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Abstract— In this paper, we propose a mixed filter for discrete-
time nonlinear dynamical systems whose uncertainties are
composed of both deterministic and stochastic terms. In practice,
such mixed composition of uncertainties may appear when
assimilating measured data and approximating models. The
unknown-but-bounded terms are here represented by zonotopes,
which are efficient representations of centrally symmetric convex
polytopes. In turn, the stochastic terms are represented by
Gaussian random vectors (GRVs) which address confidence
regions with high probability. The proposed state estimator is
based on linearized models, using the quasi-linear parameter-
varying (LPV) approach. The effectiveness of our proposal is
illustrated in two case studies.

I. INTRODUCTION

Nonlinear state estimators are often designed under ap-
proximate techniques such as the unscented transformation
[1], analytical linearization around reference trajectories [2],
[3], [4], analytical linearization around points belonging to
compact sets [5], [6], mean value extension [6], [7], and
quasi-LPV approach [8], [9]. Depending on the context, one
technique may be more suitable than others. For instance, the
quasi-LPV approach could replace the analytical linearization
when nonlinear functions do not fulfill with continuity issues
[1], [2]. Also, according to the type of uncertainty present in
a dynamical system, the approximation may yield guaranteed
(set-based context), likely (stochastic context), or combined
(mixed context) solutions.

There exist different forms of combining uncertainties
in a state estimator. A possibility has been exploited in
[10], [11], [12], and [13], where the classical Kalman filter
[14] has been extended to include interval parameters in
conditional distributions or in system matrices. An alternative
is to assume mixed uncertainties as in [15], [16] and [17]
for linear systems, in which a direct sum among elements
and realizations from unknown-but-bounded and stochastic
uncertainties, respectively, is executed. Specifically, in [15],
the authors have mixed GRVs with ellipsoids, [16] has mixed
GRVs with zonotopes, whereas the authors in [17] have mixed
GRVs with constrained zonotopes (an extension of zonotopes)
to incorporate trajectory constraints. The use of zonotopes
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in [16] has allowed to efficiently mitigate the conservatism
caused by ellipsoids during Minkowski sums.

The state estimators can be categorized as predictors, filters,
and smoothers, according to the assimilated measurements [2],
[18]. Specifically, the predictors cannot incorporate current
and future measurements to yield the state estimates. This
limitation does not invalidate the application of predictors
for control loops and fault diagnosis, for instance, but
the filters may achieve better accuracy and precision [18].
According to the prior classification, we denote here the mixed
algorithms of [8] and [16] as predictors. In [16], the author
has proposed a zonotopic and Gaussian Kalman estimator
for linear systems (here referred as ZGKP), which has been
extended to nonlinear systems in [8] through the quasi-LPV
approach (here called EZGKP). Motivated by [16], in [19],
we have proposed another zonotopic and Gaussian Kalman
estimator for linear systems (called ZGKF).

In this paper, we propose an extended zonotopic and
Gaussian Kalman filter, denoted as EZGKF, for nonlinear
dynamical systems. This estimator is an extension of the
EZGKP [8] to a filter version using, as initial motivation,
the linear structure of the ZGKF, and posteriorly, the quasi-
LPV approach. In comparison with the predictor version,
the EZGKF brings up specific challenges whose solution
methodology may imply computational benefits. Moreover,
both accuracy and precision can be significantly enhanced. In
short, the contributions of this paper are: (i) the new extended
zonotopic and Gaussian Kalman filter (EZGKF) for nonlinear
dynamical systems whose uncertainties are composed of both
deterministic and stochastic terms; and (ii) the worst-case
complexity analysis for both EZGKF and EZGKP [8].

II. PRELIMINARIES
The letters c, z, and g denote center, zonotope, and GRV,

respectively. Capital letters denote matrices, while lowercase
letters denote vectors.

A. Random Vectors
Let X be an n-dimensional random vector. The mean

and covariance matrix of X are given by x̄ = E[X] and
P xx = cov(X,X) ≜ E[(X − x̄)(X − x̄)⊤], respectively,
where E[·] is the expected value operator and (·)⊤ is the
matrix transpose. A GRV X is characterized by its Gaussian
probability density function p(x), which is completely defined
by the mean x̄ and covariance matrix P xx. Therefore, a GRV
X can be abbreviated by X ∼ N (x̄, P xx).

