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Abstract— In the field of model predictive control, Data-
enabled Predictive Control (DeePC) offers direct predictive
control, bypassing traditional modeling. However, challenges
emerge with increased computational demand due to recursive
data updates. This paper introduces a novel recursive updating
algorithm for DeePC. It emphasizes the use of Singular Value
Decomposition (SVD) for efficient low-dimensional transforma-
tions of DeePC in its general form, as well as a fast SVD update
scheme. Importantly, our proposed algorithm is highly flexible
due to its reliance on the general form of DeePC, which is
demonstrated to encompass various data-driven methods that
utilize Pseudoinverse and Hankel matrices. This is exemplified
through a comparison to Subspace Predictive Control, where
the algorithm achieves asymptotically consistent prediction
for stochastic linear time-invariant systems. Our proposed
methodologies’ efficacy is validated through simulation studies.

I. INTRODUCTION

In Model Predictive Control (MPC), data-driven tech-
niques have emerged as promising tools to expedite and
enhance controller design, offering end-to-end solutions
from input-output (I/O) data to fully functional controllers.
Among these, Data-enabled Predictive Controller (DeePC)
has gained significant attention, leveraging Willems’ Fun-
damental Lemma [1] to bypass traditional modeling steps
and establish a direct predictive controller. This method has
demonstrated effectiveness across diverse domains, including
batteries [2], [3], buildings [4], [5], grids [6], and vehi-
cles [7].

In deterministic Linear Time-invariant (LTI) systems, nu-
merous data-driven approaches have demonstrated the capa-
bility to consistently estimate system dynamics using a finite
yet sufficiently excited I/O dataset. A paradigmatic method
in this regard, Subspace Identification (SID) [8], employs an
indirect approach to generate a consistent state-space model,
facilitating the subsequent design of an MPC controller. In
addition, other direct methods such as DeePC and Subspace
Predictive Control (SPC) [9] can leverage this limited data
set to directly yield exact trajectory prediction.

The landscape changes slightly for LTI systems affected by
stochastic noise. Several data-driven studies have shown that
employing infinite open-loop I/O data leads to the estimation
of asymptotically consistent models [10]. Building on this
foundation, more recent efforts have sought to extend these
algorithms to closed-loop data [11]. An innovative proposal
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in this context, as mentioned in [12], seeks to design the
SPC using initial I/O data for system control, with the
SPC undergoing recursive updates to enhance performance.
DeePC has also witnessed similar extensions, such as the
integration of instrumental variables [13], [14], [15], which
have also been explored to achieve consistency in predictions
utilizing both open [13] and closed-loop data [14].

A major hurdle arises with DeePC’s increasing computa-
tional complexity as more I/O data are integrated. Recent
studies have aimed to mitigate this by reducing DeePC’s
computational overhead [3], [16], [17]. For instance, [3],
[16] employ the Singular Value Decomposition (SVD) of the
Hankel matrix to reduce the dimensions of DeePC’s decision
variables. However, these methods, while promising, often
present their own challenges, especially as more data is
recursively incorporated into the model. Existing recursive
updating methodologies in SID [18] and SPC [12], [19],
reliant on the least squares structure, remain unsuited to
DeePC and its variations. This gap underscores the pressing
need for a generalized and efficient strategy to recursively
update DeePC.

Addressing this void, our research introduces an effective
recursive updating paradigm within the DeePC framework.
Our main contribution describes the equivalency between an
SVD-based low-dimensional DeePC and its counterpart in
a more general form compared to [3], [16], while also de-
tailing an efficient SVD updating mechanism for recursively
updated I/O data. A key advantage of the proposed algorithm
is its high degree of flexibility rooted in the general-form
DeePC. Our study demonstrates that this form of DeePC
can include data-driven methods based on Pseudoinverse and
Hankel matrices. We give an example of this through a com-
parison to SPC, where the algorithm achieves asymptotically
consistent prediction. In addition, our proposed algorithm has
the potential for broader applications, especially among other
adaptive DeePC methods [20], [21].

