
Observability Analysis of PEM Fuel Cell Systems with Anode
Recirculation

Michael Hauck, Felix Petzke, Rania Tafat, Stefan Streif

Abstract— The optimal control of gas partial pressures in
fuel cell systems is a key part to increase the efficiency and the
lifetime of the fuel cell. In automotive applications, the nitrogen
and hydrogen gas partial pressures are not measurable with
actual sensors. Therefore an observer is required to determine
the gas partial pressures in the fuel cell system.

In this paper we present an observability analysis for PEM
fuel cell systems with anode recirculation for an automotive
application. The fuel cell stack voltage and the total gas pressure
in front of the fuel cell are assumed as measurable outputs. The
opening of the input valve and purge valve as well as the total
pressure at the cathode are inputs. The fuel cell stack current
is a measurable disturbance. It is shown that the hydrogen
and nitrogen partial pressures in front of the fuel cell, inside
the fuel cell, and behind the fuel cell are globally differentially
observable as long as the fuel cell system is not in idle mode.
As a result, asymptotic and finite time observers can be used
to observe the total pressures and partial hydrogen pressures
in an fuel cell system with anode recirculation.

I. INTRODUCTION

The total pressure and gas partial pressures inside a fuel
cell system and especially inside the fuel cell stack are
key parameters for the optimal operation and avoiding of
degradation of Proton Exchange Membrane (PEM) fuel cell
systems [3], [15]. The higher the hydrogen partial pressure
inside the fuel cell stack is, the higher is the fuel cell
voltage, increasing the stack performance [17]. However,
with an increase of the hydrogen partial pressure, the total
pressure at the anode side increases, too. In order to avoid
mechanical stress of the membrane, the cathode pressure is
kept close to the anode pressure. This is usually done by
an air compressor, consuming more energy, the higher the
pressure is. Consequently, a high hydrogen partial pressure
increases the performance of the fuel cell stack, but decreases
the performance of the peripheral components and thereby
possibly the overall system efficiency. Additionally, the opti-
mal hydrogen partial pressure – balancing the performance of
the stack and the components – depends on the requested fuel
cell current. Furthermore, a minimum amount of hydrogen
is required inside the fuel cell to avoid the phenomenon
of fuel starvation, e.g. if the amount of available hydrogen
in a fuel cell is not large enough, the fuel cell electrodes
starts to degrade, resulting in a reduced fuel cell lifetime and
performance [7], [18]. Therefore, a controller is required to
track the optimal hydrogen partial pressure.
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Additionally, the nitrogen partial pressure in the fuel cell
systems needs to be controlled. Resulting from the nitrogen
partial pressure difference between the air in the cathode
side and the hydrogen containing gas mixture at the anode
side, nitrogen permeates from the cathode to the anode and
accumulates there due to the recirculation of the anode gas
mixture [2]. To avoid large nitrogen partial pressures in the
anode, a purge valve is used to remove impurities from
the anode regularly. In the literature, a maximum tolerable
nitrogen partial pressure of 3-5% was identified [20], [23].
Hence, not only the partial pressure of hydrogen but also
the one of nitrogen needs to be determined to control its
value. However, it is generally very challenging or outright
infeasible to implement partial gas pressure sensors inside
the fuel cell stack [15]. Furthermore, current gas partial
pressure sensors are expensive, suffer from slow response
times, low accuracy, and would significantly increase the
total system costs [3]. To tackle these challenges, it is
desirable to estimate the pressure inside the anode and the
gas partial pressures in different control volumes of the anode
recirculation system from already available measurements.
The goal of this work is to prove observability of these
internal states using only the stack voltage and total pressure
at the anode inlet as measurable values.

In the existing literature, different mathematical models
of fuel cell systems are investigated with respect to their
observability, which differ in their assumptions, depth of
detail, choice of state variables, and measurable outputs. The
observability of a linear fuel cell model without anode recir-
culation and nitrogen permeation was analyzed in [19], under
the assumptions, that the cathode is fully humidified and no
liquid condensation occurs. By measuring the compressor
air flow rate, supply manifold pressure, and fuel cell stack
voltage, observability of the hydrogen partial pressure at the
anode, gas partial pressures at the cathode, and total pressures
in cathode flow system was shown.

