we
want to ensure that no player has an incentive to unilaterally
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deviate from their chosen decisions and change how they
distribute their traffic flows over the available routes in the
network. So, for our purposes, we observe that an NE in
terms of the players’ traffic flows in pure strategies is the
most appropriate a solution concept for our game.

Definition 3. A feasible flow profile x∗ = (xri
i )ri∈R

i∈I ∈ X
constitutes a NE if for each player i ∈ I, ci(x

∗
i , x

∗
−i) ≤

ci(xi, x
∗
−i), for all xi ∈ Xi.

In other words, a flow profile x∗ is an NE if no player
can reduce their total cost by unilaterally changing how they
distribute their total traffic flow over the available routes in
the network. In an NE, each player’s specific xi has the
lowest possible cost among all possible distributions over
the routes, given the choices made by other players.

A. Prospect Theory Analysis

In this subsection, we briefly introduce prospect theory and
its main concepts [21]. Prospect theory attempts to answer
one of the main questions of how a decision-maker may
evaluate different possible actions/outcomes under uncertain
and risky circumstances. Thus, prospect theory is a descrip-
tive behavioral model and focuses on three main behavioral
factors: (i) Reference dependence: decision-makers make
decisions based on their utility, which is measured from the
“gains” or “losses.” However, the utility is a gain or loss
relative to a reference point that may be unique to each
decision-maker. (ii) Diminishing sensitivity: changes in value
have a greater impact near the reference point than away from
the reference point. (iii) Loss aversion: decision-makers are
more conservative in gains and riskier in losses. One way
to mathematize the above behavioral factors (1) - (3) is to
consider an action by a decision-maker as a “gamble” with
objective utility value z ∈ R. We say that this decision-maker
perceives z subjectively using a value function [7], [22]

v(z) =

{
(z − z0)

β1 , if z ≥ z0,

−λ(z0 − z)β2 , if z < z0,
(4)

where z0 represents a reference point, β1, β2 ∈ (0, 1) are
parameters that represent the diminishing sensitivity. Both
β1, β2 shape (4) in a way that the changes in value have a
greater impact near the reference point than away from the
reference point. We observe that (4) is concave in the domain
of gains and convex in the domain of losses. Moreover, λ ≥ 1
reflects the level of loss aversion of decision-makers. To the
best of our knowledge, a widely agreed theory does not exist
that determines and defines the reference dependence [7]. In
engineering [11], [23], it is assumed that z0 = 0 captures a
decision-maker’s expected status-quo level of the resources.

Prospect theory models the subjective behavior of
decision-makers under uncertainty and risk. Each objective
utility z ∈ R is associated with a probabilistic occurrence,
say p ∈ [0, 1]. Decision-makers are subjective and perceive p
differently depending on its value. To capture this behavior,
we introduce a strictly increasing function w : [0, 1] → [0, 1]
with w(0) = 0 and w(1) = 1 called the probability weighting

function. This function allows us to model how decision-
makers may overestimate small probabilities of objective
utilities, i.e., w(p) > p if p is close to 0, or underestimate
high probabilities, i.e., w(p) < p if p is close to 1. We
use Prelec’s probability weighting function first introduced
in [24], w(p) = exp

(
−(− log(p))β3

)
, p ∈ [0, 1], where

β3 ∈ (0, 1) represents a rational index, i.e., the distortion of
a decision-maker’s probability perceptions. Mathematically,
β3 controls the curvature of the weighting function.

Definition 4. Suppose that there are K ∈ N possible
outcomes available to a decision-maker and zk ∈ R is
the k-th gain/loss of objective utility. Then a prospect ℓk
is a tuple of the utilities and their respective probabilities,
i.e., ℓk = (z0, z1, z2, . . . , zK ; p0, p1, p2, . . . , pK), where k =
0, 1, 2, . . . ,K. We denote the k-th prospect more compactly
as ℓk = (zk, pk). We have that

∑K
k=0 pk = 1 and ℓk is

well-ordered, i.e., z0 ≤ z1 ≤ · · · ≤ zK . Under prospect
theory, the decision-maker evaluates their “subjective utility”
as u(ℓ) =

∑
0≤k≤K v(zk)w(pk), where ℓ = (ℓk)

K
k=1 is the

profile of prospects of K outcomes.