The paper’s structure is as follows: Section II revisits
Willems’ fundamental lemma and DeePC. Subsequently,
Section III delves into the equivalent low-dimensional trans-
formation of DeePC, introducing our efficient recursive
updating method. Section IV details an extension to data-
driven methods based on Pseudoinverse. The validity of
these methods is empirically established through simulations
presented in Section V.
Notation: Let 0 represent a zero matrix, and I represent an
identity matrix. The notation x := {xi}Ti=1 indicates a se-
quence of size T . The term xt represents the measurement of
x at the instance t. Additionally, x1:L := [x⊤

1 , x
⊤
2 , . . . , x

⊤
L ]

⊤

signifies a concatenated sequence of x from x1 to xL. M†

indicates Moore–Penrose inverse of a matrix M .
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II. PRELIMINARIES

Consider a linear time-invariant (LTI) system described
by the equations xt+1 = Axt + But and yt = Cxt +
Dut, which we refer to as B(A,B,C,D). The system’s
order is given by nx with nu, ny denoting its input and
output dimensions. An L-step trajectory for this system is
represented as

[
u⊤
1:L y⊤1:L

]⊤
. The set of all potential L-

step trajectories produced by B(A,B,C,D) is denoted by
BL(A,B,C,D). We define the Hankel matrix Hs of depth L
associated with a vector-valued signal sequence s = {si}Ti=1

as:

Hs :=


s1 s2 . . . sT−L+1

s2 s3 . . . sT−L+2

...
...

...
sL sL+1 . . . sT

 .

The row and column counts of a Hankel matrix H are
given by rowH and colH , respectively. Throughout this paper,
the term L is exclusively used to indicate the size of the
Hankel matrix. An input measurement sequence defined as
u = {ui}Ti=1 is termed persistently exciting of order L if the
Hankel matrix Hu has full row rank.

Utilizing the Hankel matrices Hu and Hy , we introduce
the well-established Willems’ Fundamental Lemma:

Lemma 1: [1, Theorem 1] Given a controllable linear
system where {ui}Ti=1 is persistently exciting of order L+nx,
the condition colspan(

[
H⊤

u H⊤
y

]⊤
) = BL(A,B,C,D) is

satisfied.
Recent advancements in the data-driven control domain

have given rise to schemes like DeePC [22], along with
numerous variants, for instance, [23], [20]. Lemma 1 plays
a pivotal role in these schemes by facilitating trajectory
prediction. In the scope of this paper, our primary aim is to
unveil a universally efficient updating algorithm tailored for
various controllers under the DeePC paradigm. To exemplify,
consider the L2 regularized DeePC (L2-DeePC) detailed
in [23]:

min
g,σ

upred,ypred

J(upred, ypred) + λσ∥σ∥22 + λg∥g∥22 (1a)

s.t. Hg =


yinit + σ
ypred
uinit

upred

 , (1b)

ypred ∈ Y, upred ∈ U (1c)

where H :=

[
Hy

Hu

]
for simplification. The parameters λσ

and λg represent user-determined regularization cost weights.
The elements J(upred, ypred), Y, and U are defined accord-
ing to the task at hand. Sequences uinit and yinit provide
ninit-step historical data for measured inputs and outputs
leading up to the present moment, which aids in current state
estimation of the dynamic system [22]. Correspondingly,
upred and ypred denote the predicted sequences of npred

steps from the current timestamp. Consistently, the row
dimension of the Hankel matrix is set to L = ninit + npred.

The L2-DeePC as presented in (1) forecasts the npred-step

output trajectory ypred based on a provided predictive input
sequence upred. The objective, specified in (1a), is minimized
subject to the constraint delineated in (1c). The inclusion
of the slack variable σ ensures feasibility for L2-DeePC.
Meanwhile, regularization terms are introduced to enhance
predictions, especially beneficial when the system is prone
to noise or embodies nonlinear elements. For an in-depth
discussion and detailed insights, readers are directed to [23].

This paper introduces a data-driven MPC technique under
the DeePC framework that is recursively updated with the
most recent operational data. We term this approach recursive
DeePC and detail it in Algorithm 1.
Algorithm 1 Recursive DeePC
0) Retrieve some persistently excited past I/O data and build

the initial DeePC controller, such as (1).
1) Retrieve the recent L-step measurements and update the

Hankel matrix as:

H ←
[
H

[
yt−L:t−1

ut−L:t−1

]]
(2)

2) Retrieve the recent tinit-step measurements. Solve the
DeePC and apply the optimal input as ut = u∗

pred(1).
3) Pause until the subsequent sampling time, update t ←

t+ 1 and revert to step 1.
u∗
pred(1) represents the first optimal input in u∗

pred

In many applications, empirical evidence suggests that
DeePC benefits from larger quantities of I/O data beyond the
minimal requirement [4], [6]. Furthermore, research in [13]
establishes that infinite open-loop data can ensure consistent
prediction in DeePC methods with instrumental variables
for stochastic LTI systems. This insight can be broadened
to closed-loop data, leveraging techniques from SID [8]
and SPC [12]. Notably, by modifying (2) to incorporate a
forgetting factor or discard outdated data, Algorithm 1 can
be adapted for adaptive DeePC approaches such as those
detailed in [20], [21].

