
  

 

Abstract— Exact time-dependent reachable sets for dynamic 

control systems are natural control theory extensions of the 

exact solutions of Cauchy problem for differential equations. 

The reachable sets are important in many applications, 

including optimal control, when analytical expressions are 

possible. The extensions are usually based on differential-

geometric approaches that enable effective methods of analysis 

and design of nonlinear finite-dimensional control systems. 

Although a theoretical development for infinite-dimensional 

systems, including PDEs, requires significantly more advanced 

mathematics, the analytical technique is of a comparable level 

of complexity to the finite-dimensional case. The purpose of this 

paper is to present a set of examples illustrating techniques of 

obtaining exact analytical expressions of the reachable sets for 

important classes of linear and nonlinear PDEs: 1-st order, 

hyperbolic, and parabolic. 

 

I. INTRODUCTION 

Exact time dependent reachable set is a natural control 
theory extension of the exact solution of Cauchy (initial 
value) problem for differential equations. The construction of 
reachable sets utilizes a differential-geometric approach. A 
brief survey [Krener, J. (2014)] reviews the concepts and 
theorems of differential geometry for control systems in 
finite-dimensional spaces. Isidori’s book [Isidori, A. (1995)] 
provides a comprehensive and rigorous treatment of the topic 
with many applications, including feedback linearization. An 
alternative approach is presented in [Agrachev, A. and 
Sachov, Yu. (2004)]. Ref. [Schatler, H. and Ledzewick, U. 
2012] describes applications of Lie algebras in optimal 
control. 

Differential-geometric approach for infinite-dimensional 
control systems, including PDEs, is less developed, however. 
In fact, not all required theorems of finite dimensional 
differential geometry can be extended to Banach spaces, 
especially for systems governed by PDEs, i.e. non-continuous 
operators [Coron, J-M. (2007)]. There are fundamental 
reasons for this situation discussed in [Arnold, V. (2004)]. 

However, a proper limited extension applicable to some 
important classes of control systems was developed by P. 
Dudnikov and S. Samborskii [Dudnikov, P. and Samborskii, 
S. (1980)], [Samborskii, S. (1983)]. 

The theorem of Rashevski-Chow [Rashevski, P. (1938)], 
[Chow, W. (1939)], [Krener, J. (1974)], [Coron, J-M. (2007), 
pp. 134-135] is a central result that provides a criterion for 
complete controllability of symmetric (or driftless) finite-
dimensional control systems. This theorem was extended to 
Banach spaces in [Dudnikov, P. and Samborskii, S. (1980)] 
and provided the necessary background for development of a 
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differential-geometric approach to control systems described 
by symmetrical PDEs [Samborskii, S. (1983)], and 
nonsymmetrical PDEs [Belikov, S. and Samborskii, S. 
(1983)], [Belikov, S. (1988)], [Belikov, S. (1981)].  

In the last two decades there were many publications 
studying controllability of particular PDEs with high 
symmetries, e.g. [Coron, J-M. (2007)], [Cerpa, E. and 
Crepean, E. (2009)]. [Agrachev, A. and Sachov, Yu, (2005)] 
and [Shirikyan, A. (2006)] used Lie brackets to 
controllability study for Navier-Stokes equations. 

 Results of these publications are usually about local, 
sometimes global, controllability. However, the author did 
not find publications about the construction of exact 
analytical expressions of reachable sets for non-controllable 
PDEs, which is the main topic of this paper. 

For brevity, we concentrate on examples of analytical 
techniques rather than a detailed rigorous formulation 
(though we provide references for the latter). 

Section II of this paper provides an informal background 
including main limitations necessary for the construction. We 
assume the reader is familiar with differential geometry 
applied to control systems - [Isidori, A. (1995)]), [Coron, J-
M. (2007)], and PDE theory [Evans, C. (2010)], especially 
obtaining exact solutions of initial value problems. 

Section III (the central section of this paper) presents 
examples that demonstrate specifics of infinite-dimensional 
techniques as well as their essential differences from finite-
dimensional ones. 

Applications are out of scope of this paper; we 
concentrate on analytical technique. Some practical 
modelling from first principles can be found in [Corriou, J-P. 
(2018)] and [Glowinski, R., Lions, J-L. and He, J. (2008)]. 
The latter classical reference provides numerical approach to 
controllability based on existence of terminal control 
problems for PDEs. It covers convex duality, space-time 
discretization of PDEs, optimization algorithms, etc. that are 
also applicable to the systems described in this paper when 
the terminal target belongs to the reachability set. 