A random variable with chi-square distribution for n
degrees of freedom is defined as

Xχ ≜ (X − x̄)⊤(P xx)−1(X − x̄), (1)
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whose realization xχ satisfies xχ ≥ 0. The cumulative
distribution function c(x) of a given probability density
function p(x) is defined as

c(x) ≜
∫ xn

−∞
· · ·

∫ x1

−∞
p(θ1, . . . , θn)dθ1 . . . dθn, (2)

such that 0 ≤ c(x) ≤ 1, ∀x ∈ Rn.
The affine transformation and sum operations of uncorre-

lated GRVs are computed as

LX +m ∼ N (Lx̄+m,LP xxL⊤), (3)
X +W ∼ N (x̄+ w̄, P xx + Pww), (4)

where L ∈ Rb×n, m ∈ Rb, and W ∼ N (w̄, Pww).
The following lemma allows to overestimate the product

between a covariance matrix M and a parameter ζ ∈ [−1, 1]
by an upper bounded covariance matrix M .

Lemma 1 ([8]): Let M ∈ Rn×n be a symmetric matrix
and M = V ΛV −1 be its spectral decomposition with V ⊤V =
In and real diagonal Λ, where In is the (n× n)-dimensional
identity matrix. Let M = V |Λ|V ⊤. Then, M ⪰ 0n×n and,
∀ζ ∈ [−1, 1], ζM ⪯ M , with 0n×n being a zero matrix.

B. Sets
A box is an n-dimensional interval vector defined as [x] ≜

{x ∈ Rn : xL
i ≤ xi ≤ xU

i , i = 1, . . . , n}, with xL
i and xU

i
being the known lower and upper bounds. A unitary box
composed of n unitary intervals is denoted as Bn ≜ [−1, 1]n.
An interval matrix is the set defined as

[A] ≜ {A ∈ Rm×n : AL
i,j ≤ Ai,j ≤ AU

i,j}, (5)

for i = 1, . . . ,m and j = 1, . . . , n. Given an interval matrix
[A], midi,j([A]) ≜ 1

2
(AL

i,j + AU
i,j) is its (i, j)th midpoint,

while radi,j([A]) ≜ 1
2 (A

U
i,j − AL

i,j) is its (i, j)th radius for
i = 1, . . . ,m and j = 1, . . . , n. Usual operations involving
interval vectors and matrices are defined in [20], such as sum,
subtraction, product, and division.

Let Gx ∈ Rn×ng and x̄ ∈ Rn be the generator matrix
and the center, respectively. The zonotope X of order ng is
defined as

X ≜ {Gx, x̄} = GxBng ⊕ x̄ = {(Gxξ + x̄) : ξ ∈ Bng}, (6)

where ⊕ represents the Minkowski sum (elementwise) and
ξ ∈ Rng is an element of the unitary box Bng .

If the generator matrix Gx is square and diagonal,
then the zonotope X can represent a box [x] as X =
{diag(rad([x])),mid([x])}, where the operator diag(·) re-
turns a diagonal matrix from a vector, or a vector with the
diagonal elements from a square matrix. The generator matrix
of a zonotope X can also be an interval matrix as in (5).
Therefore, (6) is extended to the family of zonotopes [7]

[X ] ≜ {[Gx], x̄} = {(Gxξ + x̄) : Gx ∈ [Gx], ξ ∈ Bng}, (7)

with [Gx] ⊂ Rn×ng being an interval generator matrix.
The affine transformation, Minkowski sum, and interval

hull operations involving zonotopes can be, respectively,
computed as [21]

LX ⊕ b = {LGx, Lx̄+ b}, (8)

X ⊕W = {
[
Gx Gw

]
, x̄+ w̄}, (9)

□X = [x̄− rz, x̄+ rz], (10)

where X = {Gx, x̄} ⊂ Rn, W = {Gw, w̄} ⊂ Rn, L ∈ Rm×n,
b ∈ Rm, rz = |Gx|1ng×1, | · | is the elementwise absolute
value operator, and 1ng×1 is a one matrix.

In order to relate the family of zonotopes (7) to the standard
format (6), and thereby, to enable the use of usual operations
as (8)-(10), we have the zonotope inclusion ⋄X ⊃ [X ] [7],
given by

⋄X ≜
[
mid([Gx]) L

] [Bng

Bn

]
⊕ x̄, (11)

where L ∈ Rn×n is a diagonal matrix such as Li,i =
ng∑
j=1

radi,j([G
x]), i = 1, . . . , n..