III. EFFICIENT RECURSIVE UPDATES IN THE DEEPC
FRAMEWORK

In this section, we introduce a more computationally
efficient version of Algorithm 1 when the DeePC used is
in some general form. This improved algorithm relies on
two primary components: (1) an equivalent low-dimensional
transformation of the DeePC in the general form leveraging
SVD, and (2) a fast SVD updating technique. The complete
methodology is concluded in Algorithm 3. To detail its
operation, we reference the L2-DeePC (1) as a demonstrative
example.

A. An equivalent low-dimensional transformation

For the first component of Algorithm 3, we describe
an equivalent low-dimensional transformation of a general
DeePC problem. This transformation is facilitated by the
SVD of the aggregated Hankel matrix, H:

H =
[
U1 U2

] [Σ 0
0 0

] [
V1 V2

]⊤
= U1ΣV

⊤
1

where Σ ∈ RrH ,rH and rH is the rank of H . A general
DeePC problem is defined as:
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Problem 1:
min
g,σ

upred,ypred

f1(upred, ypred, σ, V
⊤
1 g) + f2(V

⊤
2 g)

s.t. Hg =


yinit
ypred
uinit

upred

+ σ,

f3(ypred, upred, σ) ≤ 0

(3)

Here, functions f1(·), f2(·), and f3(·) are user-specified
and vary across different DeePC methodologies tailored for
diverse applications, which can cover the L2-DeePC and
various DeePC variants [23], [6], [20]. The aforementioned
transformation in a lower dimension is defined as:
Problem 2:

min
ḡ,σ

upred,ypred

f1(upred, ypred, σ, ḡ)

s.t. H̄ḡ =


yinit
ypred
uinit

upred

+ σ,

f3(ypred, upred, σ) ≤ 0

(4)

where H̄ := U1Σ, signifying the transformed version of the
Hankel matrix.

Lemma 2: Problem 1 and Problem 2 are equivalent. The
optimal values of ypred, upred for Problem 1 are also optimal
for Problem 2, and vice versa.

Proof: Problem 1 can change the decision variable g
by:

g̃ =

[
g̃1
g̃2

]
=

[
V ⊤
1 g

V ⊤
2 g

]
=

[
V1 V2

]⊤
g

because
[
V1 V2

]
is an orthogonal matrix [24]. Then be-

cause Hg = U1ΣV
⊤
1 g = H̄g̃1, the objects and constraints

in the new equivalent problem are separable with respect to
g̃1 and g̃2:

min
g̃,σ

upred,ypred

f1(upred, ypred, σ, g̃1) + f2(g̃2)

s.t. H̄g̃1 =


yinit
ypred
uinit

upred

+ σ,

f3(ypred, upred, σ) ≤ 0

Therefore, we can solve them separately by:
min
g̃1,σ

upred,ypred

f1(upred, ypred, σ, g̃1)

s.t. H̄g̃1 =


yinit
ypred
uinit

upred

+ σ,

f3(ypred, upred, σ) ≤ 0

min
g̃2

f2(g̃2)

By replacing g̃1 by ḡ in the first sub-problem above, we get
Problem 2.

Leveraging Lemma 2, we can deduce the low-dimensional

version of the L2-DeePC (1). This inference is drawn
from the relationship: ∥g∥22 = g⊤

[
V1 V2

] [
V1 V2

]⊤
g =

∥V1g∥22 + ∥V2g∥22:
min
ḡ,σ

upred,ypred

J(upred, ypred) + λσ∥σ∥22 + λg∥ḡ∥22

s.t. H̄ḡ =


yinit + σ
ypred
uinit

upred

 ,

ypred ∈ Y, upred ∈ U

(5)

Remark 1: In Problem 2, the decision variable ḡ, which
belongs to RrH , is independent of the columns of the Hankel
matrix. The authors in [3], [16] introduce the same SVD-
based transformation and establish the equivalence using
KKT conditions [16]. However, their study is limited to L2-
DeePC, which is a special case of the more general form of
DeePC (3) described in our study. .

