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Abstract— Analysis and control of network systems largely
rely on the availability of the network topology and the gov-
erning dynamics. In some cases, where the network dynamics
and topology may not be available, researchers have relied
on data-driven methods for the control of networks. A strict
requirement of these methods is the collection of large amounts
of persistently exciting data to enable control design. Moreover,
these methods are largely restricted to linear systems and due
to the open-loop nature of the control, lack robustness in
the presence of external disturbances. In order to overcome
these limitations, we present an online data-driven closed-
loop control architecture for a nonlinear network system with
unknown topology. Our method uses a novel ‘cut-and-rewire’
technique to assign a network topology that meets the desired
control objectives while obviating the need for persistently
exciting inputs and large open-loop offline data collection. We
provide local asymptotic (exponential) stability guarantees for
the closed-loop dynamics. We validate the results on a network
of Kuramoto oscillators and achieve synchronization, phase
balancing, and cluster formation when the underlying oscillator
network topology is unknown and with noisy measurements.

I. INTRODUCTION

A multitude of systems, both in nature and engineered,
where more than one agent interacts with each other can
be modeled as a set of dynamical equations coupled over a
network. Some commonly found examples in nature include
the synchronous behavior in the flashing of fireflies [1]
and synchronizing behavior in heart pacemaker cells [2] to
name a few. The control of complex networks has been
a major area of research among the control community,
which includes formation control of multi-agent systems
[3], cluster synchronization [4], control of power-grid [5],
analyzing controllability metrics of network systems [6], [7]
and the propagation of opinions through social influencer
networks [8]. In neurological systems the neural activity
can be modeled as a network of Kuramoto oscillators [9]
and certain neurological disorders like Parkinson’s disease
[10] and epileptic seizures [11] can be attributed to loss of
synchronicity, and hypersynchrony of the neurons respec-
tively. Deep brain simulations [12], which inject electrical
impulses into specific sections of the brain to control the
synchronization of multiple brain regions, are one of the most
successful techniques for treating such illnesses. The control
of complex networks is particularly challenging due to the
high dimensionality of the state-space. In recent works on the
geometric control of nonlinear dynamics on a network, the

1KS and RP are with the Dept. of Electrical Engineering, IIT-Madras,
India. They are also associated with the Robert Bosch Center for Data Sci-
ences and Artificial Intelligence at IIT Madras. {ee21d405@smail,
ramkrishna@ee}.iitm.ac.in

2 VC is the Dean of Engineering, GITAM (Deemed to be University),
Visakhapatnam, India. dean_engineering@gitam.edu

authors in [13] give conditions for feedback linearizability of
network systems based on graph theoretic conditions, which
reduces the computations required to check the feedback
linearizability of large networks. Even though model-based
control techniques provide tools to tackle problems in net-
work control, they rely on the fact that the network topology
is known. In general for a dynamical system, when the
system dynamics are unknown, data-driven methods provide
a means to design controllers directly based on system input-
output or input-state data [14], [15], [16], [17], [18].

Related Work: In the case of data-driven control of
networks, [19] provides a solution to the point-to-point
control of states in open-loop for network systems using
data, when the system dynamics and the network topology
is unknown. The authors use offline input-output data to
design optimal open-loop control signals to drive the node
states from one point in state space to the desired point.
However, the method requires a considerable amount of
persistently exciting data points to be collected offline and
is based on a linear approximation of the system. Moreover,
since the method is open-loop, it is not robust to exogenous
disturbances. Thus, to overcome these shortcomings, we pro-
pose a closed-loop feedback cancellation-based strategy for
the control of networks with nonlinear node dynamics with
unknown edges. The method does not require persistently
exciting data sets as it is implemented online, and is novel
with regard to the topology modification capability of the
control architecture. The main contributions of this article
are encapsulated below.

Contributions: We propose a novel two-part online data-
driven control architecture for a nonlinear network unknown
topology: The first part consists of an online data-driven
estimator that estimates the states and the value of the
nonlinear coupling terms at each instant without persistently
exciting data samples. The second part is a feedback control
law that utilizes a ‘cut-and-re-wire’ strategy to assign a
desired topology to the network. We provide Lyapunov-based
guarantees for the asymptotic (exponential) stability of the
desired equilibrium in closed-loop. We present a simulation-
based validation for the control architecture proposed using
a network of Kuramoto oscillators. We demonstrate that any
desired behavior such as phase synchronization, phase bal-
ancing, and cluster formation can be achieved by assigning
an appropriate topology. We demonstrate the robustness of
the method, by introducing essentially bounded measurement
noise into the system.