In the remainder of this subsection, we apply the prospect
theory to our modeling framework, clearly define the mo-
bility outcomes (objective and subjective utilities), and then
show that the prospect-theoretic game M admits a NE.

Players may be uncertain about the value of the traffic
disturbances as it is affected by unexpected factors, and so
we use Prelec’s probability weighting function w : [0, 1] →
[0, 1] to capture how different traveler populations “perceive”
probabilities. In addition, we are interested in capturing
how players may perceive their gains or losses regarding
their travel time costs with respect to the costs at critical
density. Hence, we define the mobility prospect as whether
fe will reach its critical or jammed point. Formally, πe is the
probability that fe ∈ (0, fCRT

e ), and 1−πe is the probability
for fe ∈ (fCRT

e , fmax
e ]. We then use the prospect-theoretic

S-shaped value function v(ce(fe)) : R≥0 → R to capture
how players may perceive such costs. Hence, we have

v(ce(fe)) =

{
λ(c0e − ce(fe))

β , if ce(fe) ≤ c0e,

−(ce(fe)− c0e)
β , if ce(fe) > c0e,

(5)

where the reference dependence is represented by c0e =
ce(f

CRT
e ), β1 = β2 = β ∈ (0, 1), and for each e ∈ E ,

we have πe ∈ [0, 1]. We justify β1 = β2 in above as it
has been verified to produce extremely good results, and the
outcomes are consistent with the original data [8]. We define

c̃e(fe) =

{
c0e − ce(fe), if ce(fe) < c0e,

ce(fe)− c0e, if ce(fe) > c0e.
(6)

Remark 2. It is important to note that our prospect-theoretic
value function is “reversed,” capturing the way a traveler will
perceive the gains in travel time through a cost function.
Using as a reference point the critical traffic flow on edge
e, we can pinpoint the exact point that any more delays
become socially unacceptable, i.e., a higher flow causes a
higher travel time that a traveler will not tolerate.
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The new cost function is

cPT
e (fe) = w(πe) · λ · [c̃e(fe | ce(fe) < c0e)]

β

− w(1− πe) · [c̃e(fe | ce(fe) > c0e)]
β . (7)

Observe that this particular formulation allows only two main
outcomes for any player. One outcome may represent an easy
commute (no traffic), and the other may represent traffic. For
our purposes, we naturally expect two probabilities for these
two outcomes. Future work will ensure to allow a larger
distribution of probabilities for many different outcomes for
any player (in such cases, cumulative prospect theory would
be a more appropriate model [8]).

The total cost on some route ri for player i under prospect
theory is cPT

ri (x) =
∑

e∈ri
cPT
e (fe). Now, the total cost of

some player i is given by

cPT
i (x) =

∑
ri∈R

∑
e∈ri

cPT
e (fe). (8)

Note, however, that in this case, the prospect-theoretic cost
is capturing the gains and losses of travel. Thus, the aim is to
maximize this function to maximize the gains (by minimizing
the actual cost of travel latencies).

What we observe in (8) is that it is rather cumbersome
to analyze it analytically as issues in its smoothness arise
quickly. The problem in analyzing such a function is that the
exponent takes values in (0, 1). To address this theoretical
obstacle, we propose a new function that approximates
the prospect-theoretic function and, most importantly, can
be shown to have useful properties. Hence, we define the
following function

σ(fe) =
δ1

1 + exp
(

δ2−fe
δ3

) + δ4, (9)

where δ1, δ2, δ3, δ4 ∈ R, and fe ∈ [0, fmax
e ]. Hence, we can

approximately evaluate (8) with the following:

cPT
i (x) =

∑
ri∈R

∑
e∈ri

σ(fe). (10)

III. ANALYSIS AND PROPERTIES OF THE GAME

In this section, we provide a formal analysis of the
properties of our proposed modeling framework, characterize
the coefficients of σ function, and show that our game admits
an NE in pure strategies.