A linearized 24-state model of the water distribution in
a fuel cell system was used in [16] to show observability
of cathode gas concentrations, concentration of hydrogen at
the anode, and water distribution at the anode by measuring
the stack voltage and the relative humidity in the fuel cell
channels. The observability of another linearized high-order
fuel cell system model, containing also a model of the
hydrogen reforming process, was shown in [12].

In [21], the observability of a linearized fuel cell pressure
model was shown, by measuring the anode hydrogen pres-
sure and the cathode oxygen pressure. However, measuring
the gas partial pressures in the fuel cell stack is a challenging
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task in practical applications. That is why this measurements
should be avoided by designing an observer.

In all these observability analyses, linearized fuel cell
models without anode recirculation and nitrogen permeation
from the cathode to the anode are used. There exist only few
observability analysis for nonlinear fuel cell models.

In [14], the observability of gas concentrations in a fuel
cell system without recirculation was analyzed. Therein,
the gas concentrations at the outlet of the cathode and
anode were assumed as measurable inputs. Then a nonlinear
distributed parameter observer was presented to observe the
hydrogen and water partial pressures at the anode and all
gas partial pressures at the cathode. The observer is based
on measuring the hydrogen and water partial pressures at
the outlet of the anode and all gas partial pressures at
the outlet of the cathode. During the simulations, the rank
of the Jacobian of the observability map was calculated
numerically depending on the current states. The observer
was disconnected as long as the rank was lower than the
expected full rank. The same approach was used in [15],
but with different inputs variables, which influences the
observability due to the non-linearity of the system. Here,
only the inlet gas flows are used as input variables in contrast
to [14], where in addition also the internal water and reaction
flows are used as inputs. In both approaches, the hydrogen
pressure is calculated directly by the difference of total
pressure and water partial pressure. However, in the presence
of accumulating nitrogen, this approach is not valid.

In addition to these observability analyses, there exists
some literature for observer design in fuel cell systems
without analyzing the observability. There are different ap-
proaches for estimating total or partial gas pressures in fuel
cell systems using nonlinear observer approaches. In [3], a
nonlinear observer of the inlet and outlet hydrogen partial
pressures was developed under the assumptions, that the
hydrogen partial pressure changes slowly and that the total
pressures at the inlet, inside, and at the outlet of the anode
are known.

An unscented Kalman filter was used in [22] with an
adaption of the process noise covariance matrix to estimate
the water and hydrogen mass in the fuel cell. Therefore, the
some internal states like water mass in anode and cathode
and temperature are assumed to reached their steady-state
values.

The existing approaches use simplified models, e.g. lin-
earized models or simplified setups without anode recircu-
lation, without nitrogen accumulation or unrealistic assump-
tions for automotive setups like slow pressure changes or
measurability of gas partial pressures.

This paper analyzes, under which conditions it is possible
to estimate the total pressures and gas partial pressures in
different control volumes of a nonlinear fuel cell model with
anode recirculation. It is assumed, that the total pressure in
front of the fuel cell stack and the stack voltage are measured.
These are all standard sensors in automotive applications.
In Section II, the model is presented. Afterwards, global
differential observability is shown for this setup and local
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Fig. 1: Principle sketch of an anode recirculation system [10]

differential observability under the assumption that only the
stack voltage is measurable.

II. PROBLEM SETTING

In this section, the model of a PEM fuel cell system with
anode recirculation is developed. Fig. 1 shows the basic
components of the anode recirculation system. Hydrogen
is stored under high pressure in the hydrogen tank. The
inlet valve controls the amount of incoming hydrogen. Inside
the anode, the hydrogen molecules are split and permeate
through a membrane into the cathode, where they react with
oxygen to produce water. In addition, gaseous impurities
– especially nitrogen – permeate from the cathode through
the membrane into the anode. These gaseous impurities and
unconsumed hydrogen are recirculated by a recirculation
pump. To avoid a large accumulation of the nitrogen, the
purge valve is opened regularly to remove the impurities
[9]. In [10], a control-oriented model of a PEM fuel cell
systems with anode recirculation was modeled. Therein,
the anode recirculation system is divided into three control
volumes Vi: V1 contains the pipe work and the equipment
for measurement in front of the fuel cell stack, V2 is the
volume of the actual anode within the fuel cell stack, and V3

contains the heat exchanger, the water trap the pipe work, as
well as the equipment for measurement behind the fuel cell
stack.

