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Abstract— The impending green transition of the power
system, brought about by the spread of Renewable Energy
Sources, Energy Storage, and Electric Vehicles (EVs), calls for
novel grid management solutions. Techniques using concepts
such as Virtual Power Plants and Virtual Power Lines have
already successfully been deployed to help manage the grid
and shift power transmission in time. In this work, we propose
and discuss a similar technique which can potentially match
and surpass these results, which we refer to as EV Virtual
Power Lines. By controlling the charging station prices and
charging rates in a network in which EVs are circulating, we
effectively shift the power consumption both in time and in
space. This allows us to reinforce and balance the power grid,
reducing grid congestion without disrupting EV operation. We
model and analyse the dynamics of EVs circulating between
two urban nodes in mixed traffic, and design control schemes
that achieve charging station power reference tracking. Using a
simple simulation example, performance achievable by applying
such control schemes is demonstrated.

I. INTRODUCTION
With the impending shift towards Renewable Energy

Sources (RES) and Electric Vehicles (EVs), the demand for
new approaches for active management of the power grid is
progressively growing [1]. The distributed and intermittent
nature of RES makes it challenging to model, analyse,
and manage the impact that they have on the power grid.
One way of dealing with this problem is to aggregate this
generation into a single larger Virtual Power Plant [2], in
an effort to reduce its variability. This technique also lends
itself to utilization of latent energy storage and balancing
resources of the charging EVs, as was done e.g., in the
EDISON project [3]. Many similar approaches using smart
EV charging, either to directly provide Active Network
Management [4]–[6], or participate in the regulation market
and provide ancillary services through vehicle-to-grid power
transfer [7], [8], have been proposed in literature.

When discussing how EVs can help the power grid, there
is a tendency to focus on the “E” (providing energy storage,
as a battery), while neglecting the “V” (providing mobility, as
a vehicle). These two aspects are often at odds, since an EV
providing ancillary services at a charging station cannot be
used for its primary role [9]. While in the case of privately
owned EVs we may assume that they spend the majority
of time parked, and that it is enough to charge them at
home overnight [10], this is not the case for ride-hailing
EVs, especially those with smaller batteries [11]. These EVs
may be used throughout the day, need several recharges, and
have little idle time when they can charge freely.
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The main contribution of this work is in proposing a
framework for controlling EV charging to reinforce the
power grid through implementing an EV Virtual Power
Line (EVPL), as outlined in Figure 1. Virtual Power Lines
[12] are a proposed grid reinforcement technology that
uses stationary energy storage to virtually transmit RES
generation in excess of the grid capacity, by storing it and
deferring transmission until the grid is no longer congested.
In contrast to this approach, we propose using mobile
distributed energy storage supplied by the circulating EVs.
By providing incentives in the form of lower charging prices,
we are able to influence these EVs’ decisions on where
to charge, effectively shifting power consumption from one
location to another, without interrupting their operation. We
study the model describing the dynamics of EV traffic and
charging, and based on the analysis, design simple control
laws using charging prices and charging rates as control
inputs that achieve charging station power reference tracking
and virtual power transmission.

In the rest of the paper, we first introduce the EVPL
framework and outline its mechanism of action in Section II.
Then, we present the model of mixed EV and non-EV
traffic coupled with EV charging in Section III. Next, we
propose control laws that achieve the desired EVPL power
transmission in Section IV, which are then put to the test
in simulations in Section V. Finally, in Section VI, we draw
conclusions and outline directions for future work.

II. EV VIRTUAL POWER LINES
Consider the system outlined in Fig. 1, with two

geographically distant urban nodes connected via the road
network. The total power of each node ζ consists of a
distinct time-varying load P load

ζ (t) and charging station
power Pζ(t). The power line connecting the node to the
grid is designed to have adequate capacity to support its
peak loads without EV charging, maxP load

ζ (t)<P ζ , but the
addition of large power consumption of the charging stations

Fig. 1: Sketch of the studied system. EVs circulate between two
urban nodes together with non-EVs. In this case, the load of the
node on the right is too high, exceeding the line capacity. The
controller reacts to this by increasing the charging price at that
node and decreasing the charging price at the other one to induce
a virtual power transmission and help the power grid.
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may cause the total node power to exceed the power line
capacity maxP load

ζ (t) + Pζ(t) > P ζ at some time t. The
focus of this paper is on designing control laws for charging
station prices and charging rates aimed at preventing such
events, keeping P load