Lemma 1. The strategy space of the game M is non-empty,
compact, and convex.

Proof. The proof has been omitted here due to space-
constraints.

Lemma 2. The approximation function given by (9) in the
interval [0, κ], κ < fmax

e , is strictly concave with respect
to fe when δ3 > 0, δ4 ∈ R, and (i) δ1 > 0, δ2 > fe, or
alternatively (ii) δ1 < 0, δ2 < fe.

Proof. Given that fe ≥ 0, we analyze the second-order
derivative of the function σ(fe) = δ1

1+exp
(

δ2−fe
δ3

) + δ4 to

determine the conditions for strict concavity. First, let us
find the first and second-order derivatives of σ with respect
to fe, i.e.,

σ′(fe) =
−δ1 exp (

δ2−fe
δ3

)

δ3(1 + exp ( δ2−fe
δ3

))2
, (11)

σ′′(fe) =
2δ1 exp (

δ2−fe
δ3

)(1− exp ( δ2−fe
δ3

))

δ23(1 + exp ( δ2−fe
δ3

))3
. (12)

Now, we examine the conditions for σ′′(fe) < 0. First, δ1
controls the sign of the second-order derivative as follows:
if δ1 < 0 and δ3 > 0, σ′′(fe) will be negative when 1 −
exp ( δ2−fe

δ3
) < 0, which simplifies to δ2 > fe. If δ3 < 0

in either of the cases, then the signs are reversed. We do
require though that δ23 is well-defined, so δ3 ̸= 0. On greater
detail, 1− exp ( δ2−fe

δ3
) determines the conditions for σ′′(fe)

to be negative. If δ1 < 0, we need 1 − exp ( δ2−fe
δ3

) > 0,
which implies that fe > δ2 − δ3 log (1) (since fe ≥ 0). If
δ1 < 0, we need 1 − exp ( δ2−fe

δ3
) < 0, which implies that

fe < δ2 − δ3 log (1).
Combining these insights, we can conclude that the func-

tion σ(fe) = δ1
1+exp (

δ2−fe
δ3

)
+ δ4 becomes strictly concave

in the entire interval. So, it is strictly concave for fe ≥ 0
if: (i) δ1 > 0, δ3 > 0 and fe < δ2; (ii) δ1 < 0, δ3 > 0,
and fe > δ2. If δ3 < 0, then the relation between fe and
δ2 is naturally reversed. Note that the parameter δ4 does
not affect the convexity of the function, as it only shifts the
function vertically. Therefore, we have derived the necessary
conditions that ensure σ′′(fe) is negative for all fe, making
σ(fe) strictly concave.

It follows that it is strictly decreasing, continuous, and
(continuously) differentiable with respect to the traffic flow
fe ∈ [0, fmax

e ] for any edge e ∈ E .
Now, we discuss the error characterization of our approx-

imation function. Let us define the error function Φ as the
squared difference between cPT

e (fe) and σ(fe), integrated
over the interval [0, κ]:

Φ(δ1, δ2, δ3, δ4) =

∫ κ

0

(
cPT
e (fe)− σ(fe)

)2
dx. (13)

The goal is to minimize Φ with respect to the parameters
δ1, δ2, δ3, and δ4. First, we find the critical points of Φ
by setting its gradient to zero and solving the resulting
system of equations: ∇Φ(δ1, δ2, δ3, δ4) = 0. This results
in a system of equations involving the partial derivatives
of Φ with respect to each of the parameters, i.e., ∂Φ

∂δ1
=

0, ∂Φ
∂δ2

= 0, ∂Φ
∂δ3

= 0, and ∂Φ
∂δ4

= 0. To compute these
partial derivatives, we need to differentiate the integrand with
respect to each parameter and then integrate it again, for
example, ∂Φ

∂δ1
=
∫ κ

0
∂

∂δ1

(
cPT
e (fe)− σ(fe)

)2
dx. This process

needs to be repeated for all parameters. However, due to
the complexity of the function cPT

e (fe) (being a non-linear
piecewise function), it is not possible to obtain an explicit
analytical expression for these partial derivatives. For our
purposes, we rely on numerical optimization techniques to
find the exact best-fit parameters that minimize the error
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function, as these methods can easily handle complex and
non-linear optimization.