C. Mixed Vectors
Definition 1 ([16]): Consider the zonotope Xk =

{Gx
k, 0n×1} and the GRV Xk ∼ N (0n×1, P

xx
k ). Given the

elements zxk and realizations gxk , from Xk and Xk, respectively,
the mixed vector xk is defined as

xk ≜ cxk + zxk + gxk, (12)

where cxk ∈ Rn is the mixed center of xk.
By analyzing the definition of the chi-square random

variable Xχ in (1), we can use the following confidence
ellipsoid definition.

Definition 2 ([16]): Consider the GRV X ∼ N (x̄, P xx),
where P xx ≻ 0n×n, and the significance level, or type I error,
α ∈ [0, 1]. The confidence ellipsoid is defined as

E ≜ {x ∈ Rn : (x− x̄)⊤(ςP xx)−1(x− x̄) ≤ 1}, (13)

where ς ≥ 0 is the greatest value for the chi-square random
variable with n degrees of freedom (1), taken from the
cumulative distribution function (2) with (1− α) confidence
level, such that the probability p(x ∈ E) = (1−α) is satisfied.

Thereby, we present the confidence box, in order to merge
two bounded sets. This result will be used to sketch states
and approximate nonlinear models.

Lemma 2 ([16]): Let the mixed center cx, the zonotope
X , and the GRV X with covariance P xx be characterizations
of the mixed vector x. Let also the confidence ellipsoid E be
defined as (13). Then, the confidence box Iα is given by

Iα = cx ⊕□X ⊕□E , (14)

where □X is the interval hull of X given by (10),

□E = [−rg, rg] (15)

is the interval hull of E with rg =
√

ςdiag(P xx), and ς ≥ 0
is defined in (13).

III. PROBLEM STATEMENT
Consider that a given discrete-time nonlinear dynamical

system be transformed into a quasi-LPV system as follows

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1, (16)
yk = Ckxk + vk, (17)

where Ak−1 ∈ Rn×n, Bk−1 ∈ Rn×p, and Ck ∈ Rm×n are
the system matrices, uk−1 ∈ Rp is the deterministic input
vector, yk ∈ Rm is the measured output vector, wk−1 ∈ Rn

is the process noise, vk ∈ Rm is the measurement noise,
and xk ∈ Rn is the state vector to be estimated over
k ∈ Z+. The matrices Bk−1 and Ck are assumed to be
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deterministic, whereas Ak−1 = A0,k−1+∆k−1 is determined
by the quasi-LPV approach using the states xk−1 and possible
exogenous signals, with ∆k−1 =

∑nδ

i=1 Ai,k−1δi,k−1 being
the approximated uncertainty around A0,k−1 and δi,k−1 ∈
[−1, 1] the scheduling parameter containing state information.
The matrices A0,k−1, . . . , Anδ,k−1 are obtained from Ak−1.

Remark 1: In (16), Bk−1 is deterministic because any
nonlinearity with respect to xk−1 is placed in Ak−1. Some
manners of obtaining a quasi-LPV representation have been
illustrated in [8].

The initial state x0 and the noises wk−1 and vk can be
decomposed as x0 = cx0 + zx0 + gx0 , wk−1 = zwk−1 + gwk−1,
and vk = zvk + gvk . The terms zx0 , zwk−1, and zvk are obtained
from the known zero-center zonotopes X̂0, Wk−1, and Vk,
respectively, with generator matrices Ĝx

0 ∈ Rn×ng , Gw
k−1 ∈

Rn×nw
g , and Gv

k ∈ Rm×nv
g , such that Gv

k(G
v
k)

⊤ ≻ 0m×m.
The realizations gx0 , gwk−1, and gvk are obtained from random
vectors, which are approximated by the known, uncorrelated,
zero-mean GRVs X̂0, Wk−1, and Vk, respectively, with
covariance P̂ xx

0 ≻ 0n×n, Qk−1 ⪰ 0n×n, and Rk ≻ 0m×m.
Each GRV is uncorrelated to itself for different time instants.

Remark 2: The mixed decomposition of x0, wk−1 and vk
incorporates the specific cases, that is, purely stochastic or
set-based. In practice, uncertainties are set instead of specific
values since realizations are unknown. Then, the state vector
xk is as stochastic as set based, and its time evolution can be
investigated using (12). The models (16) and (17) describe
a linearized dynamic based on real values, which can be
mathematically manipulated to characterize the corresponding
sets and random vectors, separately. This individual procedure
is already known in the literature [2], [22].

According to (16) and (17), we define the state-estimation
problem investigated here.

