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Abstract— Energy storage on all-electric vessels can en-
able shipboard-integrated power systems to meet increasing
pulse load requirements and reduce fuel consumption and
greenhouse gas emissions. However, integrating energy storage
into shipboard power systems imposes additional requirements
on the power management systems. In this paper, a power
management controller is developed for the integrated power
system utilizing a model predictive control (MPC) scheme. The
MPC formulations developed here aim to manage the competing
requirements of minimizing component health degradation and
the power tracking error when responding to high ramp rate
power demands. Sensitivity analysis is performed to explore the
direct trade-off between generator health and battery health
when meeting the load power demand is strictly enforced. The
MPC solution is demonstrated for varying energy storage sizes
to provide insight for the design and operation of an integrated
shipboard power system.

I. INTRODUCTION

Increasing regulations on greenhouse gas emissions in the
maritime shipping industry has driven ship electrification.
As the installed electric load increases, more energy storage
systems have been incorporated to improve energy efficiency,
enhance power quality, and ensure reliability [1]. In [2], the
hybrid propulsion architectures studied are shown to reduce
emissions and fuel consumption by 10-35%.

To take advantage of the different characteristics of the
energy sources and maximize the fuel-saving potential of
these hybrid power systems, advanced energy management
systems (EMS) are needed. Among many functions per-
formed by the EMS, meeting load power demands while
enforcing the physical constraints of the propulsion plant
is essential [3]. Lifecycle and health protection of power
systems are important attributes in EMS design. Although
generator ramp-rate limits can be increased in response
to pulsed power loads, this decreases the lifetime of the
generators due to increased wear and tear and could even
trigger sudden failure. Meanwhile, over-cycling or high depth
of discharge can cause performance degradation in energy
storage units [4]. The energy management strategy must
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minimize power-tracking errors while also mitigating the
impact on the system’s health.

Predictive control has been extensively studied for ship-
board energy management systems. In [5], a predictive
energy management strategy is proposed on an autonomous
ship with batteries. The authors use the predicted trajectory
to estimate future required power. The optimal energy split
between generators and batteries is then solved using the
formulated power prediction. In [6], an equivalent strategy
is used with MPC to minimize fuel consumption. The power
split between the diesel generator, battery, and ultra-capacitor
energy storage is determined by assigning an equivalent
factor to the battery and ultra-capacitor to convert their
electrical powers into an equivalent fuel consumption. An
MPC framework is proposed in [7] that aims to minimize
fuel consumption on a vessel with four diesel generators,
batteries, two main engines, and shaft generators for power
take-off/power take-in. Fuel savings are shown for multiple
operating profiles.

Additionally, predictive control strategies have been pro-
posed for specifically meeting the pulse load demands on
a shipboard power system. In [1], [8], and [9] predictive
control algorithms to coordinate the generator and energy
storage are utilized to meet the propulsion power demand and
a pulsed power load while enforcing generator and energy
storage rate limits. In [10], an adaptive MPC formulation
is proposed to handle parameter uncertainty and fluctuating
power demand on a vessel with batteries and ultra-capacitors.
MPC with load prediction is demonstrated in [11] for ship-
board power and energy management, where the authors
show that the system component constraints can be met
and a specific final state of charge (SoC) can be enforced.
In [12] and [13], real-time MPC-based power management
is demonstrated with an IPA-SQP approach and Interior
Point Optimizer, respectively. These papers show the power
management controller results on a real-time simulator and a
physical test bed representing two generators under square-
wave pulse loads. In these approaches, component wear is
reduced by penalizing the generator power ramp rate. The
authors show the sensitivity between the ramp rate penalty
and the tracking error performance.

Contribution: While the approaches in [1, 8, 9, 14,
10, 11] take into account the dynamic constraints of the
generators and/or energy storage systems, they do not dis-
cuss the trade-off between component health and tracking
performance. In [12, 13], the generator ramp rate limits are
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adjusted and tracking performance is evaluated. However, the
integration of energy storage is not explored. In this paper,
we develop an MPC formulation for power tracking of an
integrated power system with generator sets and batteries.
Through case studies, we quantify the trade-off between
generator and battery health protection when tracking a high-
ramp-rate load profile.

This paper is organized as follows: Section II introduces
the readers to the notations used throughout the paper and the
shipboard power system model. This section also describes
the design of the power profile. A proposed power tracking
and battery health MPC control algorithm and simulation
results are presented in Section III. In Section IV, sensitivity
analysis is introduced to evaluate the component health trade-
off. Finally, Section V concludes the paper.