Notations and Preliminaries: col{x1, . . . , xn} represents
the column vector with elements {x1, . . . , xn}. R, R+

represents the set of real numbers and the set of non-
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negative real numbers respectively. Tn represents the n-torus
or the cartesian product of n-circles. 1m corresponds to a
column vector of ones, of length m. The big-O notation:
f (x, t) = Ox(T ) implies ∃ K,T ∈ R+ such that, ∀t ∈ [0,T ],
|| f (t,x)|| ≤ KT ||x(t)||. The estimate of a state x(t) will
be represented as x̂(t). The cardinality of a set X will be
denoted as |X |. A graph G = (V , E ) is a collection of
nodes V = {1, 2, , . . . , n}, which could represent various
subsystems in a dynamical system. Each subsystem can
interact with one another via couplings or communication
links, that are represented using edges E ⊂ V × V . The
strength of coupling between each nodes can be represented
by a scalar w : E → R. The adjacency matrix of a graph is
defined as [A]i j = wi j, if (i, j) ∈ E and 0 otherwise.

II. THE NETWORK DYNAMICS AND PROBLEM
FORMULATION

Consider the dynamics of the ith node, given by

ẋi = fi(x)+biui (1)
yi = cixi (2)

where each xi ∈R, such that x = col{x1, . . . , xn} ∈Rn is the
state vector, ui ∈ R, yi ∈ R are the input injected and the
output respectively at the ith node. bi, ci are the input and
output gains respectively for the ith node. The couplings or
the interactions between nodes can be captured by a graph
G = {V ,E }. Let A ∈ Rn×n be the adjacency matrix for the
graph. By convention, if there exists a directed edge from
ith to the jth node, then f j(·) is a function of xi, i.e. the
dynamics of the jth node is influenced by the state xi.

Various tools in literature, such as feedback linearization,
provide a method to control the nonlinear network dynamics
(1)-(2) provided we have complete knowledge of the edge
set E , and hence the coupling functions fi(·). The lack
of knowledge of how the subsystems interact with each
other makes the problem challenging. Hence in this article,
we pose the problem of designing control inputs ui using
data-driven techniques for a network of nonlinear dynamical
systems (1)-(2) on a graph G = {V ,E } such that the control
law renders the x∗ ∈Rn locally asymptotically(exponentially)
stable in feedback. The point x∗ may belong to the span{1n},
in which case the states reach a consensus or synchrony. In
other applications, the point x∗ could refer to a particular
formation of a collection of robots or cluster formation in
coupled oscillator networks. Since the states, as well as the
coupling functions fi(·) are unknown, we need to estimate
them in order to implement the feedback cancellation control
law. We begin by designing a data-driven estimator in
Section III. We define the feedback-cancellation-based ‘cut-
and-rewire’ controller that assigns the desired topology to
the network. We provide the main results that guarantee the
asymptotic (exponential) stability of the point x∗ in Section
V. Finally, we validate the results on a network of Kuramoto
oscillators in Section VII.

Remark 1. The method proposed can be used to assign
a desired topology to a selected subgraph G ′ = (P, F )

of G where P ⊆ V , F ⊆ E , |P| = p ≤ n, with the
assumption that the network dynamics is minimum-phase (or
the dynamics of the nodes V \P is stable). Henceforth, to
broaden the scope of the study, we will focus on the control
of nodes in a subgraph of a minimum-phase network system.

III. SAMPLED-DATA SYSTEM MODEL AND DATA-DRIVEN
ESTIMATION

Due to the inherent discrete nature of data-driven con-
trollers, we first discretize the dynamics (1), (2) for i =
1, 2, . . . , p ≤ n. We assume that the output is sampled using
an ideal sampler and the input is injected via a zero-order
hold. Let the sampling time be T . The sampled-data node
dynamics, using Euler-Discretization is given by

xi(k+1) = xi(k)+T ( fi(x(k))+ui(k))+Ox(T 2) (3)
yi(k) = xi(k). (4)

Now, for a small enough sampling time, the function fi(x(k))
can be assumed to be constant in the interval [kT, (k+1)T ).
Let σi(k) := fi(x(k)) be the value of the function at the kth

instant. Taking σi(k) to be an extended state, we can re-write
(3) and (4) as

xi(k+1) = xi(k)+T (σi(k)+ui(k))+Ox(T 2) (5)
σi(k+1) = σi(k)+Ox(T ) (6)

yi(k) = xi(k). (7)