Let the state vector be defined via the total pressures and
hydrogen partial pressures in the control volumes as

x = (p1, p2, p3, pH2,1, pH2,2, pH2,3)
⊤
,

where pi is the total pressure and pH2,i the partial hydrogen
pressure in the volume Vi. Under the assumption, that the
gases in the different control volumes are at 100% relative
humidity, the nitrogen partial pressures can be calculated
by the difference of the total pressure and the hydrogen
and water partial pressure. The inputs and the measurable
disturbance are summarized as vector

u = [uin, upurge, pca, ifc],

where uin is the opening of the input valve, upurge the
opening of the purge valve, pca the pressure at the cathode
side of the fuel cell and ifc the fuel cell stack current.

The total pressure in the control volumes is modeled via
a balance equation of the gas flows [13]

ṗi =
RiTi

Vi

∑
j

Wj
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with Ri is the gas constant and Ti the temperature of the
gas mixture in control volume Vi. The gas flows between the
control volumes are modeled based on a pressure difference
[9]

Wi,j = ki,j
√
pi − pj

with the flow constant ki,j . Similarly, the incoming gas flow
through the input valve is given by

Win = kin
√
ptank − p1uin

and the purged gas flow through the purge valve as

Wpurge = kpurge
√
p3 − p0upurge,

where ptank is the pressure after the hydrogen tank and p0
the ambient pressure.

The hydrogen and nitrogen permeation through the mem-
brane are modeled as

WH2,react = kH2ifc,

WN2,diff = kN2pN2,ca,

where kH2 and kN2 are permeation coefficients [4]. Similarly,
the partial hydrogen pressures in the control volumes are
calculated based on the partial hydrogen gas flows.

Transformed into state-space, the system dynamics are
represented as follows:

ẋ =f(x, u)

=



−a1
√
x1−x2

a4
√
x1−x2 − a6

√
x2−x3

a7
√
x2−x3

−a1
√
x1−x2

x4

x1

a4
√
x1−x2

x4

x1
− a6

√
x2−x3

x5

x2

a7
√
x2−x3

x5

x2



+


a2
√
ptank−x1

0
0
a2
√
ptank−x1

0
0

uin +


0
a5
0
0
0
0

 pca

+



0
0
−a9

√
x3−p0

0
0

−a9
√
x3−p0

x6

x3


upurge +



a3
−a11
−a8

a3
x6

x3
−a11

−a8
x6

x3


ifc,

(1)

where ai are aggregated positive constants.
In the literature, different physical values are assumed

as measured outputs. In [3], the fuel cell stack voltage,
oxygen partial pressure at the cathode and total pressures in
front, inside and behind the anode, are assumed as measured
outputs. Additionally, water partial pressures in the anode
and cathode, as well as the temperature are measured in [22].

However, only the stack voltage and total pressures outside
of the fuel cell are used in state of the art automotive fuel
cell applications, since partial gas pressures are difficult and
expensive to measure actually. To reduce the costs of the
sensors, only the total pressure in front of the fuel cell p1
and the stack voltage Vfc are assumed to be measured. Hence,
the output is given by y = (p1, Vfc)

T .
The stack voltage is determined based on an automotive

stack voltage model developed in [19] for a FORD P2000
fuel cell prototype vehicle [1]. Under the assumption of ncell

connected equal cells, the stack voltage is given by

Ustack = ncellUcell.

The single cell voltage Ucell is calculated based on the open
circuit voltage Urev and different kinds of voltage losses

Ucell = Urev − Uact − Uohm − Uconc,

where Uact is the activation loss, Uohm is the ohmic loss,
and Uconc the concentration loss. They are given by

Urev = k1 + k2 (ln(pH2
) + 0.5 ln(pO2

)) ,

Uact = k3 + k4(1− e−k5ifc),

Uohm = ifck6,

Uconc = ifck7i
k8

fc ,

where pH2
the partial hydrogen pressure in the anode, pO2

the partial oxygen pressure in the cathode, and ifc the
requested cell current. The parameters ki are listed in [19].
Therefore, the output function can be expressed by

y = h(x, u) =

(
x1

a13 ln(x5) + hu(u4)

)
(2)

with hu(u4) = a12 + a14e
−a15u4 − a15u4 − a16u

3
4.

In the following, physically motivated boundaries on the
states, inputs and outputs are noted.