B. Efficient SVD updates

In the preceding section, we established that the general-
form DeePC (3) can be converted into a more compact, low-
dimensional format (4) via SVD. Notably, the dimensionality
of the decision variable in (4) is governed solely by the rank
of the Hankel matrix H .

Expanding upon this, the current section introduces a rapid
SVD updating technique [25], [26]. This method obviates the
need for a complete SVD recalculation with each recursive
update (2). When the previous SVD components, specifically
U1 and Σ, are available and H undergoes an update as
per (2), Algorithm 2 can be leveraged to update the new
U1 and Σ.
Algorithm 2 Fast SVD updating
Given: Current SVD components: U1,Σ

1) Retrieve the column a to be added to H , i.e.
[
yt−L:t−1

ut−L:t−1

]
at time t. Compute r = rank(Σ).

2) If r < rowH , update U1, Σ by [25]:
Compute m = U⊤a, p = a− Um, Ra = ∥p∥2, P =
R−1

a p

Compute K =

[
Σ m
0 Ra

]
and its SVD: K = CΣ̄D⊤

If rank(Σ̄) == r:
U1 ←

[
U1 P

]
C(:, 1 : r), Σ← Σ̄(1 : r, 1 : r)

If rank(Σ̄) == r + 1:
U1 ←

[
U1 P

]
C, Σ← Σ̄

3) If r == rowH , update U1, Σ by [26]:
Compute z = U⊤

1 a
Compute eigendecomposition of Σ2 + zz⊤: CΣ̄C⊤

Update U1 ← U1C, Σ←
√
Σ̄

Lemma 3: Algorithm 2 calculates U1 and Σ identical to
the results obtained through the direct SVD of H following
each recursive update (2). It boasts a computational complex-
ity of O(rowHr2H) and a space requirement of O(rowHrH).

Proof: Proofs of equivalence for the conditions in
steps 2) and 3) of Algorithm 2 are provided in [25], [26],
which is omitted due to the limited space. All the matrix
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multiplications requiries a load of O(rowHr2H). In addition,
the SVD’s load in step 2) is O(r3H) (or O(r2H) due to the
special structure [25]), and the eigendecomposition’s load is
O(row3

H). Because rH < rowH for step 2) and rH = rowH

for step 3), the overall complexity is O(rowHr2H). Finally,
the matrices’ size directly determines the space requirement.

C. Conclusion of the algorithm
A computationally efficient recursive DeePC is summa-

rized in Algorithm 3. The general form of DeePC represented
in (3) undergoes a transformation into a low-dimensional
equivalent as outlined in (4), using SVD. Moreover, with
each successive update as indicated in (2), the new SVD
components are rapidly updated.
Algorithm 3 Efficient Recursive DeePC
0) Retrieve some persistently excited past I/O data. Con-

struct H and compute its SVD. Build the initial low-
dimensional DeePC controller based on the Problem 2,
such as (5).

1) Retrieve the recent L-step measurements. Update the
SVD components based on Algorithm 2 and update H̄ .

2) Retrieve the recent tinit-step measurements. Solve the
low-dimensional DeePC and apply the optimal input as
ut = u∗

pred(1).
3) Pause until the subsequent sampling time, update t ←

t+ 1 and revert to step 1.

Lemma 4: If the DeePC in the form of Problem 1 is
used in Algorithm 1, then Algorithm 1 and Algorithm 3 are
equivalent.

Proof: At the initial step, Problem 1 and Problem 2 are
respectively constructed in two Algorithms, which have been
proved to be equivalent in Lemma 2. After the first recursive
update (2), the new SVD components are exactly updated by
Algorithm 2 proved in Lemma 3. Therefore, Problem 1 and
Problem 2 are still equivalent by Lemma 2. The proof is then
completed by induction.

As a result, the total computational complexity depends
mainly on rowH and rH . Because rowH = (ninit +
npred)(nu + ny), and the decision variables ḡ ∈ RrH ,
upred ∈ Rnu(ninit+npred), ypred ∈ Rny(ninit+npred), σ ∈
RrowH

in Problem 1. Besides, the complexity of the fast
SVD updating method is proved in Lemma 3. Therefore, the
complexity is fixed after the DeePC’s parameter is settled
as rH ≤ rowH . It’s notable that the size of the original
recursive DeePC in Algorithm 1 relates to colH = T −
rowH + 1, which increases with the addition of more data.