Problem 1: Consider the dynamical system represented by
(16)-(17), for which the input uk−1 and the measurement
yk are known. Given the center estimate ĉx0, zonotopes X̂0,
Wk−1, and Vk, and GRVs X̂0, Wk−1, and Vk, the goal is
to determine the mixed state estimates given by ĉxk, X̂k, and
X̂k, for k ∈ Z+, based on the minimum-variance criterion.
To achieve that, we define the cost function

Jzg
k (Kk) ≜ (1− η)tr(Ĝx

k(Ĝ
x
k)

⊤) + ηtr(P̂ xx
k ), (18)

where η ∈ [0, 1] is a known weight parameter, Kk is the gain
matrix that minimizes Jzg

k , and tr(·) is the matrix trace.
Problem 1 employs the weighted-sum approach to equiva-

lently express the solutions Kk of a biobjective optimization
problem in terms of a monobjective formulation.

IV. EZGKF ALGORITHM

Consider the quasi-LPV model described in (16)-(17). If
the matrix Ak−1 was known, the optimal estimator design
for Problem 1 would be reached by defining the mixed state
estimates ĉxk, X̂k, and X̂k, as in [19]. However, since Ak−1
depends on the scheduling parameter δk−1, the optimal design
requires modifications to yield explicit solutions. We desire
here to keep both the gain matrix Kk ∈ Rn×m and the center
estimate ĉxk ∈ Rn without altering the solution enclosure.

Therefore, we propose the following suboptimal estimator:

ĉxk = (In −KkCk)ĉ
x
k|k−1 +Kkyk, (19)

ẑxk = (In −KkCk)ẑ
x
k|k−1 −Kkz

v
k , (20)

ĝxk = (In −KkCk)ĝ
x
k|k−1 −Kkg

v
k , (21)

where

ĉxk|k−1 ≜ A0,k−1ĉ
x
k−1 +Bk−1uk−1, (22)

ẑxk|k−1 ≜ Ak−1ẑ
x
k−1 +∆k−1ĉ

x
k−1 + zwk−1, (23)

ĝxk|k−1 ≜ Ak−1ĝ
x
k−1 + gwk−1 . (24)

Our main task is to determine the forecast estimates X̂k|k−1

and X̂k|k−1 that enclose the worst case related to ẑxk|k−1 and
ĝxk|k−1. These results are addressed next by two propositions.

Proposition 1: Let X̂k−1 = {Ĝx
k−1, 0n×1} ∋ ẑxk−1,

Wk−1 = {Gw
k−1, 0n×1} ∋ zwk−1, and Bnδ ∋ δk−1 be the

known sets. Then, the elements ẑxk|k−1 of (23) are enclosed
by the zonotope X̂k|k−1 = {Ĝx

k|k−1, 0n×1} with generator
matrix

Ĝx
k|k−1 =

[
A0,k−1Ĝ

x
k−1 Gw

k−1 Φ
]
, (25)

where Φ=
[
A1,k−1

[
ĉxk−1 Ĝx

k−1

]
· · · Anδ,k−1

[
ĉxk−1 Ĝx

k−1

]]
.

Proof: By making explicit the matrices A0,k−1 and
Ai,k−1 in (23), we obtain ẑxk|k−1 = A0,k−1ẑ

x
k−1 + zwk−1 +∑nδ

i=1 Ai,k−1(ĉ
x
k−1+ ẑxk−1)δi,k−1. Replacing the elements ẑxk−1,

zwk−1, and δi,k−1 by their corresponding set yields X̂k|k−1 =

A0,k−1X̂k−1 ⊕ Wk−1 ⊕ A1,k−1(ĉ
x
k−1 ⊕ X̂k−1)[−1, 1] ⊕ · · · ⊕

Anδ,k−1(ĉ
x
k−1 ⊕ X̂k−1)[−1, 1]. Since ĉxk−1[−1, 1] contributes

with a new generator and Bng [−1, 1] = Bng , with ng being
the order of X̂k−1, the usual operations (8) and (9) imply the
zero-center zonotope X̂k|k−1 with generator matrix given by
(25).