ζ (t) + Pζ(t) ≤ P ζ .
The EVs circulate between the two nodes, passing by both

charging stations, and are able to charge at either of them. For
each charging station ζ we define the baseline power P̂ζ(t)
that it needs to supply to the EVs in order to keep the overall
average SoC of the system εavg close to some reference
level ε∗avg. If a pair of charging stations is controlled so
that the power consumption of the first one, ζ−, is increased
by some value, and the power consumption of the other,
ζ+, is decreased by the same value, this is equivalent to
transmitting this power over a virtual power line. We denote
the EVPL power transmission from charging station ζ− to
charging station ζ+ by P

ζ−,ζ+
EVPL (t), and define the reference

powers that the pair of charging stations needs to follow
P ∗
ζ±(t) = P̂ζ±(t)∓ P

ζ−,ζ+
EVPL (t).

The actual charging station powers Pζ(t) are regulated to
follow these reference powers by controlling their charging
prices uζ(t) and charging rates cζ(t) as will be discussed in
Section IV. In order to balance the power of the two nodes,
we set the EVPL power transmission to

P ζ1,ζ2
EVPL(t) =

P load
ζ2

(t)− P load
ζ1

(t)

2
, (1)

equalizing the reference total power of the two nodes to

P load
ζ (t) + P ∗

ζ (t) = P̂ζ(t) +
P load
ζ2

(t) + P load
ζ1

(t)

2
.

Note that thus defined EVPL shifts the power consumption
spatially, from one charging station to the other, rather than
temporally like the standard VPL. We may introduce the
temporal dimension back into EVPL by deferring charging
and allowing more overall SoC variation.

III. MODELLING

We use a discretized Coupled Traffic, Energy, and
Charging (CTEC) model [8] (see the cited paper for
more details on its derivation), describing the dynamics of
traffic and energy of the studied system, as the simulation
ground-truth model. Here, we extend the model to explicitly
handle a multi-class mixed traffic, with vehicle classes ξ ∈ Ξ,
consisting of both EVs (of class ξ ∈ ΞE) and non-EVs
(ξ ∈ Ξ \ ΞE). Then, we introduce some approximations
to make the model tractable, and analyse the resulting
simplified model which will be used for control design.

A. CTEC model
The full dynamics of the system are given by

∂ρξζ(x, t)

∂t
+
∂qξζ(x, t)

∂x
= 0, ξ∈Ξ, x∈[0,Lζ ], (2)

∂εξζ(x,t)

∂t
+vζ(x,t)

∂εξζ(x,t)

∂x
=Dξ(vζ(x, t)), ξ∈ΞE ,x∈[0,Lζ ],(3)

∂ηζ(ε, t)

∂t
+cζ(t)

∂ηζ(ε, t)

∂ε
= . . .

. . .
∑

ξ∈ΞE

δ
(
ε− εξζ(X

−
ζ , t)

)
rξζ(t), ε∈[0, 1], (4)

for all links and charging stations ζ ∈ Z . With a slight abuse
of notation we use the same symbol ζ to represent the
charging station and the road link to which it is connected.

The state of road link ζ consists of the traffic density of all
vehicle classes ρξζ(x, t), ξ ∈ Ξ, and SoC of the EVs εξζ(x, t),
ξ ∈ ΞE , at position x at time t. We denote by qξζ(x, t) the
traffic flow of class ξ vehicles, qξζ(x, t) = vζ(x, t)ρ

ξ
ζ(x, t),

where the traffic speed vζ(x, t) depends on aggregate traffic
density according to some nonincreasing function V(ρ),

vζ(x, t) = V(ρζ(x, t)), ρζ(x, t) =
∑

ξ∈Ξ
ρξζ(x, t),

also defining the fundamental diagram Q(ρ) = ρV(ρ). The
energy in EVs’ batteries is transported along the road at
the speed of the traffic vζ(x, t), and discharged according
to some function Dξ(v) depending on their speed.

The state of charging station is defined by the
accumulation of EVs at different SoC ηζ(ε, t). In this
work we assume that all EVs at a single charging station
are charged at the same rate cζ(t), in the range of
0 ≤ C ≤ cζ(t) ≤ C, and that the EVs leave as soon as they
are fully charged, yielding exiting flow

µζ(t) = cζ(t)ηζ(1, t).