The computational burden of Algorithm 3 is comparable
to the recursive SPC method [12]. The latter has a decision
variable in its sparse representation of size rowH , which can
recursive update using Recursive Least Square at a computa-
tional complexity of O(row2

H)[19]. In the next Section, we
will prove that SPC is equivalent to a specialized DeePC
belonging to the general-from DeePC (3), adaptable as well
by Algorithm 3.

Remark 2: Algorithm 3 offers extensions to other adap-
tive DeePC strategies, typified by references like [20], [21].

These strategies are applicable to slowly time-varying linear
systems or approximate dynamics of unknown nonlinear
systems across varied operating points. Other fast SVD
modifications, such as the integration of forgetting factors
and downdating [27], can be incorporated for extensions to
these adaptive methods (see Extended Version: Appendix C).

IV. AN EXTENSION TO DATA-DRIVEN METHODS
BASED-ON PSEUDOINVERSE

A pivotal strength of Algorithm 3 is its versatile nature,
rooted in its generic DeePC formulation. Beyond encom-
passing various DeePC variants [23], [6], [20], it holds
potential for extension to various data-driven methodologies
that utilize the Hankel matrix, such as simulation [28],
physics-based filters [29] and data-driven observers [30],
[31].

Among them, A group of researchers utilizes Pseudoin-
verse to achieve prediction or estimation [6], [28], [30],
[31]. For the purpose of this section, we will illustrate that
these Pseudoinverse-based methods can be generalized in the
form of Problem 1 using a specific data-driven prediction
formulation [6]. Next, we will demonstrate that Problem 1
can generalize SPC, which also employs Pseudoinverse and
Hankel matrices. Additionally, we present how to achieve
asymptotically consistent prediction for stochastic LTI sys-
tems through recursive data updates using Algorithm 3.

A. Comparison to Data-driven prediction

Given measured uinit, yinit and required upred, a data-
driven prediction method based on Pseudoinverse [6] is
formulated as:

ypred = Hy,predg

g =

[
Hy,init

Hu

]†  yinit
uinit

upred

 (6)

where the sub-Hankel matrices are derived from the original

Hankel matrix by Hy =

[
Hy,init

Hy,pred

]
. The matrix Hy,init is

of depth ninit and the depth of Hy,pred is the prediction
horizon npred such that ninit + npred = L.

Consider an optimization problem:
(ypred, g) = argmin

ypred,l,gl

∥gl∥22

s.t. Hgl =


yinit
ypred,l
uinit

upred

 (7)

Assumption 1: The problem (7) is feasible.
Lemma 5: Under Assumption 1, (7) computes the same

unique optimal solution as (6).
Proof: Consider a problem:

ypred = Hy,predg

g = argmin
gl

∥gl∥2

s.t.
[
Hy,init

Hu

]
gl =

 yinit
uinit

upred
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Under Assumption 1, the problem remains feasible. Given
that the Pseudoinverse offers a unique solution with the min-
imal L2-norm for least squares problems [32], this problem
yields the same prediction as (6). The proof concludes with
the observation that this problem and (7) can be equivalently
expressed by the same linear equations when applying the
KKT conditions.

By the fact ∥g∥22 = g⊤
[
V1 V2

] [
V1 V2

]⊤
g =

∥V1g∥22 + ∥V2g∥22 and adding an equality constraint so that
upred is equal to the required value, we can write (7) in the
form of Problem 1.

Remark 3: When the input sequence for Hu is persis-
tently excited, Assumption 1 is considered mild. Because
then the assumption is satisfied in noiseless conditions as
confirmed by Lemma 1. In the presence of noise, this
assumption also holds since Hankel matrices are almost
surely of full row rank. Alternatively, Extended Version: Ap-
pendix D presents some optimization formulations and their
low-dimensional equivalents, which are always feasible and
provide the same solution as (6). For other Pseudoinverse-
based data-driven methods [28], [30], [31], similar results
can be derived after little modification of (6).

B. Comparison to SPC

This section describes how to generalize SPC in the
form of Problem 1. In addition, Algorithm 3 helps to
achieve asymptotically consistent prediction by continuously
involving open-loop and closed-loop data online. The SPC
controller [9] is formulated as,

min
upred,ypred

J(upred, ypred)

s.t. ypred ∈ Y, upred ∈ U

ypred = K

 yinit
uinit

upred

 (8a)

K = Hy,pred

[
Hy,init

Hu

]†
(8b)

Based on the specific-form data-driven prediction (7), a
bi-level DeePC is defined as:

min
g,upred
ypred

J(upred, ypred)

s.t. ypred ∈ Y, upred ∈ U
(7)

(9)

Lemma 6: Under Assumption 1, SPC (8) and the
DeePC (9) are equivalent.