II. SYSTEM MODEL

In this section, we give the mathematical notations used
throughout the paper followed by the shipboard power sys-
tem (SPS) model and the hierarchical control structure for
the SPS. Then, we present the mathematical modeling of
the components in the SPS. The space of natural numbers is
represented by N, and the space of real numbers is denoted
by R. R+ denotes a positive real number. The space of
real vectors of n elements is denoted by Rn, real matrices
consisting of n rows and m columns are denoted as Rn×m.
Natural and real scalars are both denoted by lower-case
letters (i.e. u ∈ N and u ∈ R). Real vectors are represented
by lower-case bold letters (i.e. s ∈ Rn). The vector consisting
of all ones is denoted as 1m ∈ Rm.

A. Notional 4-Zone Shipboard Power System

Fig. 1. Notional 4-Zone SPS Model and its hierarchical control structure

Figure 1 depicts the zonal representation of SPS and the
hierarchical control structure for SPS. The control structure
was designed as a two-level control scheme consisting of
an upper-level energy management MPC layer and a lower
device-level control layer (DLC) [15]. More insight into the
DLC is provided in the next subsection. The upper/MPC

layer acts as a reference power generator for the lower device
level controller. All 4 zones are unified through a common
12kV DC bus. The common bus voltage is regulated utilizing
a DLC. Each zone consists of: numerous power-supplying
sources such as power generation modules (PGMs), which
contain fuel-operated generators, power conversion modules
(PCMs), which consist of numerous battery modules lumped
together, and power-consuming loads such as propulsion
motor modules (PMMs). In this work, only the key elements
in the SPS model were considered such as the PGMs, PCMs
(batteries), and PMMs. The power demand and supply must
be balanced within some acceptable tolerance. Thus, the
power flow in the SPS is given as follows:

n∑
i=1

pgi(t) +

m∑
j=1

pbj (t)− pd(t) = 0, (1)

where pgi , pbj , pd ∈ R are powers corresponding to the
generator, battery energy storage element, and power demand
respectively.

B. PGM, Battery and Power Load Modeling

The PGM model consists of a current-controlled DC volt-
age source coupled with a series RL impedance connected
to the bus, whose voltage was assumed to be regulated to a
set point. A dynamical model consisting of n PGMs is given
as follows:

lg
dig
dt

= −rgig + vbus1n − vg, (2)

where ig ∈ Rn are the generator currents, and vg ∈ Rn are
the controllable voltage sources. The generator inductance
lg is in Henrys, rg is the generator resistance in Ohms, and
vbus is the bus voltage to which the PGMs are coupled.
As mentioned, the assumption was that the bus voltage is
being regulated to a set point and is already at steady state.
The current injected by the PGMs into the bus is dictated
by controlling this voltage source. Given an optimal power
profile pgr from the upper layer control, the reference current
igr ∈ Rn is generated as: igr = pgr/vbus and the local DLC
input vg is determined via a closed loop control scheme in
which the device level states track the reference current such
that ∥∥∥̃ig(t)∥∥∥ ⩽

∥∥∥̃ig(t0)∥∥∥ e−λ(t−t0),∀ t ⩾ t0 ⩾ 0 (3)

where ĩg = ig − igr is the tracking error associated with
the PGM currents and λ > 0. We assumed that there exists
a continuously differentiable, positive definite function V :
Rn → R satisfying [16]

k1(∥̃ig∥) ⩽ V ⩽ k2(∥̃ig∥),
∂V

∂ ĩg

˙̃
ig ⩽ −k3(∥̃ig∥).

Thus, there exists a stabilizing controller of form vg = k(̃ig)
[16]. We assumed that the device-level controller dynamics
are significantly faster than the high-level controller.

The battery model consists of multiple energy storage
systems (ESSs) which were modeled as a current-controlled
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voltage source and a resistance rb coupled to the bus. The
battery current ib is dictated by the controllable voltage
source vb. The open circuit voltage voc is a function of the
battery state of charge (SoC). The relation between voc and
SoC can be approximated using various functions ranging
from lower to higher orders with the linear approximation
being the fundamental one given as voc = c1SoC+c2, where
c1, c2 are constants [17]. Since the battery voltage dynamics
are fast compared to SoC dynamics, they are neglected and
the control input vb ∈ Rm is determined through

vb = vbus −
pbrrb − vbusvoc

vbus
,

ib =
vbus − vb − voc

rb
,

where pbr is the optimal power profile from the upper-level
controller.

The discretized dynamic model for the SoC is given for
the m number of batteries as follows:

SoCk+1 = SoCk − Ts
ib
Q
, (4)

where Ts is the discretization time-step, ib ∈ Rm denotes the
battery current vector, SoC ∈ Rm the SoC vector, and Q
the total capacity of an individual battery pack in ampere−
hours. We assume that all battery modules have the same
capacity; however, the technique can be easily generalized
to handle different capacities.