In contrast to publications about controllability, we 
consider examples of constructing exact reachable sets, 
mainly for non-controllable systems. Examples are the main 
contribution of the paper. According to [Arnold, V. (2004)], 
“for a student the content of mathematical theory is never 
larger than the set of examples that are thoroughly 
understood.” 

Examples include a first order PDE as well as a wave and 
a heat equation with control. An example of nonlinear 
continuous operator (y2) in L2[0,1] illustrates an interesting 
connection with classical approximation theory [Achiezer, N. 
(2003)]. Our hope is that these examples will narrow the gap 
between mathematical theory and technical applications. 
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II. BACKGROUND 

A. Notations and Assumptions 

We consider infinite dimensional nonsymmetrical 
systems (which become symmetrical for f=0) with m inputs 
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where ui(t) are piecewise-continuous scalar controls; state y(t) 
takes values in Banach space B; and f, gi are maps into B. 

The most important assumption is that f may not be 
continuous (and can be a differential operator); and the most 
important limitation is that gi must be continuous (bounded in 
linear case). 

An even more restrictive assumption is that iterative Lie 
brackets of f and gi must be continuous maps. This last 
assumption, however, holds in several important situations: 
a) when f is continuous; b) when f is unbounded linear and gi 
are constant vectors in B (linear systems, including PDEs). 

There are many other cases with non-continuous f where this 
assumption holds, including a differential operator f and 
integral operators gi. Examples below will illustrate some 
cases. 

The mathematical constructions necessary for rigorous 
formulation of the theorems could be found in [Dudnikov, P. 
and Samborskii, S. (1980)], [Samborskii, S. (1983)], 
[Belikov, S. and Samborskii, S. (1983)], [Belikov, S. (1988)], 
[Belikov, S. (1981)]. 

The main tool for these constructions is a definition of a 
Banach space B1 (usually domain of f) that is dense in B, 

with a continuous map f1: B1B.  

Kuen book [Kuen, C. (2019)] provides an introductory 
PDE dynamics background with references to [Evans, C. 
(2010)] for rigorous proofs. Lions’s book [Lions, J-L. (1971)] 
provides rigorous control-specific treatment with Sobolev’s 
spaces and describes numerous examples. 

As a simple example, for the differential operator f=/x 

in the space of continuous functions C, the map f1:C1C is 
continuous, where C1 is the space of differentiable functions. 

We also use the following standard definitions, [Isidori, 
A. (1995)], [Coron, J-M. (2007)], extended to Banach spaces 
as suggested in [Samborskii, S. (1983)]: 

Lie bracket [f, g]: 

      yfDgygDfygf  ,                          (2) 

where D is Fréchet derivative, and 
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(A rigorous formulation of the sets of densely embedded 
Banach spaces, where Lie algebras of operators can be 
rigorously defined, is described in [Samborskii, S. (1983)]). 

Remark 1. Definition (2) differs from traditional finite 
dimensional definition of Lie bracket [Isidori, A. (1995)] by a 
minus sign. This allows reducing numbers of minus signs in 
derivations, and is consistent with controllability matrix (B, 

AB,…,An-1B) for linear control systems, where [Ay, B]=AB 

rather than AB. 

We also define the following Lie algebras [Samborskii, S. 
(1983)], [ Belikov, S. and Samborskii, S. (1983)]: 

    iiij fmjg   ,,la,..1:la 10
           (4) 

where  la is the closure of the Lie algebra generated by the 

set in the {}, and 

 ...1,0,..1:adlaL  nmigi

n

f
                      (5) 

Definitions of finite-dimensional differential-geometric 

terms, e.g. Lie algebra, with applications to control systems 
can be found in [Isidori, A. (1995)], and some applications to 
PDE controllability examples –in [Coron, J-M. (2007)]. 

We also assume a technical conditions of [Belikov, S. and 
Samborskii, S. (1983)]. These conditions are usually 
satisfied.  

In contrast to controllability conditions, our focus is on 
analytical expressions of exact reachable sets for non-
controllable systems. 