This yields the charging station power Pζ(t) of

Pζ(t) = Ecζ(t)

∫ 1

0

ηζ(ε, t)dε = Ecζ(t)η
tot
ζ (t),

where E is the average EV battery capacity, and we denote
by ηtotζ (t) the total number of EVs at charging station ζ.
Finally, the inhomogeneous part of (4) models the flow of
all classes of EVs entering the charging station from the
road, with SoC εξζ(X

−
ζ , t). Function δ(ε) is taken to be a

finite approximation of the Dirac delta function with support
[−Lδ, Lδ], where Lδ ≈ 0+, δ(ε) = 1

2Lδ
, |ε|≤ Lδ .

We connect the road traffic states with the charging
stations’ states and the external world by ramp flows, through
defining internal boundary conditions

qξζ(X
+
ζ ,t)=qξζ(X

−
ζ , t)−rξζ(t)+µ

ξ
ζ(t), ξ∈ΞE, (5)

qξζ(X
+
ζ ,t)ε

ξ
ζ(X

+
ζ ,t)=

(
qξζ(X

−
ζ ,t)−rξζ(t)

)
εξζ(X

−
ζ ,t)+µ

ξ
ζ(t), ξ∈ΞE, (6)

qξζ(X
ext+
ζ ,t)=qξζ(X

ext−
ζ , t)−rext,ξζ (t)+µext,ξ

ζ (t), ξ∈Ξ\ΞE,(7)

with (5) defining the flow of EVs entering (rξζ ) and exiting
(µξ

ζ) charging station ζ at position Xζ , (6) defining the flow
of energy carried in their batteries, and (7) defining the
flow of non-EVs leaving the road via an off-ramp (rξζ ) and
entering the road via an on-ramp (µξ

ζ) at position Xext
ζ . For

the non-EVs, these flows are given by constant splitting ratios
towards the off-ramp βext,ξ

ζ ,

rext,ξζ (t) = βext,ξ
ζ qξζ(X

ext,−
ζ , t), ξ∈Ξ\ΞE ,

and by externally defined on-ramp flow µext,ξ
ζ (t). For the

EVs, the flow leaving the road and entering charging station
ζ at position Xζ is given by

rξζ(t) = β
(
εξζ(Xζ , t), uζ(t)

)
qξζ(Xζ , t), ξ∈ΞE , (8)

where uζ(t) is the charging price, and function β(ε, u)
describes the splitting ratio of EVs towards the charging
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station depending on their SoC and the charging price,

β(ε, u)=1−
(
1+e−

ε−(U0+U1u)
σ

)−1

.

Here U0 > 0 and U1 < 0 are parameters defining the SoC
U0 + U1u at which 50% EVs enter the charging station (as
the EVs’ SoC decreases, a larger portion enters the charging
station), and σ parametrizes the spread of the SoC of EVs
entering around this value.

Finally, we assume that the non-EVs ξ ∈ Ξ \ ΞE

continue circulating after reaching the end of the road
link, qξζ(0, t) = qξ #»

ζ
(L #»

ζ , t), until they leave the road via an
off-ramp at position Xext

ζ . Here, we denote by
#»

ζ the road
link that is upstream of road link ζ, i.e. vehicles arrive from
the downstream end of the link

#»

ζ , and then continue on link
ζ. The EVs ξ ∈ ΞE instead spend some time at the node and
return to the road after an average delay of τζ ,

qξζ(0, t) = qξ #»
ζ
(L #»

ζ , t− τζ),

during which they are kept in a virtual charging station ζ,
∂ηξ

ζ
(ε, t)

∂t
=δ

(
ε−εξ #»

ζ
(L #»

ζ , t)
)
qξ #»
ζ
(L #»

ζ , t)− δ
(
ε−εξζ(0, t)

)
qξζ(0, t),

with εξζ(0, t) taking random values in set Eη(t),

Eη(t) =
{
e ∈ [0, 1]

∣∣∣∫ 1

0

δ(ε− e) ηξ
ζ
(ε, t)dε > 0

}
,

ensuring (∀t ∈ R≥0, ε ∈ [0, 1]), ηξ
ζ
(ε, t) ≥ 0.

B. Model simplification and analysis
In order to make the analysis and control design tractable,

the CTEC model needs to be simplified, through appropriate
approximations. We adopt a simplified charging station
model similar to the one in [8] and extend the analysis given
therein to specify what range of charging station powers may
be achieved. Since we consider a single class of EVs ξ and
a single charging station ζ, we omit writing these identifiers
in the remainder of this Section wherever unabmiguous.