The power load was modeled as a resistive load whose
current can be controlled by means of a controllable voltage
vL based on the power demand. Given a power demand pL,
the controllable load voltage vL, which determines the load
current iL is given as:

vL = vbus −
pLrL
vbus

,

iL =
vbus − vL

rL
,

where rL is the load resistance. The assumption made in
designing the load was that there is only one load module that
consumes the power generated by n PGMs and m batteries.
Thus pL, vL ∈ R.

Onboard the vessel being studied there are three generators
with a total installed generator power of 29 megawatts. The
baseline number of modules used is 15 with a capacity of 20
amp-hours each. In the next section, we present the high-level
control designed using an MPC scheme. The model and the
nominal device-level control design developed in this section
act as a base for the deployment of the high-level controller.

III. POWER TRACKING AND BATTERY HEALTH

In this section, the controller formulation was developed
to minimize the power tracking error and the battery health
degradation over the power demand profile. Within the
developed MPC formulation, the generator ramp rate was
held constant so that battery health and the tracking perfor-
mance could be compared directly. Using this controller the

Fig. 2. Load Profile Tested in Simulations

sensitivity to the prediction horizon was tested in MATLAB-
SIMULINK. A fixed-step simulation time of 10−3sec was
used for simulation. The MPC updates the control at a
slower rate of 1sec. The performance of the proposed power
management controllers are tested against the power demand
profile shown in Figure 2, which includes both pulse-power
loads and other high-ramp-rate loads.

In the formulation presented below, the cost function
includes the square of the tracking error and the battery usage
cost.

Minimize:

k+h−1∑
j=k

(pfj − pgj − pbj )
2 + α ∗ log

( −|ibj |

Q +β

β

)
,

s.t. pmin
g ⪯ pgj ⪯ pmax

g ,

Rgj = pgj − pgj−1
,

−Rg ⪯ Rgj ⪯ Rg,

pbj = (vocibj − i2bjrb)m,

SoCj+1 = SoCj −
ibj
Q

,

SoCmin ⪯ SoCj ⪯ SoCmax,

(5)

where pfj , pgj , pbj ∈ R denotes the forecasted power,
the power injected by the PGM, and the power injected by
the batteries at every instant in the horizon. The battery
current per module is denoted by ibj ∈ R. The lower
and upper power limitations on the PGMs are pmin

g and
pmax
g respectively. The ramp-rate of the generator is Rgj

at every instant in the horizon, and Rg is the limit on the
ramp-rate magnitude. The lower and upper SoC limitations
are denoted SoCmin and SoCmax, respectively. PGM and
Battery powers are used in initializing the optimization
problem in (5).

Battery usage was penalized using a logarithmic barrier
function. The tunable barrier function was chosen to capture
an upper limit of the battery module current with the β ∈ R+

parameter, while the battery usage cost was adjusted with the
α ∈ R+ weighting parameter. Figure 3 shows the battery
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usage cost for different β values used in the logarithmic
barrier function. Unless otherwise noted, the results shown
in this paper use a set of baseline parameters. The MPC
controller uses a prediction horizon of 10 seconds and β =
10.

Fig. 3. Battery Usage Cost (W 2) with Different β Values

In the first set of simulations the generator ramp rate limit
was a fixed constraint in the MPC formulation. With the ramp
rate of the generator constrained, root mean square (RMS)
power tracking error is compared to the RMS C-rate of the
battery modules to represent the state of health degradation of
the battery over the load profile. This metric is used because
a higher battery C-rate has been shown to lead to capacity
loss and decrease the cycle life of the battery [18]. The RMS
power tracking error and RMS C-rate is calculated by the
following equation defining the RMS of a variable x:

RMS =

√√√√ 1

N

N∑
j=1

xj
2, (6)

where N is the number of data points and xj is the evaluated
variable.

Fig. 4. Power Tracking Performance with Different Battery Usage
Weighting

The power tracking performance of the power manage-
ment controller for three different battery usage weightings
is shown in Figure 4. The yellow dashed line represents
a large battery usage weighting, where the battery is not
used, and hence represents the best possible power tracking
performance when using only generators. The solid blue line
shows the performance where the battery is used heavily, and
the dotted red line is a case in between those two. When the
battery usage weighting is equal to one, the power demand
and power generated nearly overlap.

In Figure 5, the RMS power tracking error and RMS C-
rate of the battery over the load profile is shown as a function
of the battery usage weighting. The relationship shows the
expected tradeoff between battery usage and power tracking
performance.