Proof: The only difference between the two controllers
is their prediction parts, i.e. (8a) and (8b), (7). The fact that
both predictions can be written in the same explicit form

finishes the proof: ypred = Hy,pred

[
Hy,init

Hu

]†  yinit
uinit

upred


Remark 4: A bi-level DeePC that is equivalent to the

SPC (8), without requiring any assumption, is detailed in
the Extended Version: Appendix E due to limited space. In
addition, some low-dimensional equivalents and an efficient
recursive SPC algorithm are introduced.

The analysis of consistent prediction is as follows. Con-
sider a stochastic LTI system defined in innovation form:

xt+1 = Axt +But +Ket

yt = Cxt +Dut + et
(10)

where K denotes the Kalman gain and ek is a zero-mean
white noise signal. The prediction ypred at time t is consistent
if its expectation is an unbiased estimation of the real output
sequence yreal [14], [8], i.e.

Ee(ypred − yreal) = 0

Assumption 2: The Kalman gain K in (10) ensures that
the matrix A −KC is strictly stable. The initial step ninit

is sufficiently large so that (A−KC)tinit ≈ 0.
Assumption 3: The input is quasi-stationary so that limits

of time averages of the input sequence exists.
Assumption 4: The input sequence {ui}Ti=1 for Hankel

matric Hu is persistently exciting of order L+ nx.
Lemma 7: Under Assumptions 2, 3 and 4, (7) constructed

by open-loop data provides a consistent prediction when
colH →∞.

Lemma 8: Assumptions 2, 3 and 4 stand. Assume that
D = 0 in the LTI system or the I/O data is collected by
feedback control with at least one sample time delay. Then
(7) with npred = 1 constructed by the closed-loop data
provides a consistent prediction when colH →∞

The proof of Lemmas 7 and 8 is elaborated in Appendix A.
Assumptions 2, 3 and 4 used therein also frequently emerge
in consistency analysis in the field of system identification,
as seen in [8], [9]. In addition, because Lemma 8 guarantees
asymptotically consistent prediction for (7) with closed-loop
data when setting npred = 1, one can successively apply (7)
with npred = 1 to achieve consistent multi-step output
prediction via:

∀i = 1, 2, . . . , npred :

(ypred(i), gi) = argmin
ypred,l,gl

∥gl∥22

s.t. Hg =


yinit(i : npred)
ypred(1 : i− 1)

ypred,l
uinit(i : npred)
upred(1 : i)


(11)

where ypred(i) represents the i−th output in ypred, and
ypred(i : j) captures the vector from the i-th to j−th outputs
within ypred (with similar notations applied elsewhere).
Similar setups have been validated in prior DeePC and SPC
studies [33], [12]. A new bi-level DeePC can be defined as:

min
g,upred
ypred

J(upred, ypred)

s.t. ypred ∈ Y, upred ∈ U
(11)

(12)

Notably, one can directly apply Algorithm 3 to recursively
update the bi-level DeePC (12). A tractable computation
method for this bi-level DeePC is to transform the lower-level
problem into linear constraints by KKT conditions. More
details can be referred to our previous work [20]. According
to Lemma 8, with an infinite length of closed-loop data,
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it’s feasible to obtain an unbiased output prediction for the
stochastic LTI system. Nonetheless, it’s important to note that
there may not be a monotonic improvement in prediction and
control performance throughout the update cycle.

In addition, one can adapt Algorithm 3 to update the
data-driven prediction online in the two bi-level DeePCs (9)
and (12) with data from other controllers. To achieve this,
the modification required for (11) (or (7)) is simply replacing
the DeePC in step 3) of Algorithm 2 with other closed-loop
controllers (or open-loop control signals).