Assumption 1: The total gas pressures are modeled
as one-directional gas flows from the high pressure
tank to the ambient pressure. Therefore, it holds that
ptank > p1 > p2 > p3 > p0 > 0. Note that this implies, that
all the square roots in equation (1) and in further calculations
have positive non-zero radicands and therefore nonzero real
values. Additionally, dividing by pi − pj is always possible.
□

Assumption 2: In each control volume, the total pressure
is larger than the hydrogen partial pressure, since the total
pressure is the sum of the different gas partial pressures, i.e.
p1 ≥ p4 > 0, p2 ≥ p5 > 0, and p3 ≥ p6 > 0. □

Assumption 3: The inputs ui ≥ 0 are physically limited to
positive values. Due to the mechanics of the valve openings,
pressure build-up, and the chemistry inside the fuel cell, all
inputs and outputs are analytic functions w.r.t. time. □

Remark 1: All parameters ai are non-zero aggregated
physical constants. □

In the next section, the observability of the presented
model is analyzed.
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III. OBSERVABILITY ANALYSIS

For the remainder of this paper we use the following
definition of global observability for nonlinear systems.

Definition 1 (Global Differential Observability [5], [6]):
Consider the nonlinear system

ẋ = f(x, u), y = h(x, u) (3)

with x ∈ X ⊂ Rdx denoting the state, u ∈ U ⊂ Rdu the
input, and y ∈ Rdy the output, respectively. Let u[m] =(
u(t), u̇(t), . . . , u(m−1)

)
∈ Um denote the vector of the input

and its derivatives. Furthermore, consider the function

H(x, u[m]) =


h(x, u[m])
Lfh(x, u

[m])
...
Lm−1
f h(x, u[m])

 .

System (3) is called globally differentially observable of
order m on X if for any x ∈ X and u[m] ∈ Um, the map
x 7→ H(x, u[m]) is injective on X , with Lm

f h(x, u[m]) =
dmy
dtm being the m-th order Lie-derivative of h. □

Note that for nonlinear systems, it is often hard to show,
that the map H(x, u[m]) is injective globally. Therefore, often
only local differential observability is analyzed by showing
that the map Hm(x, u[m]) is injective in a neighborhood
XN ⊂ Rdx of x0 ∈ X . This is usually done by proving,
that the Jacobian of Hm(x, u[m]) has full rank [11].

In the following it is shown, that System (1) is globally
differentially observable of order 3, according to Definition
1. To this end, the map H(x, u[3]) is calculated explicitly and
then shown to be globally injective. In a first step, the map

H(x, u[3]) =


y1
y2
ẏ1
ẏ2
ÿ1
ÿ2

 =



h1(x, u
[3])

h2(x, u
[3])

Lfh1(x, u
[3])

Lfh2(x, u
[3])

L2
fh1(x, u

[3])

L2
fh2(x, u

[3])


is proposed. If it is clear from the context, the general
dependency on (x, u[3]) is omitted for the sake of brevity.
The first entries are the output functions

h1 = x1 (4)
h2 = a13 ln(x5) + hu(u4) (5)

according to (2).
The first Lie-derivatives Lfh1 and Lfh2 of functions h1

and h2, respectively, are calculated as

Lfh1 =
∂h1

∂x

∂x

∂t
+

∂h1

∂u

∂u

∂t
= ẋ1

= − a1
√
x1 − x2 + a2

√
ptank − x1u1 + a3u4 (6)

Lfh2 =
a13
x5

ẋ5 +
∂hu(u4)

∂u4

∂u4

∂t

=
a13
x5

(
a4
√
x1 − x2

x4

x1
− a6

√
x2 − x3

x5

x2
− a11u4

)
(7)

+
∂hu(u4)

∂u4

∂u4

∂t
,

where ∂hu(u4)
∂u4

∂u4

∂t only depends on constant parameters and
the measurable input u4 and its derivative u̇4. For ease of
notation, this term is denoted as ḣu(u4).

Now, the second Lie-derivative L2
fh1 is given by

L2
fh1 =

∂Lfh1

∂x

∂x

∂t
+

∂Lfh1

∂u

∂u

∂t
, (8)

with

∂Lfh1

∂x

∂x

∂t
=−

(
a1

2
√
x1 − x2

+
a2u1

2
√
ptank − x1

)
(
a3u4 − a1

√
x1 − x2 + a2u1

√
ptank − x1

)
− a1(a11u4 − a5u3 − a4

√
x1 − x2)

2
√
x1 − x2

+
a6
√
x2 − x3

2
√
x1 − x2

=O1(x1, x2, u) +
a6
√
x2 − x3

2
√
x1 − x2

and
∂Lfh1

∂u

∂u

∂t
= a2

√
ptank − x1u̇1 + a3u̇4.