 

B. Results Needed for Model Examples of Section III 

In the examples of Section III we illustrate analytical 

expressions of reachable sets  Ty0
  for system (1) that is the 

closure of the points in space B that can be reached at time T 
by the solutions of Eq. (1). 

Unfortunately, the exact reachable set can be analytically 
constructed only for some specific classes of control systems 
with certain symmetries (this is in fact also the case for finite 
dimensions). Formulation of the verifiable sufficient 
conditions that a control system belongs to one of the classes 
is very important (see Statement below). 

Hirschorn’s condition is an easily verifiable sufficient 
condition formulated in [Hirschorn, R. (1976)] for finite-
dimensional systems: 

  00L,                              (6) 

The following sufficient condition was derived in 
[Belikov, S. and Samborskii, S. (1983)] for infinite-, as well 
as finite-, dimensional systems: 

   ,...1,0,,,:  iggfg ii
              (7) 

It is also proved in [Belikov, S. and Samborskii, S. 
(1983)] that condition (7) is less restrictive than (6). This will 
be illustrated in the examples. 

We now describe the construction of the reachable set 
assuming that condition (7) is satisfied along with the 
technical conditions [Belikov, S. and Samborskii, S. (1983)], 
[Belikov, S. (1981)] outlined in Section II.A. To formulate 
these conditions, we need a few additional definitions. 

Let St be the semigroup associated with the operator f (see 
[Krein, S. (1971), p. 25], [Coron, J-M. (2007), pp. 373-377], 
[Evans, C. (2010), pp. 433-445] for linear f; and [Evans, C. 
(2010), pp. 565-570] for nonlinear f), i.e. St(y0) is the solution 
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of Eq. (1) with initial condition y0 and ui(t)0. For L let us 

define the vector field =StB by the following: 

     t

def

tyt SySyDS  :B                   (8) 

The technical assumption of the existence of  is usually 
satisfied. Let us use notation EAy for the integral manifold of 
the Lie algebra A (i.e. infinite-dimensional extension of 
involutive distribution [Isidori, A. (1995)] according to 
[Samborskii, S. (1983)]) that contains y, and assume another, 
usually satisfiable, technical condition: 

yy tt SS LLLL
EEE                             (9) 

We also need the following notation LT: 

  TtStT ,0:LlaL                              (10)  

Statement. If condition (7) is satisfied along with 
technical conditions of [Belikov, S. and Samborskii, S. 
(1983)] and (8)-(9), then  

  0

L
E

0
yST Ty

T                               (11) 

We do not call this important statement a theorem 
because it is an informal non-rigorous summary of the 
theorems rigorously formulated and proved in [Samborskii, 
S. (1983)], [Belikov, S. and Samborskii, S. (1983)], [Belikov, 
S. (1981)]. This summary, however, is sufficient for 
examples in Section III. 

Remark 2. Rigorous formulation requires advanced 
mathematical constructions that cannot be reproduced here 
due to space limitation. Section II.A, however, provides an 
overview and references to reproduce rigorous formulations 
and proofs. See also Remark 3. 

Unfortunately, statement (11) and the related rigorous 
theorems ([Samborskii, S. (1983)], [Belikov, S. and 
Samborskii, S. (1983)], [Belikov, S. (1981)]) are far from 
being the “end of the story”. It gives the proven framework, 
but in any particular example one needs to derive the related 
Lie algebras; to prove, if possible, condition (6) or (7); and 
finally, to find analytical solutions for Eq. (1) without 
control, and for ODEs describing the vector fields of Lie 
algebra LT. 

Examples presented in this paper demonstrate ideas and 
techniques to overcome these challenges. Certainly, similar 
to the exact solution of the Cauchy problem, this may not be 
possible for “most” of systems (1). However, the symmetry 
of the “unique” systems, where it is possible, indicate their 
beauty and importance [Stewart, I. (2007)]. In theoretical 
physics and engineering the importance of equations that 
could be solved analytically was well justified and drove 
scientific research for nearly four centuries (even before 
rigorous justification; in fact, using infinitesimals as numbers 
was justified in [Robinson, A. (1996)]). Collection of control 
systems with analytical expressions for reachable sets may be 
equally important. Classical results of mathematical physics 
[Evans, C. (2010)] remain essential for control theory as well. 