Proposition 2: Let the GRVs X̂k−1 ∼ N (0n×1, P̂
xx
k−1)

and Wk−1 ∼ N (0n×1, Qk−1) be known representations for
the uncorrelated realizations ĝxk−1 and gwk−1, respectively,
and Bnδ ∋ δk−1. Then, the realizations ĝxk|k−1 of (24) are
represented by the GRV X̂k|k−1 ∼ N (0n×1, P̂

xx
k|k−1) with

covariance matrix

P̂ xx
k|k−1 = A0,k−1P̂

xx
k−1A

⊤
0,k−1 +Qk−1 +Ωii +Ωij , (26)

where

Ωii ≜
nδ∑
i=1

(
A0,k−1P̂

xx
k−1A

⊤
i,k−1 +Ai,k−1P̂

xx
k−1A

⊤
0,k−1

+Ai,k−1P̂
xx
k−1A

⊤
i,k−1

)
,

Ωij ≜
nδ−1∑
i=1

nδ∑
j=i+1

(Ai,k−1P̂
xx
k−1A

⊤
j,k−1 +Aj,k−1P̂

xx
k−1A

⊤
i,k−1).

Proof: Since the realizations ĝxk−1 and gwk−1 are
uncorrelated in (24), the usual operations (3) and (4) leads
to the GRV Xk|k−1 ∼ N (0n×1, P

xx
k|k−1) with covariance

P xx
k|k−1 = Ak−1P̂

xx
k−1A

⊤
k−1 +Qk−1. However, the matrix Ak−1

is unknown and we are interested in reaching a covariance
matrix such that P̂ xx

k|k−1 ⪰ P xx
k|k−1. To achieve that, we first

make explicit the matrices A0,k−1 and Ai,k−1 in P xx
k|k−1,

yielding P xx
k|k−1 =

∑nδ
i=1

∑nδ
j=1 δi,k−1δj,k−1Ai,k−1P̂

xx
k−1A

⊤
j,k−1+

A0,k−1P̂
xx
k−1A

⊤
0,k−1 +Qk−1 +

∑nδ
j=1 δj,k−1A0,k−1P̂

xx
k−1A

⊤
j,k−1 +∑nδ

i=1 δi,k−1Ai,k−1P̂
xx
k−1A

⊤
0,k−1. As the summed matrices
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are square, the former summation can be split
up as

∑nδ
i=1

∑nδ
j=1 δi,k−1δj,k−1Ai,k−1P̂

xx
k−1A

⊤
j,k−1 =∑

i<jδi,k−1δj,k−1(Ai,k−1P̂
xx
k−1A

⊤
j,k−1 + Aj,k−1P̂

xx
k−1A

⊤
i,k−1) +∑nδ

i=1 δ
2
i,k−1Ai,k−1P̂

xx
k−1A

⊤
i,k−1. After gathering the single

summations in a unique sum, and thereby, applying Lemma
1, we obtain the upper bounded covariance matrix (26),
completing the proof.

Remark 3: Proposition 1 could be formulated with (11)
by assuming an interval matrix [Ak−1] instead of an affine
matrix given by A0,k−1, . . . , Anδ,k−1. In this case, we first
manipulate the original zonotopic parcel zxk|k−1 = Ak−1ẑ

x
k−1+

zwk−1 to obtain the corresponding zonotope {Ψ, 0n×1} =

⋄{[Ak−1]X̂k−1}⊕Wk−1 . Second, the uncertainty ∆k−1ĉ
x
k−1 is

shifted to the prior zonotope, yielding X̂k|k−1 with generator
matrix Ĝx

k|k−1 =
[
Ψ diag(rad([Ak−1]ĉ

x
k−1))

]
. In doing so,

the order of X̂k|k−1 changes from [ng + nw
g + nδ(1 + ng)]

to [ng + nw
g + 2n], with ng being the order of X̂k−1.

Thanks to Propositions 1 and 2, we achieve forecast
estimates with the standard definitions of zonotopes and
GRVs. Therefore, the elements ẑxk in (20) and the realizations
ĝxk in (21) are, respectively, characterized by the zonotope
X̂k = {Ĝx

k, 0n×1} and GRV X̂k ∼ N (0n×1, P̂
xx
k ), where

Ĝx
k =

[
(In −KkCk)Ĝ

x
k|k−1 −KkG

v
k

]
, (27)

P̂ xx
k = (In −KkCk)P̂

xx
k|k−1(In −KkCk)

⊤ +KkRkK
⊤
k , (28)

with Ĝx
k|k−1 and P̂ xx

k|k−1 being given by (25) and (26),
respectively. In this case, the uncorrelation between ĝxk|k−1

and gvk was exploited.
Recall that both zonotope X̂k and GRV X̂k are obtained

by assuming a known matrix Kk. In order to optimally yield
this design matrix, and thereby, solve Problem 1, we propose
the following theorem.