Since the outer control loop regulates the average SoC
in the whole system εavg(t) to some reference value ε∗avg,
we assume that the SoC of the EVs entering any charging
station will be approximately constant ε ≈ εin. Since the EVs
leave the charging station with SoC ε = 1, we may split the
interval [εin, 1] in which η(ε, t) is nonzero into equal parts,
[εin, ε̃] and [ε̃, 1], with ε̃ =

1+εin

2 , and study the second-order
approximation of η(ε, t), with states ηlo(t) and ηhi(t)

ηlo(t) =

∫ ε̃

0

η(ε, t)dε, ηhi(t) =

∫ 1

ε̃

η(ε, t)dε.

Charging station dynamics (4) then simplify to

η̇lo(t) = r(t)− c(t)

Lε
ηlo(t),

η̇hi(t) =
c(t)

Lε
ηlo(t)− c(t)

Lε
ηhi(t),

where Lε=1− ε̃= ε̃−εin. For constant r and c, we have the
equilibrium of ηlo(t)→ηloeq=

rLε

c and ηhi(t)→ηhieq=
rLε

c ,
yielding total number of EVs ηtot(t)→ηtoteq =

2rLε

c , and
equilibrium charging station power P(t)→Peq=2ErLε,
depending only on the flow of EVs entering the charging
station r, and not on the charging rate c.

This indicates that in order to be able to make P(t) track
some reference power P ∗(t) over an infinite time horizon,
we need to control the EV inflow r(t). However, assuming

P ∗
ζ(t)

C
≤ ηtotζ (t) ≤

P ∗
ζ(t)

C
, (9)

we can force P(t) = P ∗(t) over a finite time horizon, by
controlling the charging rate

c(t) = c∗ζ(t) = max

{
C,min

{
C,

P ∗(t)

ηtot(t)

}}
. (10)

This case can be analysed by adopting a state transformation

η̇tot(t) = r(t)

(
1− 2P ∗(t)

Peq(1 + γ(t))

)
, (11)

γ̇(t) =
r(t)

ηtot(t)

(
1 + γ(t)− 2

P ∗(t)

Peq
γ2(t)

)
,

where γ(t)=
ηlo(t)
ηhi(t)

, assuming ηhi(t)>0.
Finally, we briefly discuss simplifying the model of the

flow of EVs entering the charging station r(t). In this
context, the full road dynamics (2)–(3) can be reduced
into a time-delay system with state-dependant time delay
originating from the travel time, the charging time, and
the node dwell time. This reformulation makes the analysis
intractable, so we instead resort to linearizing r(t), whose
exact form is given by (8), with respect to u(t),

r(t) ≈ R(t) + S(t)u(t), (12)
where R(t)>0 and S(t)<0 are unknown, potentially
time-varying parameters, and deal with this uncertainty
through feedback control.

One useful approximate aggregate quantity is the average
total battery discharge power,

PD ≈ ELx
totρ

E
avgD(vavg) < 0,

where Lx
tot is the total length of the road, ρEavg the average

density of EVs, and vavg the average speed of all vehicles on
it. Since this quantity is easier to estimate than the actual total
battery discharge power, it allows for a simple approximation
of the overall average SoC dynamics,

ε̇avg(t) ≈
PD +

∑
ζ∈Z Pζ(t)

NEE
, (13)

where NE is the total number of EVs in the system, both on
the road and at the charging stations or at urban nodes. It is
clear that for εavg(t) not to diverge from its reference value
ε∗avg, the total power of all charging stations needs to equal
the total battery discharge power. However, this power need
not be spread equally among the charging stations, which we
use for defining and implementing EVPLs.

IV. CONTROL
As discussed in Section II, the overall control objective

is to ensure that the charging station powers follow their
references, including the EVPL power transmission, while
keeping the SoC of the system adequate. The EVPL power
transmission will in turn designed such that all node powers
would be balanced, in order to avoid violating their capacity
constraints. The control action can be split into three layers
according to their time scale:

1) Baseline power adaptation,
2) Nominal power reference tracking, and
3) Charging rate control and compensation.

2878



In order to make the control setup more realistic, we change
the charging station prices at discrete instants, with a time
step of Tstep = 15 min, which should allow the drivers
enough time to react to the pricing signal communicated to
them. The charging rates cζ(t) are controlled continuously.