Theorem 1. The error ϕ(·) =
(
cPT
e (fe)− σ(fe)

)
is upper

bounded by γ + ε, where γ is some real number and ε > 0.

Proof. For the purposes of this proof we assume that β =
0.5, λ = 2 and c0e = 13 and fCRT

e = 1 and c0e = 14.95. We
substitute now the known equations to get ϕ(δ1, δ2, δ3, δ4) =
−w(1 − πe) · [c̃e(fe | ce(fe) > c0e)]

β − δ1

1+exp
(

δ2−fe
δ3

) − δ4.

Using a straightforward computation of the second-order
derivative, we can get the inflection point of ϕ, which will
lie in (1, 1 + ε). This means that it is sufficient for us to
compute ϕ at fe = 1 and focus on ϕ for fe > 1. Since σ is
smooth and strictly concave in that interval, it approximates
the worst cPT

e around the inflection point. So, we have the
following ϕ(δ1, δ2, δ3, δ4) = −w(1 − πe)(ce(fe) − c0e)

β −
δ1

1+exp
(

δ2−fe
δ3

) − δ4. This expression simplifies to

ϕ = −w(1− πe)

[
13

(
1 +

3

20
(fe)

4

)
− 299

20

]β
− δ1

1 + exp
(

δ2−fe
δ3

) − δ4, (14)

where we have δ1 < 0 and δ2, δ3, δ4 > 0, and δ2 > fe.
Since w(1 − πe) is only a positive parameter constant, it
is negligible, so we drop it from our analysis. The first
component simplifies to

[
39
20

(
1− (fe)

4
)]β

, which is negative
when we evaluate near the inflection point. Next, it follows
that the second component is positive for small values of
δ2 and δ3. We use the Taylor series expansion evaluated at
fe = 1 + ε, where ε is a small positive number to get

−
[
39

20

(
(fe)

4 − 1
)]β

=

−
√

39

5

√
ε− 3

4

√
39

5
ε

3
2 − 7

32

√
39

5
ε

5
2 +O(ε

7
2 ), (15)

which is clearly negative. For the second component, we use
the Taylor series expansion at fe = 1 + ε to get

δ1

1 + exp
(

δ2−(1+ε)
δ3

) =
δ1

1 + exp
(

δ2−1
δ3

)
+

δ1 exp
(

δ2−1
δ3

)
δ3

(
1 + exp

(
δ2−1
δ3

))2 · ε

1

2

δ1 exp
(

1
δ3

+ δ2
δ3

)(
exp

(
1
δ3

)
− exp

(
δ2
δ3

))
δ23

(
exp

(
1
δ3

)
+ exp

(
δ2
δ3

))3 ·ε2+O(ε3).

(16)

We combine the expressions for the first and second compo-

nents. Next, we have

ϕ = −
√

39

5

√
ε− 3

4

√
39

5
ε

3
2 − 7

32

√
39

5
ε

5
2 +O(ε

7
2 )

+
δ1

1 + exp
(

δ2−1
δ3

) +
δ1 exp

(
δ2−1
δ3

)
δ3

(
1 + exp

(
δ2−1
δ3

))2 · ε

+
1

2

δ1 exp
(

1
δ3

+ δ2
δ3

)(
exp

(
1
δ3

)
− exp

(
δ2
δ3

))
δ23

(
exp

(
1
δ3

)
+ exp

(
δ2
δ3

))3 ·ε2+O(ε3).

(17)

We want to find an upper bound for the error, which means
we need to show that (17) is less than or equal to γ + ε for
some γ ∈ R. Note that for any a, b ∈ R with a < 0 and
b > 0, it is always true that a+ b ≤ max{a, b}. So,

ϕ ≤ max

{
−
√

39

5

√
ε− 3

4

√
39

5
ε

3
2 − 7

32

√
39

5
ε

5
2 +O(ε

7
2 ),

δ1

1 + exp
(

δ2−1
δ3

) +
δ1 exp

(
δ2−1
δ3

)
δ3

(
1 + exp

(
δ2−1
δ3

))2 · ε

+
1

2

δ1 exp
(

1
δ3

+ δ2
δ3

)(
exp

(
1
δ3

)
− exp

(
δ2
δ3

))
δ23

(
exp

(
1
δ3

)
+ exp

(
δ2
δ3

))3 ·ε2+O(ε3)

}
.