Theorem 1: Let Ĝx
k in (27) and P̂ xx

k in (28) be the
instances of the cost function Jzg

k in (18), as well as the
known weight parameter η ∈ [0, 1]. Then, minimizing Jzg

k
results in the optimal gain

Ǩk = P zg
k|k−1C

⊤
k (Szg

k|k−1)
−1, (29)

where

P zg
k|k−1 = (1− η)(Ĝx

k|k−1(Ĝ
x
k|k−1)

⊤) + ηP̂ xx
k|k−1, (30)

Rzg
k = (1− η)(Gv

k(G
v
k)

⊤) + ηRk, (31)

Szg
k|k−1 = CkP

zg
k|k−1C

⊤
k +Rzg

k , (32)

and Ĝx
k|k−1 and P̂ xx

k|k−1 are given by (25) and (26), respec-
tively.

Proof: Since tr(M+N) = tr(M)+tr(N) and tr(M) =
tr(M⊤) [23], the function Jzg

k in (18) can be rewritten as

Jzg
k = tr(P zg

k|k−1)− 2tr(P zg
k|k−1C

⊤
k K⊤

k ) + tr(KkS
zg
k|k−1K

⊤
k ),

where P zg
k|k−1 and Szg

k|k−1 are given by (30) and
(32), respectively. Given that both Szg

k|k−1 and P zg
k|k−1

are symmetric, ∂tr(MK⊤N)/∂K = M⊤N⊤ and
∂tr(MKNK⊤O)/∂K = NK⊤OM+N⊤K⊤M⊤O⊤ [23],
the procedure ∂Jzg

k (Kk)/∂Kk = 0 yields P zg
k|k−1C

⊤
k =

KkS
zg
k|k−1. Finally, the fact of Rzg

k ≻ 0m×m is enough to

guarantee that Szg
k|k−1 ≻ 0m×m, whose inversion yields the

optimal gain Ǩk in (29).
Recall that the number of generators of Ĝx

k in (27) is larger
than the amount of generators of the initial matrix Ĝx

k−1.
Iteratively, this growth may imply undesired numerical issues
such as the increase of both storage and processing time.
In order to mitigate the computational burden, some order
reduction should be applied to either Ĝx

k−1 or Ĝx
k to fix its

order in a desired value φg .
In Algorithm 1, we show how to execute one iteration of

the proposed EZGKF. Since the confidence box Iα
k given by

(14) has specific applications, it is also addressed as output.

Algorithm 1: [ĉxk, Ĝx
k, P̂

xx
k , Iα

k ] = EZGKF
(
ĉxk−1,

Ĝx
k−1, P̂

xx
k−1, A0,k−1, A1,k−1, . . . , Anδ,k−1, Bk−1, uk−1,

Gw
k−1, Qk−1, yk, Ck, G

v
k, Rk, α, η, φg

)
1 Apply the order-reduction algorithm of [24] to Ĝx

k−1

to fix its order in φg

2 Obtain the forecast estimates ĉxk|k−1 in (22), Ĝx
k|k−1

in (25), and P̂ xx
k|k−1 in (26)

3 Determine the covariance matrices P zg
k|k−1, Rzg

k , and
Szg
k|k−1 using (30)-(32) to compute the gain matrix

Ǩk in (29)
4 Calculate the current state estimates ĉxk in (19), Ĝx

k in
(27), and P̂ xx

k in (28)
5 Compute the confidence box Iα

k using (14)

A. Complexity Analysis
In Table I, we show the worst-case complexity order of the

proposed EZGKF. For completeness, we also derived the total
complexity order of EZGKP [8] for one iteration considering
decoupled process and measurement noises, yielding

O(EZGKP) = O
(
ng log(ng) + n(ng + p+ nw

g +mnδn
v
g)

+ n2(m+ nδφg + nn2
δ + nδn

v
g) +m2(n+m+ nv

g)
)
.

By comparing the complexity orders, we note that

O(EZGKF)−O(EZGKP)

= nmnv
g(1− nδ) + n2(nw

g − nδn
v
g)− nnw

g ,

whose negative result will denote that EZGKF is faster
than EZGKP. Since nδ ≥ 1, EZGKF may achieve a better
computational performance than EZGKP.