1) Baseline power adaptation: The slowest control layer
is tasked with finding the baseline power of the charging
stations P̂ζ(t) that keeps the average overall SoC of the
system εavg(t) close to its reference value ε∗avg. Due to the
symmetry of the system studied in this work, we assign the
same baseline power to both charging stations. We set the
baseline power as the output of a simple PI controller, The

P̂ζ(t) = Kε
pe

ε
p(t) +Kε

i e
ε
i (t), (14)

where the error signal and its integral are
eεp(t) = ε∗avg − εavg(t), eεi (t+ T ) = eεi (t) + Tstepe

ε
p(t).

The integral error is initialized at time t0, when we start
controlling the system, to

eεi (t0) =
PD

2Kε
i

,

according to the approximate average error dynamics (13).
2) Nominal power reference tracking: The reference

power of each charging station P ∗
ζ (t) is given as the sum

of its baseline power P̂ζ(t) (14) and its EVPL power
transmission reference P ζ,ζ

EVPL(t),

P ∗
ζ (t) = P̂ζ(t) + P ζ,ζ

EVPL(t),

where we denote by ζ the other charging station, and
P ζ,ζ
EVPL(t) = −P ζ,ζ

EVPL(t). The second control layer ensures
that the nominal power of a charging station, defined as the
power under some nominal charging rate Cnom, tracks this
reference value, by controlling the charging price uP

ζ (t). This
can be achieved by another PI controller,

uP
ζ (t) = KP

p ePp (t) +KP
i ePi (t)

with error and error integral defined as
ePp(t)=P ∗

ζ(t)−ECnomη
tot
ζ (t), ePi (t+T )=ePi (t)+Tstepe

P
p(t),

and the integral error initialized so that uP
ζ (t0) starts from

some nominal price unom,
ePi (t0) =

unom

KP
i

.

3) Charging rate control and compensation: Finally,
while the second control layer brings the nominal charging
station power ECnomη

tot
ζ (t) close to its reference value

P ∗
ζ (t), due to the long time step and strong nonlinearity

of the system, there are severe limitations on its tracking
performance. However, since we assume that the charging
rates can be controlled instantaneously, if the total number
of vehicles at the charging station is within (9) we achieve
Pζ(t) = P ∗

ζ (t) by setting the charging rate to (10). As the
analysis in Section III-B shows, if the inflow to the charging
station is kept constant and this charging rate is applied,
ηtotζ (t) leaves the range (9) within some time Tlim, making
it impossible to keep Pζ(t) = P ∗

ζ (t). Therefore, we offset
the effect of controlling the charging rate by adding a
compensation term uc

ζ(t) to the charging price,
uζ(t) = uP

ζ (t) + uc
ζ(t).

The compensation term is calculated from the condition that
the simplified model (11) with γζ(t) ≈ 1 and rζ(t) given by
(12) with constant EV inflow linearization parameters R̂ and
Ŝ fitted from simulation data,

η̇totζ (t) = R̂+ Ŝuζ(t)−
cζ(t)η

tot
ζ (t)

2Lε

results in the same ηtotζ (t + T ) for the same ηtotζ (t) when
cζ(t) = Cnom and uζ(t) = uP

ζ (t), and when cζ(t) = c∗ζ(t)

and uζ(t) = uP
ζ (t) + uc

ζ(t), yielding

uc
ζ(t)=

1

S

(
P ∗
ζ (t)

2LεE
− αηtotζ (t)−

(
1−2Lεα

Cnom

)(
R̂+ŜuP

ζ (t)
))

,

with α = 1
Tstep

(
1− e−

Cnom
2Lε

Tstep

)
.

V. SIMULATION RESULTS
Finally, we test the proposed EVPL framework and the

control law that achieves it in simulations. The simulation
setup is shown in Figure 1, and its main parameters,
including the controller parameters, are given in Table I. It
consists of two urban nodes connected by road of length
Lx = 50 km. Each simulation run is tend = 24 h long,
and the average dwell time of EVs at the two nodes is set
to τζ = 30 min. At the exit from each node, there is a
charging station connected to the same port of the power
grid. Close to the middle of the road, there is an on-off-ramp
pair, where a portion of βext

ζ = 0.25 non-EVs leave the road,
and the on-ramp flow of non-EVs is uniformly distributed,
rextζ (t) ∼ U[0.11Qmax,0.22Qmax] where Qmax denotes the road
capacity. All EVs remain in the system, and do not interact
with these on- and off-ramps.