Similarly, the second Lie-derivative L2
fh2 is given by

L2
fh2 =

∂Lfh2

∂x

∂x

∂t
+

∂Lfh2

∂u

∂u

∂t
, (9)

with
∂Lfh2

∂x

∂x

∂t
= O2(x1, . . . , x5, u)x6 +O3(x1, . . . , x5, u)

and
∂Lfh2

∂u

∂u

∂t
= O4(x5, u, u̇, ü).

For the sake of clarity, only the linear dependency on x6

is explicitly presented here, since it is needed for further
calculations. The full equations for Oi(·) are listed in the
appendix.

In the next step it is shown, that the presented map H is
an injective globally on X . This means, that the states x can
be uniquely reconstructed by the measured outputs y and the
known inputs u and their derivatives ẏ, ÿ, u̇ and ü.

From Equation (4) we get

x1 = y1. (10)
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Equation (5) contains only one unknown state and can be
rearranged as

x5 = e
y2−hu(u4)

a13 . (11)

So the state x5 can be reconstructed by the measurable inputs
and outputs.

According to Equation (6), ẏ1 depends on the inputs and
the states x1 and x2. Using Equation (10), it can be rewritten
as

x2 = y1 −
(
ẏ1 − a2

√
ptank − y1u1 − a3u4

a1

)2

. (12)

Hence, x2 can be determined by the measurable variables
for a1 ̸= 0.

By rearranging Equation (7), the state x4 can be deter-
mined by

x4 =
x1

a4
√
x1 − x2

·(
(ẏ2 − ḣu(u4))

x5

a13
+ a6

√
x2 − x3

x5

x2
+ a11u4

)
,

(13)

with x1, x2 and x5 according to Equations (10) - (12) ,
a4, a13, x2 ̸= 0, and x1 > x2.

The state x3 can be determined by rearranging Equation
(8) as

x3 =−
(
ÿ1 −O1(x1, x2, u)− a2

√
ptank − x1u̇1 − a3u̇4

)2 ·
4(x1 − x2)

a26
+ x2, (14)

where the states x1 and x2 are given by Equations (10) and
(12), respectively. Hence, x3 can be reconstructed for a6 > 0
and ptank > x1 > x2.

The state x6 is determined by rearranging Equation (9)

x6 =
ÿ2 −O3(x1, . . . , x5, u)−O4(x5, u, u̇, ü)

O2(x1, . . . , x5, u)
(15)

where the states x1, . . . x5 are given by Equations (10) -
(14). Therefore, the last state x6 can be reconstructed for
x1, x2, x5 > 0, ptank > x1 > x2 > x3 > p0 and O2 ̸= 0
resulting in a3, a4a13 ̸= 0 and u4 ̸= 0.

IV. DISCUSSION

As shown in the last chapter, H is injective under the
following conditions:

• a1, a3, a4, a6, a13 ̸= 0,
• x1, x2, x5 ̸= 0,
• ptank > x1 > x2 > x3 > p0,
• u4 ̸= 0.

The first condition is fulfilled according to Remark 1, since
all parameters ai are non-zero physical constants. According
to Assumption 2, all pressures have non-zero positive values.
Therefore, all states are non-zero, fulfilling the second con-
dition. Also the third condition is always fulfilled due to
Assumption 1.

Therefore, System (1) is differentially observable (cf.
Definition 1) for u4 ̸= 0, as all states can be uniquely

determined by the outputs and the measurable inputs and
their derivatives. As a result, an observer can be implemented
to obtain the total pressures and gas partial pressures of
the considered fuel cell system with anode recirculation as
long as the stack current is not equal to zero (i.e. the fuel
cell system is not in idle mode). During the idle mode, all
states except for hydrogen partial pressure x6 can still be
determined, since the outputs do not directly depend on it and
x6 is only coupled to the other states via linear multiplication
with u4. Therefore, as long as u4 = 0, the state x6 has no
effect on the other states.

Remark 2: Due to the above discussed coupling between
x6 and u4, the last state also do not appear in higher
derivatives of the outputs as long as u4 = 0. Therefore, the
system is not observable of orders m > 3 for u4 = 0. □

Since differential observability implies instantaneous ob-
servability, not only asymptotic observers, but also finite time
observers can be applied to the presented fuel cell system.