Remark 4: For the cases in which wk and vk are correlated,
the strategy of [25] can be applied to the proposed EZGKF
to remove the correlation that appears between the estimation
error ek = ẑxk + ĝxk and the process noise wk = zwk + gwk . In
doing so, the current orders nw

g and nv
g should be replaced by

nv
g,k−1 and nv

g,k, respectively. For the EZGKP [8], we should
define nw

g = nv
g . These are the unique modifications occurred

in the total worst-case complexity orders derived here. Then,
the derived complexity difference between EZGKP and
EZGKF does not change under nv

g,k−1 = nv
g,k = nv

g .
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TABLE I
COMPLEXITY ORDER O(·) OF EACH STEP FROM EZGKF.

Step O(·)
1 ng(n+ log(ng))
2 np+ nδn

2φg + n2
δn

3

3 n2(nw
g + nδφg +m) +m2(nv

g + n+m)

4 n2(n+m+ nw
g + nδφg) + nm(m+ nv

g)
5 n(nw

g + nv
g + nδφg)

Total ng log(ng) + n(ng + p+mnv
g)

+n2(m+ nδφg + nn2
δ + nw

g ) +m2(n+m+ nv
g)

V. NUMERICAL RESULTS
Next, the proposed EZGKF is experimented over two

numerical examples, which contain specific discussions about
the advantages of EZGKF over EZGKP [8]. For comparison
purposes, we compute three performance indexes, namely:
(i) the mean processing time (TCPU), given by TCPU ≜

1

ms

1

kf

ms∑
j=1

kf∑
k=1

tk,j , where ms ∈ Z+ is the number of Monte

Carlo simulations, kf ∈ Z+ is the time horizon, and tk,j is
the time interval to execute the kth iteration of an algorithm
in the jth Monte Carlo simulation; (ii) the root mean square
error of the ith state (RMSEi), given by

RMSEi ≜
1

ms

ms∑
j=1

√√√√√ 1

(kf − k0 + 1)

kf∑
k=k0

(ĉxi,k,j − xi,k,j)2,

where i = 1, . . . , n and with k0 ∈ Z+ being defined
to disregard the initialization effect; and (iii) the aver-
age largest radius ratio of box (r□), given by r□ ≜
1
ms

1
kf

∑ms

j=1

∑kf

k=1 maxi rad(Iα
k,j), where Iα is given by

(14).
The following computer configuration was used: 8 GB

RAM 1333 MHz, Windows 10 Pro, and AMD FX-6300 CPU
3.50 GHz. All implementations were executed in MATLAB
9.11 with INTLAB 12 [26] and MPT3 [27].

A. Van der Pol Oscillator
This subsection points out a relevant application of mixed

algorithms, since it attributes a real meaning to represent
the uncertainties based on the available knowledge about
them. Consider the Euler-discretized Van der Pol oscillator
given by [28] xk = f(xk−1) +

[
0
1

]
zwk−1, where f(xk−1)=[

x1,k−1 + Tsx2,k−1

−Tsx1,k−1 + (Ts + 1− Tsx
2
1,k−1)x2,k−1

]
, with Ts being the

sampling time, xk =
[
x1,k x2,k

]⊤ ∈ R2, and zwk−1 ∈ R
being an uncertain input whose bounds are known. The
measurement model is given by yk =

[
1 1

]
xk + gvk , with

gvk ∈ R being a noise term whose values are described by
the GRV V ∼ N (0, 0.04). To simulate the system, we set
x0 = 12×1, Ts = 0.1 s, kf = 500, ms = 100, and

zwk =

Ts sin(2kTs), if kTs < 10 s or kTs ≥ 30 s,
Ts(sin(2kTs) + 0.5), if 10 s ≤ kTs < 20 s,
Ts(sin(2kTs)− 0.5), if 20 s ≤ kTs < 30 s.

To estimate states, we set ĉx0 = 02×1, X̂0 = {0.5I2, 02×1},

X̂0 ∼ N (02×1,
1

4ςx
I2), W = {

[
0 0

1.5Ts 0

]
, 02×1}, ςx =

11.829, φg = 100, k0 = 20, η = 0.5, and α = 0.0027 such

x
2

x1

k = 180
k = 120

-2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

Fig. 1. State estimation for the case study of Subsection V-A. The true states
(black ·) are approximately involved by blue (EZGKP) and red (EZGKF)
confidence boxes, and punctually estimated by cyan (EZGKP) and green
(EZGKF) centers for the discrete time horizon k ∈ {120, . . . , 180}.

TABLE II
PERFORMANCE INDEXES FOR THE CASE STUDY OF SUBSECTION V-A.