V. SIMULATION

In this section, we evaluate the effectiveness of the
proposed efficient recursive DeePC methodology through
simulation studies. We utilize a discrete-time LTI system,
as detailed in [9], which models two circular plates cou-
pled with flexible shafts. The system’s matrices, conforming
to (10), are provided:

A =


4.4 1 0 0 0
−8.09 0 1 0 0
7.83 0 0 1 0
−4 0 0 0 1
0.86 0 0 0 0

 , B =


0.00098
0.01299
0.01859
0.0033
−0.00002

 ,K =


2.3
−6.64
7.515
−4.0146
0.86336


C =

[
1 0 0 0 0

]
, D = 0

During the simulation, the noise variance is set to var(et) =
0.1, and the input is restricted to |ut| ≤ 10. The optimization
problems in the following simulation are solved by the solver
QUADPROG in MATLAB with Intel Core i7-1165G7 2.80
GHz processor.

A. Validation of Algorithm 3

To initiate, a 200-step trajectory is generated with the input
defined as a zero-mean white noise signal, having var(ut) =
1. Employing this initial trajectory, a L2-DeePC (1) is es-
tablished, targeting the objective J(upred, ypred) = ∥ypred−
ref∥22+0.001∥upred∥22. Initially, the reference is set at 10 for
1000 steps and subsequently adjusted to 0 for the ensuing
1000 steps. The parameters are designated as λσ = 106,
λg = 104, and ninit = npred = 10. These parameters aren’t
meticulously tuned, as our primary interest lies in evaluating
the efficiency of Algorithm 3. The L2-DeePC controls the
system and is recursively updated by Algorithm 1. For
comparative analysis, an identical procedure is employed
utilizing Algorithm 3, integrated with the equivalent low-
dimensional L2-DeePC, as delineated in (5).

Table I provides the statistical results from 10 Monte Carlo
simulations across different noise scenarios. Both algorithms
yield almost identical input and output signals, with only
slight numerical errors, Algorithm 3 proves to be faster in
execution than Algorithm 1. For a closer look, Figure 1
shows the resulting trajectories for a specific noise scenario.
The input and output trajectories validate the equivalence
between the two algorithms. Additionally, we analyze the
computational time required for each recursive update and
optimization for both algorithms. We notice that the time for
Algorithm 1 increases superlinearly as more data are added,
whereas the time for Algorithm 3 stays relatively steady,
highlighting its efficiency.

TABLE I: Statistical results of 10 Monte Carlo runs: the differences
of input (eu = |u1 − u3|) and output (ey = |y1 − y3|)), the
computational time of each recursive step (time), where ·1 and
·3 respectively indicate the data from Algorithm 1 and 3.

Average eu Average ey Average time1 Average time3

6.7× 10−12 5.2× 10−12 0.1557 [s] 0.0026 [s]

Fig. 1: Comparison of Algorithm 1 and Algorithm 3.

B. Comparison to SPC

This section evaluates the asymptotic consistency of the
data-driven prediction in equations (9) and (12) by using
Algorithm 3. We will refer them to as DDP1 and DDP2 for
brevity. The equivalence between (9) and SPC (8) is also
tested. Given that all the data-driven prediction methods and
the ground truth (see the Extended Version: Appendix B) can
be expressed in the matrix form:
ypred = Ky,inityinit +Ku,inituinit +Ku,predupred (13)

, consistency is tested by comparing discrepancies among the
involved matrices. In this study, we set ninit = npred = 50,
with a large ninit ensuring compliance with Assumption 2

Firstly, an open-loop trajectory spanning 10000 steps is
generated using an input characterized as a zero-mean white
noise signal with a variance var(ut) = 1. DPP1, DDP2, and
SPC are initialized using 150 steps to assemble the Hankel
matrix. They are then efficiently updated in a recursive
manner, leveraging a variant of Algorithm 3 as outlined at the
end of Section IV-B. Figure 2 depicts average outcomes from
10 Monte Carlo simulations, wherein the deviation from the
ground truth is calculated at each iteration. As more open-
loop data are incorporated into the three prediction methods,
the matrix discrepancies consistently diminish, reinforcing
their validity. Furthermore, the equivalence between SPC and
DPP1 is validated.

The subsequent experiment employs a 25000-step closed-
loop trajectory, controlled by a static DeePC constructed
from the open-loop trajectory of the previous test. Average
results over 10 random noise signal realisations are show-
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cased in Figure 3. The matrix discrepancies from the ground
truth, as observed in the SPC and DDP1, initially decline
but later stabilize. Conversely, DDP2 continually exhibits a
reduction in matrix differences as it integrates more closed-
loop data. However, it’s notable that when the Hankel matrix
lacks sufficient data, matrix discrepancies in DDP2 exceed
others’, and its improvement rate lags behind that observed
in Figure 2. Future work will focus on optimizing the closed-
loop controller design to expedite improvements in DDP2.