Note that from application perspective, instantaneous
knowledge about higher derivatives of the inputs and outputs
is a strong assumption. However, the required derivations can
be specified: according to Equations (10)-(15), ẏ, ÿ, u̇1, u̇4,
ü4 are required to obtain global differential observability.

Local differential observability

Since global observability has been shown, it is not
surprising that also the local condition of differential ob-
servability can be shown in the non-idle mode. To do so, it
is sufficient to prove that the map Hm(x, u[m]) is injective
in a neighborhood XN of x0 [11]. This is usually done by
showing that the Jacobian of Hm(x, u[m]) has rank dx. In
the presented case, the Jacobian of the map H(x, u[3]) is
a triangular matrix with non-zero elements along the main
diagonal. However, it looses its full rank for u4 = 0, since
the last entry of the main diagonal is exactly equal to the
term O2 (cf. Appendix). The same holds also for all higher
orders H(x, u[m]) due to the already mentioned bilinear term
of x6 and u4. Thus, local observability also requires u4 ̸= 0
and the condition does not hold in idle mode.

However, a similar local observability condition can be
obtained, when only the fuel cell voltage y2 is used as an
output and the total pressure y1 is not measured. To fulfill the
rank condition, H(x, u[m]) needs to be at least of dimension
dx. Since System (1) is of dimension dx = 6, and the
reduced output function hred = x1 is of dimension dy = 1, at
least five Lie-derivatives are required. Due to the convoluted
nature of recurring Lie-derivatives and their resulting Jaco-
bian, those terms were calculated symbolically in MATLAB.
Then, the MATLAB toolbox STRIKE-GOLDD 4.0 [8] was
used to prove the rank condition and, consequently, local
differential observability.

While this means, that in theory only the measurement of
the stack voltage is sufficient to obtain local observability, the
numeric evaluation of the involved terms in H(x, u[6]) would
be computationally infeasible and, hence, only observers that
do not require this map would be applicable in this case.
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V. CONCLUSION AND OUTLOOK

In this paper, the observability of total and partial gas
pressures in an automotive fuel cell system with anode
recirculation is analyzed. In the presented setup, the fuel
cell current, the total pressure at the cathode, the opening
of the input valve, as well as the opening of the purge valve
were assumed as known inputs. By using the fuel cell stack
voltage and the total pressure in front of the fuel cell stack
as outputs, global differential observability was proven for
a stack current not equal to zero. Both sensors are com-
monly available in automotive fuel cell systems. This global
condition was derived by proving that the presented map
is globally injective. Since global differential observability
implies global instantaneous observability, any asymptotic
and finite time observer can be applied to estimate the total
pressures as well as the partial gas pressures in front, inside,
and behind the fuel cell stack.

A weaker condition could be derived when only the fuel
cell stack voltage was used as output. In this case, the fuel
cell system is locally differentially observable.

In the future, a finite time observer can be developed to
estimate the gas partial pressures in automotive fuel cell
systems. A finite time estimation would enable efficient
partial gas pressure controls in fuel cell systems, which is
crucial for an optimization of hydrogen usage, minimizing
the losses during the purge process and reducing the chemical
process of degradation. Therefore, the fuel cell system’s
efficiency and lifetime can be increased.

APPENDIX

Representation of the detailed terms in the calculations of
the Lie-derivatives

O1(x, u) =−
(

a1
2
√
x1−x2

+
a2u1

2
√
ptank−x1

)
ẋ1

− a1(a11u4 − a5u3 − a4
√
x1−x2)

2
√
x1−x2

O2(x, u) =
a3a4a13

√
x1−x2u4

x1x3x5

O3(x, u) =− a4a13(x1 − 2x2)x4

2x5x2
1

√
x1−x2

ẋ1

+

(
a6a13(2x3 − x2)

2x2
2

√
x2−x3

− a4a13x4

2x1x5
√
x1−x2

)
ẋ2

− a6a13
2x2

√
x2−x3

ẋ3

− a4a13(x1 − x2)x4 − a11a13u4

x1x2
5

√
x1−x2

ẋ5

− a4a13(x1−x2)

x1x5

(
a1

x4

x1
+
a2
√
ptank−x1√
x1−x2

u1

)
O4(x, u

[3]) =− a11a13
x5

u̇4 +
∂ḣu(u4)

∂u4

∂u4

∂t
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