The simulation is initialized with uniformly distributed
initial traffic density ρζ(x, 0)∼U[0.7ρcr,1.2ρcr], where ρcr is
the critical density, and empty charging stations. The initial
share of EVs at each point is ρξEζ (x, 0)/ρζ(x, 0)∼U[0,1], and
their initial SoC is εξEζ (x, 0)∼U[0.45,0.55]. The dynamics of
the roads are defined by the average speed function

V(ρ) = V e−
1
2 (

ρ
ρcr

)
2

,

and a polynomial battery discharge function
D(v) = −kD0 − kD1 v − kD2 v2.

The two nodes have the same power capacity
P ζ = 1.5 MW, and their load profiles are taken to be
perturbed sinusoids with different frequencies

P load
ζ (t) = pvarζ (t)

(
bloadζ − aloadζ cos (ωζt)

)
,

where pvarζ (t) ∼ U[0.95,1.05] is the multiplicative noise
modelling load variation. We set ωζ1 = 2π

24h and ωζ2 = 2ωζ1 ,
i.e. the loads of nodes ζ1 and ζ2 have periods of 24 h and
12 h, respectively. The bias and amplitude parameters are

Symbol Value Unit Symbol Value Unit

Lx 50 km R̂ 0.5 1
Tstep 15 min Ŝ −0.05 1
E 0.06 MWh Kε

p 10 MW
C 0.83 1/h Kε

i 0.8333 · 10−9 MW/h
Cnom 1.25 1/h KP

p 1 1/MW
Cζ 1.67 1/h KP

i 4.1667 · 10−6 1/MWh
U0 0.8 1 V 100 km/h
U1 −0.5 1 ρcr 15 veh/km
σ 0.05 1 PD 1 MW
εin 0.475 1 P̄ 1.5 MW

TABLE I: Simulation parameters and their values.
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set to bloadζ1
= 0.65 MW, aloadζ1

= 0.4 MW, bloadζ2
= 0.8 MW,

and aloadζ2
= 0.3 MW, and the average total battery discharge

power is calculated to be PD ≈ 1 MW, which means that the
power of the two charging stations will be close to 0.5 MW
on average. It can be seen from the parameters that unless the
charging stations are controlled, the total power of both nodes
will exceed the capacity at their peak load times, but since
these peak load times do not coincide, the control works to
avoid this by setting the EVPL power transmission reference
(1) to balance their powers.

After a warm-up period of tw = 1 h, when the charging
prices and charging rates are kept at their nominal values
unom and Cnom, respectively, the controllers are initialized
and start tracking the references. We compare three cases of
control, differing by what control inputs are used:

1) Price only, uζ(t) = uP
ζ (t), cζ(t) = Cnom

2) Both price and charging rate, without compensation,
uζ(t) = uP

ζ (t), cζ(t) given by (10), and
3) Both price and charging rate, with compensation,

uζ(t) = uP
ζ (t) + uc

ζ(t), cζ(t) given by (10).

We evaluate the performance of the proposed control laws
by comparing two metrics: mean square tracking error

JMSE =
∑
ζ∈Z

1

tend − tw

∫ tend

tw

(
Pζ(t)− P ∗

ζ (t)
)2
dt,

and total capacity violation

Jcap =
∑
ζ∈Z

∫ tend

tw

max
{
0, P load

ζ (t) + Pζ(t)− P ζ

}
dt.

The mean values of these metrics for 100 simulation runs are
shown in Table II. It can be seen that all the proposed control
laws significantly reduce capacity violations compared to
the uncontrolled case when uζ(t)=unom, cζ(t)=Cnom. The
control laws with cζ(t)= c∗ζ(t) achieve better performance
than the one with cζ(t)=Cnom, both in terms of reference
tracking and capacity violations, especially when the
influence of charging rate control is compensated.