Fig. 2: Consisteny analysis by open-loop data. SPC: from (8a)
and (8b); DDP1: from (9); DDP2: from (12). Kground

· indicates the
matrix from the ground truth.

Fig. 3: Consisteny analysis by closed-loop data

VI. CONCLUSION

In conclusion, this paper presents a novel recursive updat-
ing algorithm for DeePC to efficiently handle computational
challenges. The algorithm utilizes SVD for low-dimensional
transformations and fast updates. It is flexible, accommodat-
ing various data-driven methods that use Pseudoinverse and
Hankel matrices, as demonstrated through a comparison to
Subspace Predictive Control.

APPENDIX

A. Proofs of Lemmas 7 and 8

First, we derive a relationship from the stochastic LTI
system (10). By propagating the dynamics from time t, we
can formulate the next npred-step output as:

yreal = Γxt +K1upred +K2epred (14)
where epred := et:t+npred−1 and

Γ =
[
C⊤ (CA)⊤ (CA2)⊤ · · · (CAnpred−1)⊤

]⊤
,

K1 =


D 0 0 · · · 0
CB D 0 · · · 0
CAB CB D · · · 0

· · · · · ·
. . . . . .

...
CAnpred−2B CAnpred−3B · · · CB D

 ,

K2 =


I 0 0 · · · 0

CK I 0 · · · 0
CAK CB I · · · 0

· · · · · ·
. . . . . .

...
CAnpred−2K CAnpred−3K · · · CK I


By replacing et = yt − Cxt −Dut in the state propagation
in (10), a predictor-form state-space model can be formulated
as: xt+1 = Ãxt + B̃ut +Kyt, yt = Cxt +Dut + et, where
Ã = A−KC and B̃ = B −KD. From this model, we can
find a relation between xt and xt−ninit

by:
xt = ÃPxt−ninit +K3uinit +K4yinit

By replacing the above equation in (14), we can find:

yreal =
[
ΓK4 ΓK3 K1

]  yinit
uinit

upred


+ ÃPxt−ninit

+K2epred

(15)

The above linear relation can be extended to the Hankel
matrices Hu, Hy by

Hy,pred =
[
ΓK4 ΓK3 K1

] [Hy,init

Hu

]
+ ÃPX−ninit

+K2He,pred

(16)

where He,pred represents the prediction part in He, sim-
ilar to the definition of Hy,pred. Besides, X−ninit

:=[
x1−ninit

x2−ninit
· · · xT−L+1−ninit

]
, where the time

corresponds to that of {ui}Ti=1 and {yi}Ti=1 for constructing
Hu and Hy .

Proof: [For Lemma 7] The data-driven predic-
tion (7) can be written in the explicit form: ypred =

Hy,predZ
†

 yinit
uinit

upred

 by defining Z :=

[
Hy,init

Hu

]
for sim-
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plicity. It can be rewritten as

ypred =
1

T
Hy,predZ

⊤(
1

T
ZZ⊤)−1

 yinit
uinit

upred

 (17)

under Assumption 4, which almost surely ensures that the
inverse exists for stochastic LTI systems. Besides, Assump-
tion 3 ensures the existence of matrix correlation in (17).

By replacing Hy,pred by (16) to (17), we can find the
following result:

lim
T→∞

1

T
Hy,predZ

⊤(
1

T
ZZ⊤)−1

=
[
ΓK3 K1 ΓK4

]
+

lim
T→∞

1

T
(ÃPX−ninit +K2He,pred)Z

⊤(
1

T
ZZ⊤)−1

=
[
ΓK3 K1 ΓK4

]
(18)

where the latter term in the second equation vanishes due
to Assumption 2 and the lack of correlation between the
ut and et in open-loop data. Referring to (15), and (18)
and Assumption 2, we can demonstrate consistency in the
prediction made by (17) as T →∞ by:

Ee(ypred − yreal) = Ee(Ã
Pxt−ninit +K2epred) = 0

Proof: [For Lemma 8] The proof is very similar to
the one for For Lemma 7. The only difference is that
limT→∞

1
T K2He,pred)Z

⊤ ̸= 0 in general for closed-loop
data. However, under the specific setup, i.e. D = 0 in
the LTI system or the I/O data is collected by feedback
control with at least one sample time delay, we again have
limT→∞

1
T K2He,pred)Z

⊤ = 0.
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