As ε is positively small, we take the limit as ε → 0. We
note that the term −

√
39
5

√
ε dominates as ε → 0, and so the

first component approaches −∞ as ε → 0. For the second
component, the term δ1

1+exp
(

δ2−1
δ3

) dominates as ε → 0,

and since δ1 < 0 and δ2, δ3 > 0, the second component
is positive. Hence, we can write

lim
ε→0

ϕ ≤ lim
ε→0

max

−
√

39

5

√
ε,

δ1

1 + exp
(

δ2−1
δ3

)
 . (18)

As ε → 0, we have −
√

39
5

√
ε → −∞, hence

lim
ε→0

ϕ ≤ lim
ε→0

max

−
√

39

5

√
ε,

δ1

1 + exp
(

δ2−1
δ3

)


=
δ1

1 + exp
(

δ2−1
δ3

) . (19)

Now, let γ = δ1

1+exp
(

δ2−1
δ3

) . Since the second component is

positive, we have γ > 0, thus ϕ ≤ γ+ε. Therefore, the error
ϕ is upper bounded by γ + ε, where γ ∈ R and ε > 0.

Theorem 2. The game M admits at least one NE.

Proof. We formally prove the existence of an NE in
the prospect-theoretic routing game using Brouwer’s fixed
point theorem. Recall that for any player i, cPT

i (x) =∑
ri∈R

∑
e∈ri

σ(fe(x)), where σ is our smooth and
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monotonic approximation function. We define the best-
response correspondence for each player i as: bi(x−i) =
argmaxxi c

PT
i (x). Smoothness in the approximation function

σ implies that it is continuous and has continuous derivatives.
This implies that we can estimate the utility function cPT

i (x)
continuously with respect to the traffic vector x. To show
that the best-response correspondence bi(x−i) is continuous,
we need the argmax operator to be continuous. Since
the set of maximizers is compact, which actually follows
from the compactness of the strategy space by Lemma 1.
By Lemma 2, we have that σ is concave on a specific
interval [0, κ]. This implies that we can estimate the utility
function cPT

i (x) within the interval [0, κ] pointwise in a
strictly decreasing and strictly concave curve with respect
to xi for any player i ∈ I. However, a strictly concave
function has at most one unique maximum, which ensures
the single-validness of the best-response correspondence
bi(x−i). We now define the combined best-response corre-
spondence B(x) = (b1(x−1), b2(x−2), . . . , bn(x−n)). Since
each bi(x−i) is continuous, B(x) is also continuous, and thus
it maps the strategy space to itself. Hence, now we can apply
Brouwer’s fixed point theorem, which guarantees that there
exists a fixed point x∗ = B(x∗); the result then follows.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our mobility game incorporat-
ing an atomic splittable routing game with prospect theory
to study travel behavior in mobility systems. We modeled
the overestimation/underestimation of probabilities using Pr-
elec’s probability weighting function, and we considered the
traffic uncertainties and travelers’ perception of gains/losses
in travel time using a prospect-theoretic S-shaped value
function. We proposed an approximation function to address
the non-linear and piecewise nature of the prospect-theoretic
cost functions and showed that at least one NE exists. Finally,
we also derived an upper bound for the error.

In future research, we can explore how to analyze a
convex-concave piecewise non-linear optimization problem
using optimization techniques, such as sequential convex
programming or cutting plane methods. Developing such an
optimization framework can enhance our ability to predict
travel decisions in mobility systems under prospect theory.
Another direction is to incorporate prospect theory and a
taxation mechanism and study using artificial intelligence
how we can incentivize prospect-theoretic travelers and the
trade-offs of efficiency in the mobility systems [25]–[27].
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