Remark 3. For finite dimensional systems L=LT, and 
construction of ELy, based on Frobenius theorem, is described 
in [Isidori, A. (1995)]. A formal procedure for PDE systems 
is essentially the same using Fréchet derivative. 

However, rigorous constructions are highly nontrivial 
because, by contrast with ODE, “in theory of PDE the 
difficulties of communicative algebraic geometry are 
inextricably bound up with noncommunicative differential 
algebra, in addition to which the topological and analytical 
problems that arise are profoundly nontrivial” [Arnold, V. 
(2004)]. 

There are also serious limitations outlined in Section II.A. 
Fortunately, while these nontrivial constructions are essential 
for rigorous formulations of general results (see Section II.A 
and Remark 2), they do not prevent applications of the 
analytical techniques, which we illustrate with examples 
below. 

Simplest Illustrative Example. Let us illustrate the 
statement on the simplest linear first order PDE:  
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defined on the loop S=[0,1]mod1, and    SLty 2,  . 

Assume      SLSCCp 20 ,0    , <1, i.e. it is infinitely 

differentiable and is equal to zero outside the interval [0,]. 
The semigroup St is    txyxySt  00

;   xpsp0  ; 

    xpxpx  ,/ . In this example LLT. Indeed, 

   ..1,0:spL  kxp k ; 

   ..1,0,0:spL  kTxp k

T  and 

    TxyxyT LE
L

 . 

Condition (6) is always satisfied for linear systems. Then  

        ..1,0,0:sp00
 kTxpTxyT k

xy   

In this example LT ≠ L. As the result, the system may be 

controllable for T≥1−, but is not controllable for T<1− 

(because    1,0  xTTxp k  ). 

Remark 4. For finite-dimensional systems LT=L. The 
difference between LT and L is an important specific feature 
of some infinite-dimensional systems that will be illustrated 
in the following examples. 

“Counter example”. Let us consider an example where 
formula (11) does not take place (in this system condition (7) 
is not satisfied). 

We consider control system (1) in R2 with m=1 [Coron, J-
M. (2007), p. 131]: 

 tuyyy  2

2

21 ,   

Here    Tyyf 0,2

2 ,    Tyg 1,01  ,  1

__

0 sp g . 

Calculating the Lie brackets, we get 

      Tyygfyg 0,2, 212  ,       Tyggyg 0,2, 213  , 

  2

31

__

1 R,sp  gg . However, the system is not 

controllable. Indeed, it cannot be moved in direction g3 (i.e. 

21 y ) because 02

21  yy . 

The reason of possibility of the “contradiction” is that 
condition (7) is not satisfied: 
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         TT
gggf 1,0spspA0,2,,

__

1

__

011  . 

According to the Statement, this “contradiction” cannot 
take place if (7) is satisfied. 

III. MODEL EXAMPLES 

Before presenting examples of infinite-dimensional systems 

we illustrate the concepts on a finite-dimensional one. This 

will also help to appreciate the difference between finite- 

and infinite- dimensional techniques. An important 

technique of verifying condition (6) or (7) for finite-

dimensional systems is to compare dimensions of iterated 

Lie algebras, while in infinite-dimensional cases specific 

functional-analytical approaches are required. Infinite-

dimensional systems may also possess specific properties 

that are not possible in finite dimensions (see Remarks 3-4). 

A. Finite dimensional nonlinear non-controllable system 

In this section we demonstrate a construction of an exact 
reachable set for a nonlinear non-controllable finite-
dimensional system. 

Let us consider system (1) in R4 with m=2 and 

   Tyyyyyyyf 432221 ,,,0                   (12) 

       TT
yyygyyg 11211 ,,0,1;0,0,,0                    (13) 

Calculating the Lie brackets, we get: 

           0,,;0,0,1,0, 3231213  ggggyggyg
T       (14) 

We conclude from (13)-(14) that 

    

(15) 

Continuing calculations, we get: 

      
      

      T

T

T

yygfyg

yygfyg

yyyygfyg

1,1,,0,

0,0,,0,

,,,0,

136

225

11

2

114






                 (16) 

We conclude from (12)-(16) that 

         (17) 

We now show that dim L = 3 and 

     0:HH,L 43

4

1  yyRyyy                (18) 

Assertion (18) follows from a stronger assertion 

   0:H:L 43

44  yyRyRgg              (19) 

To prove (19) we observe that   H: 4

0  Rgg and, 

thus, need to prove that 
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Let   H4 Rg  and consider 
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and Dg has the following structure 
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with arbitrary first two rows and the fourth row is a negation 

of the third (α is an arbitrary function). Then H4 RDg
y

 

and 

    0:H, 43

44  yyRyRgf                (24) 

Similar way, if vector fields c1 and c2 map R4 to H, their 
Lie bracket also possesses this property, and this concludes 
the proof of (20) and, thus, the assertion (18). 