Fig. 5. RMS Power Tracking Error and RMS Battery C-rate for Different
Battery Usage Weighting

The prediction horizon h is a design variable in MPC. To
select its value, the sensitivity to the prediction horizon of
the MPC controller was explored. The performance of the
responses for MPC with a prediction horizon length of 2s to
30s was evaluated. The simulations were run with a constant
value for the battery usage weighting α. The results show the
improved performance with a longer controller prediction
horizon. Diminishing returns in both RMS power tracking
error and RMS C-rate can be observed. The computation
time for four different prediction horizon lengths is quantified
in Table I. Based on the sensitivity analysis, a prediction
horizon of h = 10 was selected. With the results from this
MPC formulation, it can be seen that there is a clear tradeoff
between battery state of health and the power tracking of the
SPS.

IV. BATTERY AND GENERATOR HEALTH
TRADE-OFF

In this section, an MPC formulation was developed to
evaluate the cost of generator and battery usage. This was
done under the constraint that the power demand is to be fully
met by the battery and generators. With this requirement,
high-ramp-rate loads will impact the battery and generator
health. The predictive control allows the EMS to manage
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TABLE I
COMPUTATION TIME FOR DIFFERENT PREDICTION HORIZON LENGTHS

Prediction Computation RMS RMS Power
Horizon (s) Time (s) C-rate Tracking Error (MW)

2 0.3058 3.6207 1.1625
10 0.6077 2.8662 0.5884
20 1.3467 2.6473 0.4341
30 2.7323 2.6393 0.4261

the degradation and make the proper trade-off. Once again
the battery state of health degradation was represented by
the RMS C-rate. The generator state of health degradation is
impacted by the RMS generator ramp rate, as shown in [8,
12]. Therefore, it is used in the cost function of the MPC
optimization. To evaluate the trade-off between generator
health and battery health, the MPC formulation shown below
was explored through simulations.

Minimize:
k+h−1∑
j=k

(
Rgj

)2

−α ∗ log
( −|ibj |

Q + β

β

)
s.t. pfj = pgj + pbj ,

pmin
g ⪯ pgj ⪯ pmax

g ,

Rgj = pgj − pgj−1 ,

−Rg ⪯ Rgj ⪯ Rg,

pbj = (vocibj − i2bjrb)m,

SoCj+1 = SoCj −
ibj
Q

,

SoCmin ⪯ SoCj ⪯ SoCmax.

(7)

In this formulation, the load power demand is imposed as
a hard constraint. The objective function includes terms
associated with the generator ramp rate and the battery C-
rate. Minimizing the objective function represents the effort
to protect the health of the components. All of the parametric
notations described in Section-III for equation (5) are the
same as the MPC problem in (7). The power profile shown
in Figure 2 was used again to simulate a series of high-ramp-
rate events.

The results from simulations with 15 battery modules
are shown in Figure 6, where the usage of the battery and
generator can be seen for different α weightings. In Figure 7
the RMS C-rate of the battery and the RMS generator ramp
rate are plotted as a function of battery usage weighting.

Finally, the trade-offs between generator health and battery
health were explored for different energy storage sizes. In
Figure 8 the relationship between generator ramp rate and
battery C-rate is shown for varying sizes of energy storage.
The impact of adding more battery modules onboard is
shown to decrease the average C-rate down and/or decrease
the average generator ramp rate.

V. CONCLUSIONS

In this paper, two trade-offs were explored using model
predictive control (MPC) for a power management system.
The trade-off between battery health and power tracking

Fig. 6. Power Split Results with 15 Battery Modules. (a) Generator Power
Demand. (b) Battery Power Demand

Fig. 7. Battery RMS C-rate and RMS Generator Ramp Rate vs Battery
Usage Weighting with 15 Battery Modules

Fig. 8. Battery RMS C-rate versus RMS Generator Ramp Rate for Different
Size Energy Storage
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ability was evaluated as well as the trade-off between battery
health and generator health. For the first comparison the
MPC formulation held the maximum allowed generator ramp
rate constant and the power tracking error and battery usage
were minimized. In the second formulation the generator
ramp rate and battery usage was minimized while enforcing
a power tracking condition. In both MPC cost functions
the battery usage cost was calculated using a logarithmic
barrier function to represent physical component constraints
and reduce the penalty on low C-rate usage.

The proposed MPC formulations provide tools to assist
designers in designing a diesel electric ship with energy
storage. For example, Figure 8 can be used for sizing the
battery storage units. Different tuning parameters such as α
for the weighting, β in the barrier function, and h for the
prediction horizon can be properly chosen to reflect different
priorities and to explore the design space.

While the proposed MPC formulation was demonstrated
with one loading profile in this case study, the approach is
generalizable with a wide range of possible ramp rates. A
real operational power profile could further provide insights
to energy storage sizing for any given vessel. For future
study, the MPC formulations can be expanded to include
the power tracking error and both the battery C-rate and
generator ramp rate together. The cost of battery usage
can also be modeled to directly capture battery degradation
mechanisms. An asymmetrical barrier function that penalizes
charge and discharge rates differently could be explored to
more accurately capture the impact to battery state of health.
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