In order to further explain the operation of the
proposed control laws, details from one characteristic
simulation run are shown in Figures 2–6. As shown in
Figure 2, all control laws slowly bring εavg(t) to its
reference value ε∗avg = 0.5, whereas in the uncontrolled
case it settles at a lower value. The resulting total node
powers P load

ζ (t) + Pζ(t) are shown in Figure 3. In the
uncontrolled case, shown in Figure 3 (0), the power of
both nodes exceeds the capacity at different times, with
J0
cap = 1.0490. All control laws significantly reduce the

capacity violations, with J1
cap = 0.2187, J2

cap = 0.0805, and
J3
cap = 0.0518, with particularly good results when charging

rate control cζ(t) = c∗ζ(t) is used. The power reference
tracking performance of the three control cases can be seen
in Figure 4. The control law with cζ(t)=Cnom achieves

unom, Cnom uP
ζ , Cnom uP

ζ , c∗ζ uP
ζ + uc

ζ , c∗ζ

JMSE

[
MW2

]
− 0.0160 0.0122 0.0064

Jcap [MWh] 0.6993 0.1029 0.0429 0.0221

TABLE II: Average performance of the three evaluated control
laws over 100 simulation runs.

Fig. 2: Average SoC εavg(t) over the course of an example
simulation run for the uncontrolled and the three controlled cases.

0) uζ(t) = unom, cζ(t) = Cnom

1) uζ(t) = uP
ζ (t), cζ(t) = Cnom

2) uζ(t) = uP
ζ (t), cζ(t) = c∗ζ(t)

3) uζ(t) = uP
ζ (t) + uc

ζ(t), cζ(t) = c∗ζ(t)

Fig. 3: Node powers in the uncontrolled and controlled cases.
Dashed lines show the reference node powers P load

ζ (t) + P̂ζ(t)
without the contribution of EVPL.

visibly worse tracking, with J1
MSE = 0.0217, compared

to the other two control laws with J2
MSE = 0.0094 and

J3
MSE = 0.0076. Improved tracking performance does result

in a more oscillatory price signal uζ(t), as can be
seen in Figure 5. Finally, the achieved EVPL power
transmission is shown in Figure 6, with almost perfect
tracking after the initial transient period in case of control
using uζ(t) = uP

ζ (t) + uc
ζ(t) and cζ(t) = c∗ζ(t).

VI. CONCLUSIONS

In this work we propose and evaluate a grid management
strategy, that we coin EV Virtual Power Lines, relying on
controlling the charging stations in a way that shifts power
consumption from one point in the grid to another, without
disrupting the EV fleet operation by postponing its charging
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1) uζ(t) = uP
ζ (t), cζ(t) = Cnom

2) uζ(t) = uP
ζ (t), cζ(t) = c∗ζ(t)

3) uζ(t) = uP
ζ (t) + uc

ζ(t), cζ(t) = c∗ζ(t)

Fig. 4: Charging station powers Pζ(t).
Thick dashed lines show the reference
powers P ∗

ζ (t), thin black dashed line the
baseline powers P̂ζ(t), and thin dotted line
the nominal powers Cnomηtot

ζ (t).

1) uζ(t) = uP
ζ (t), cζ(t) = Cnom

2) uζ(t) = uP
ζ (t), cζ(t) = c∗ζ(t)

3) uζ(t) = uP
ζ (t) + uc

ζ(t), cζ(t) = c∗ζ(t)

Fig. 5: Relative charging prices of the two
charging stations uζ(t)/unom.

1) uζ(t) = uP
ζ (t), cζ(t) = Cnom

2) uζ(t) = uP
ζ (t), cζ(t) = c∗ζ(t)

3) uζ(t) = uP
ζ (t) + uc

ζ(t), cζ(t) = c∗ζ(t)

Fig. 6: Achieved EVPL power transmission
PEVPL(t). Thick dotted line shows its
reference and thin dotted lines its current
minimum and maximum achievable values
due to C ≤ cζ(t) ≤ C.

times. Control laws that achieve this goal were presented,
compared, and shown to be able to control the charging
station power in a way that decongests the power grid.

This work focuses on providing a proof of concept on
the simplest possible setup. In the future, we seek to
extend these results and apply them on a more realistic
urban electromobility case, explicitly identifying which
electromobility parameters (e.g. total EV traffic flow profiles
in space and time) determine how much EVPL power
transmission can be achieved between different geographical
points. Additionally, here we focused explicitly on shifting
the power consumption in space, without changing the time
profile of the total charging power. This approach may prove
to be overly conservative, since some drift of SoC can
be allowed in case the grid cannot be decongested simply
by shifting the charging power in space. Finally, practical
aspects such as the explicit consideration of the distribution
system topology, as well as EV drivers’ reaction to the
incentives, remain to be considered in more detail.
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