As    yy 1L  , the sufficient condition (7) should be 

verified only for i=0. The condition is satisfied 
because      0,,, 362514  gggggg . Sufficient condition 

(6), however, is not satisfied. Indeed, L4 g , 
02 g , but 

    Tyygg 1,1,2,0, 124  and   024 , gg because dimA0=2 and 

 

Thus, the sufficient condition (7) is satisfied and all 
operators are continuous (as is usually the case for finite-
dimensional systems), and 
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where St(y(0)) is the solution of the following system of 
ODEs 
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Then finally 

    T

y eyyyyRyT 403043

4 :
0

           (25) 

B. f is a continuous operator in L2[0,1] 

This example illustrates interesting features of infinite-
dimensional systems (1) even with continuous operator f. Let 
us consider the following system in L2([0,1]): 
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This system with ui0 does not generate a continuous 
semigroup of operators S(t). The solution of the equation 

  0

2 0, yyyy   is    000 1/ tyyytS  , and for positive y0 it 

is defined and satisfies a semigroup property only for t1/y0, 
i.e. 

        021021

1

021210 ::0,0 ytStSyttSytttty   . 

This property allows us to construct reachable sets / 
controllability for small time. 

Let by  k  denote the operator (vector field)  

      kk
xyxy  :  

Calculating Lie brackets, we have  

               xyxxylxxyxxykxxyxx knlmlmknlmkn   11,

i.e. 

           xyxlkxyxx lkmnlmkn 1,              (27) 

Using (27) let us calculate  

   ,...2,1:sp0, 2
__

0

22  ixxx
iji                (28) 

       xyxxyx
ii

 222
2, ,      

jiji

xxyxx 2222 ,  ,  

       xyxxyx
jiji

  22222
2, , 

     
kjikji

xxyxx 222222 2,   .  

Observing that  











N

l

l

l

l N
1

,...2,1;1,0:2  is the set of 

all even positive numbers, we conclude that  

  ,...2,1,:,sp 22
__

1  jixx ji                  (29) 

According to the Muntz’s theorem [Achiezer, N. (2003), 
pp. 43-46], the system  ip

x  is closed in L2([0,1]) if and only 

if   






1

1

i

ip . Using this result we conclude that 

A1=L2([0,1]), (because   






1

1
2

i

i ). Thus, sufficient 

condition (7) should be verified only for 

 ,...2,1:sp 2
__

0  ix
i : 

             0

222222 1

2,2,, 
iiiii

xxyxxxyxx     

(30)  

Equation (30) shows that (7) is satisfied. Condition (6), 
however, is not satisfied. Indeed,   L1

2 x , 

0

24 2

 xx , but       0

642 ,  xxyxx . 

We verified that sufficient condition (7) is satisfied and 
L= L2([0,1]). This proves small time controllability of system 
(26). 

C. First Order PDE 

Applications of ODEs are often illustrated in textbooks by 
simplified ecological models [Arnold, V. (1992)], [Taubes, 

C. (2000)]. In this example we add a spatial component to 
one of the models. Chemical interpretation is also possible. 

Let us consider a control problem for some biological 
substance (e.g. a school of fish) that slowly moves along a 
closed loop S. Control actions are applied at certain spatial 
locations. 

Let y(t, x) be the density of the substance at time t and 

spatial location x. Let 1(x) be the natural death rate at 

position x, and 2(x) is the rate of outcome (fishing). Quantity 

(x)= 1(x)+ 2(x) is the total death rate at position x. This 
quantity may significantly depend on x, e.g. if the natural 
death or fishing occurred at certain spatial locations. 

Let the birth rate u(t)p(x) has a spatial shape p(x) where 
its magnitude can be controlled by u(t), e.g. by regulated food 
supply. u(t) can be positive or negative, (negative means 
additional outcome). 