Indexes EZGKP [8] EZGKF
TCPU 3.1 ms 3.1 ms
RMSE1 0.047 (100%) 0.045 (↓4%)
RMSE2 0.173 (100%) 0.130 (↓25%)

r□ 0.733 (100%) 0.611 (↓17%)

that x0 ∈ Iα
0 . To obtain f(xk−1) = Ak−1xk−1, we choose

Ak−1 =

[
1 Ts

−Ts (Ts + 1− Tszk−1)

]
, where zk−1 = x2

1,k−1.

By defining the confidence interval [zk−1] = (Iα
1,k−1)

2 with
α = 0.0027, the partial matrices A0,k−1 and A1,k−1 are

finally given by A0,k−1 =

[
1 Ts

−Ts Ts + 1− Tsmid([zk−1])

]
and A1,k−1 =

[
0 0
0 −Tsrad([zk−1])

]
.

For comparison purposes, Fig. 1 already illustrates an
enhancement of both accuracy and precision when employing
EZGKF rather than EZGKP. Then, we expect to attain better
centers and confidence domains with EZGKF. This expectancy
is corroborated by Table II through smaller RMSE and r□.

Table II also shows that no significant difference of TCPU

is noted between the algorithms. This issue accords with the
performance analysis made in Subsection IV-A, which points
out no difference of complexity between the EZGKP and
EZGKF algorithms for this example. The reached value of
TCPU is also much smaller than the sampling time, enabling
the direct use of such algorithms in real-time applications.

B. LPV Application
Now, we illustrate a case in which Remark 3 can be

interesting to compose the EZGKF; this modification is here
called EZGKF-M. Based on [7], consider the discrete-time
LPV dynamical system given by

xk =

[
0 −0.5
1 1 + δk−1

]
xk−1 + wk−1,

yk =
[
−2 1

]
xk + vk,

where δk−1 ∈ [−0.3, 0.3]. We consider that wk−1 =
zwk−1 + gwk−1 and vk = zvk + gvk , whose characterizations are

given by W = {0.5L, 02×1}, with L = 0.02

[
−6 0
1 0

]
, W ∼

N (02×1,
1
36LL

⊤), V = {0.1, 0}, and V ∼ N (0, 1
90.01).
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TABLE III
PERFORMANCE INDEXES FOR THE CASE STUDY OF SUBSECTION V-B.

Indexes EZGKP [8] EZGKF EZGKF-M
TCPU 1.6 ms (100%) 1.6 ms 1.2 ms (↓25%)
RMSE1 0.0437 (100%) 0.0348 (↓20%) 0.0328 (↓25%)
RMSE2 0.0513 (100%) 0.0449 (↓12%) 0.0419 (↓18%)

r□ 0.646 (100%) 0.600 (↓7%) 0.386 (↓40%)

The system is simulated with x0 =
[
0.1 0.1

]⊤
, kf = 40,

and ms = 100. The terms gwk−1 and gvk are taken from
GRVs, while the terms zwk−1 and zvk are taken from uniform
distributions. To estimate the states, we additionally set the
following parameters: ĉx0 = 02×1, Ĝx

0 = 0.1I2, P̂ xx
0 =

0.04
47.316 I2, φg = 4000, k0 = 4, η = 0.5, α = 0.0027, and

matrices A0,k−1 =

[
0 −0.5
1 1

]
and A1,k−1 =

[
0 0
0 0.3

]
.

The results of state estimation are summarized in Table III.
As expected, EZGKF-M implies the smallest performance
criteria. Remark 3 is here a good option because the state
matrix Ak−1 is really interval; unlike Subsection V-A where
the state matrix is affine.

VI. CONCLUSIONS

This paper presented a new mixed filter for nonlinear
systems called EZGKF. By employing the quasi-LPV ap-
proach, no analytical linearization is required. The proposed
EZGKF is a filter version of the nonlinear predictor EZGKP
[8]. As previously investigated in the literature [2], [29], the
precision and the accuracy of filters may be better than those
of predictors because both past and current measurements are
incorporated by the state estimator. According to the explicit
calculus, we derived the worst-case computational complexity
of the proposed EZGKF and shown that it may imply smaller
computational cost than the EZGKP, making our proposal
more appealing. The benefits of using the proposed EZGKF
instead of the EZGKP are illustrated in a two-state practical
example and in an LPV application. As future work, we intend
to analyze the case where the output matrix is uncertain,
enabling then the linearization of the output equations via
the quasi-LPV approach.
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