With these assumptions and with the speed of motion 
equal to one, the process can be described by the following 
first order PDE: 

   
         xtyxptuxtyx

x

xty

t

xty
,,

,,










         (31) 

We assume y(t,x)L2(S), and initial condition is 

   xyxy 0,0                                 (32) 

 Let us formulate a terminal control problem of achieving 

a desired density  xŷ  at the time t=T, e. g. 

     xyxyxTy 0
ˆ,   at T1 year to keep a sustainable 

population.  

A necessary condition of existence of the solution of this 
problem is that 

       Txy xy0
ˆ                               (33) 

We have   y
x

y
yf 




  ,   ypyg 1

. 

Calculating Lie brackets, obtain:     ygfyg 12 , = 

 
  



































 yp

x

y
pyp

x

yp
 yp  . 

We can conclude from this derivation that 

   ypy 
__

0 sp ,     ,...2,1,0:spL
__

 kypy k , and 

  0L, 0  , i.e. sufficient condition (6) is satisfied. 

Solution of initial value problem (31), (32) with u(t)0 is 

     













 

t

dtxtxyxty
0

0 exp,   

Then finally, according to (11), 

     TxyTxy 00

 

       
















 
T

k TkxpdTx
0

__

,0,...;1,0:spexp 
     (34) 

372



  

If the desirable state belongs to the reachable set, 

    Txy xy0
ˆ  , described by (34), then an approximate 

solution to the control problem exists.  Otherwise, parameters 
should be changed, e.g. the rate of fishing should be 
decreased.  

The formula for the solution of the Cauchy problem 
(31),(32), that can be obtained by method of characteristics 
[Arnold, V. (1992)], is the following: 

   
       




TT

dtxpudtx

eetxyxty 00

0,


 

 and if     Txy xy0
ˆ  , control u(t) can be found from the 

following equation that must hold   00  Txyx  

      

T

xTfdTxpu
0

,  

where  

 
 

 
    0,

ˆ
ln, 0

00




  TxyxdTx
Txy

xy
xTf

T

  

It is a linear Fredholm integral equation of the first kind. Its 

regularization can be achieved by minimizing a certain 

functional   uF , e.g. 

  min
0


T

dttu  

(u(t) can be positive or negative –negative means additional 

outcome that brings additional profit) with constraints 

        0,, 0

0

 TxyxxTfdTxpu

T

  

and regularization parameter ε. It is a linear programming 

problem. Additional constraints on u can be also added. 

 

D. Hyperbolic PDE 

Let us consider hyperbolic PDE control system in L2(R): 

   
     xtuxth

x

xty

t

xty










,

,,
2

2

2

2

             35) 

with initial conditions 

       xzxyxyxy t 00 ,0,,0                  (36) 

and write it as 

 
 

   
     

 

































00,1

,
,,

,
,

2

2

t
t

t

xtuxth
x

xty

t

xtz

xtz
t

xty


                  (37) 

Remark 5. The artificial last equation in (37) is necessary 

to formally make the system time-invariant of type (1). Here 

t is both time as well as artificial space variable (we do not 

make special notation, e.g. t). 

In (37):  

   

































0

0

,,,

1

/,, 1

22 tzyghxy

z

tzyf
           (38) 

and 

 
 



















000

/,0/

010
22

,,
txthxDf

tzy

        
 


















































0

0

0

0

000

/,0/

010

,,,,, 22

12

x
xtxthxtzygftzyg




      
 

 

















































0

0

0

0

000

/,0/

010

,,,,, 22

23
x

x

txthxtzygftzyg 
  

We can conclude from these calculations that 

   





























0

0

sp
__

0
xy  , 

 

   
   


















































 ,...2,1,0:

0

0

,

0

0spL
2

2

__

kx
x

y
k

k




, [A0,L]=0      (39) 

Thus, sufficient condition (6) is satisfied.  

Using d’Alembert’s formula [Evans, C. (2010): (8) on p. 

68] for initial value problem for a one-dimensional wave 

equation and formula for solution of a nonhomogeneous 

problem with zero initial values (     0,0,0,0  xyxy t
) 

[Evans, C. (2010): (43) on p. 81]: 

   






sx

sx

t

h dssthdxty ,
2

1
,

0


 

we obtain the following expression for the reachable set: 

  
 

  
















Tth

h

zy txty

xTy
T

/,

,

0,0

+ 

     

       

















 


TxzTxzTxyTxy

dzTxyTxy

T

T

0000

000

2

1  +           (40) 

     
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     
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  














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
































 
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,
sp 22
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
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E. Parabolic PDE 

Let us consider bilinear parabolic PDE control system in 
L2(S), where S is a unit circle: 

   
     
















dzztyzxtu
x

xty
v

t

xty
,,K

,,
2

2
2          (41) 

where 

      



M

m

mm lzkxmblzkxma
a

zx
1

0 sincos
2

,K     (42) 

with initial condition 

     





1

0
0 sincos

2
,0

j

jj jxjxxyxy 
          (43) 
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Solution of the initial value problem for (41)-(43) with 

u(t)0 is 

     





1

220 sincosexp
2

,
j

jj jxjxtjvxty 
       (44) 

Let us explore the Lie algebras associated with system 
(41): 

  
 

      












dzzyzxxyg
x

xy
xyf ,K; 12

2

         (45) 

       
 

   
 



























dz
z
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zxzy

x

zx
xygfxyg

2

2

2

2

12 ,K
,K

,

   
 


























dzzy
z

zx

x

zx
2

2

2

2 ,K,K
   









dzzyzx,K1
, 

where  

        



M

m

mm lzkxmblzkxmaklmzx
1

222

1 sincos,K  

Continuing similar way we get 

        


 





dzzyzxgfxyg iii ,K, 11
, i=2,3, …, 

where 

         



M

m

mm

i

i lzkxmblzkxmaklmzx
1

222 sincos,K

, i=0,1,2,… Let us consider two cases: 

Case 1. lk  . In this case   0, 1 gf ,  1

__

0 spL g , and 

   xTyTy ,EL

0
 , 

where y(T,x) is calculated by (44), and 

    RtxtYxy  :,EL , where Y(t,x) is the solution of the 

following initial value problem: 

 
       xTyxYdzztYzx

t

xtY
,,0,,,K

,












        (46) 

Eq. (46) is equivalent to finite system of linear ODEs 

because the kernel K defined by (42) is a linear combination 

of 2m+1 basis functions. 

We present derivation for the case k1, l1. In this case the 

integral operator in (41) is a convolution. 

We have from (44) 

   





1

0 sincos
2

,
j

jj

T

j jxjxexTy 
           (47) 

where 

 TjveT

j

22exp                                   (48) 

We are looking the solution of (46) in the form 

 
 

   





1

0 sincos
2

,
j

jj jxtjxt
t

xtY 
                (49) 

Then (46), after tedious trigonometry, is equivalent to the 

following system of linear ODEs: 

      00000 0,   tat                              (50.m=0) 
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Then the reachable set is the following one-dimensional 

manifold: 
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Case 2. lk  . We construct exact reachable sets for the 

non-resonant case (general position): 

 lmkmMmmk 2121 :,1;0               (53) 

Analyzing formulas for Ki, i=0,…,M, we can write 
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Matrix in (54) is nonsingular (its determinant is proportional 

to Vandermonde’s determinant) and, thus, 

   1,...,2,1:sp1,...,2,1:sp
____

 MihMig ii
 

It is easy to verify that the following equality holds for any 

two kernels R1(x,z) and R2(x,z): 
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Due to (53) and orthogonality of the trigonometric system, 

internal integral in RHS of (55) vanishes for the following 

pairs of the kernels (i=1,2): 
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that define h1,…,hM+1. Then we conclude that [hi, hj]=0. We 

also have     1
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1,   mm hklmhf . Now we calculate the Lie 

algebras and verify the sufficient condition (6): 
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Then LT=L because L is finite-dimensional. To calculate 
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We are looking for a solution in the form of Fourier series 

(49). Equation (56) for m=1 is equivalent to 
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Solution of (57), assuming y(0,x)=y0(x), is 
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Equation (56) for i≥2 (mi1=2,...,M) is equivalent to 
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From (58) and (59) we conclude that 
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Analyzing these solutions and formula (11), we conclude 

that 
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Thus, the reachable set (62) of parabolic PDE control system 

(41) is (M+1) parametric set of functions and a desirable 

solution is characterized by these parameters. 
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