For a small enough sampling, neglecting the higher order
terms in T , we can obtain a linear system model at each
time instant, given by[

xi(k+1)
σi(k+1)

]
= E

[
xi(k)
σi(k)

]
+Fui(k) (8)

yi(k) = H
[

xi(k)
σi(k)

]
(9)

where E =

[
1 T
0 1

]
, F =

[
T
0

]
, H =

[
1 0

]
. The estimate

of the state xi(k) and the estimated state σi(k) can be
obtained using the estimator proposed in [18]. The data-
driven estimator for (8), (9) is given by[

x̂i(k)
σ̂i(k)

]
= (OT O)

−1
O[Yi(k)+MUi(k−1)] (10)

where O is the 2 × 2 observability matrix of the
pair (E−1, G), Yi(k) = col{yi(k), yi(k − 1)}, Ui(k − 1) =
col{0,ui(k− 1)}, M is the matrix constructed using the of
Markov parameters of (E−1, F, G). The error in reconstruc-
tion can be shown to be of O(T ), Refer [18].

IV. FEEDBACK CANCELLATION AND TOPOLOGY
RE-ASSIGNMENT

The main objective of the controller is to cancel the
nonlinear couplings present in the node dynamics and re-
assign the network topology to achieve the desired behavior
in the states of the nodes in the subgraph P . Let the desired
configuration of the states be denoted by x∗ ∈Rp. We assume
the following
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Fig. 1. In Figure I: an n-node graph with p = 5, and an unknown topology.
The control inputs assign the desired topology to the subgraph shown in red,
after cancelling the existing topology. In figure II, it can be seen that the
incoming edges from subgraph B are canceled, whereas the edges that are
outgoing to subgraph A are still present. Subgraph C is unaffected by the
control inputs as it is not connected to any of the 5 nodes.

Assumption 1. There exists a set of vector fields
col{g1(·), . . . , gi(·)}, i ∈ P ⊆ V such that gi(x∗) ≡ 0 ∀ i ∈
P , gi(x + Ox(T )) = gi(x) + Ox(T ) and, the point x∗ is
locally asymptotically (exponentially) stable with a region
of attraction D , such that x∗ ∈ D ⊆ Rp.

Once the estimate of the states, as well as the nonlin-
ear couplings fi(·) are obtained, the following control law
(similar to feedback linearization) can be used to cancel the
existing unknown nonlinear coupling and inject the desired
dynamics gi(·) into the nodes of the subgraph P .

ui(k) =−σ̂i(k)+gi(x̂(k)) (11)

Remark 2. The control law (11) will only cancel the effects
of the incoming edges at the ith node. The outgoing edges
remain unaffected by the control law, as shown in Fig. 1.

V. MAIN RESULTS

In this section, we present the main results of the article
which guarantees the asymptotic (exponential) stability of
the desired equilibrium point, using the data-driven estimator
designed in III and the control law given in Section IV.

Theorem 1. Consider the node dynamics (1)-(2), which is
assumed to be minimum-phase, on a graph G = (V ,E ),
where the set of nodes V is known and the edges in E
are unknown. Let Assumption 1 hold, such that the desired
coupling functions be gi(·), i∈P ⊆V . Then the control law
(11), together with a data-driven estimator (10), guarantee
the existence of a sampling time T ∗ such that, for all
T ∈ (0, T ∗], the states x ∈ Rp evolve along the flow given
by the vector field col{g1(x), . . . , gp(x)}. Furthermore, all
trajectories starting in D converge to the state x∗ ∈ D
asymptotically (exponentially).

Proof: The control law can only be executed after k = 2,
as the data-driven estimator requires at least two data points
to estimate the states as well as the coupling nonlinearity. Let
u∗0 and u∗1 be the control inputs given at instants k = 0 and
k = 1 respectively. These inputs can be selected at random.

Initial Data-Collection Period (k = 1,2): Let x0 be the
initial condition at k = 0. Since x0 ∈ D and D is an open
subset of Rp, there exists a sampling time T1 and small
enough control inputs u∗0, u∗1 such that the trajectories of
(3)-(4) remain in D .
Trajectories Beyond k = 2: The control law (11) can be
implemented, and thus substituting (11) in (3), we have:

xi(k+1) = xi(k)+T (σi(k)− σ̂i(k)+gi(x̂(k)))+Ox(T 2)
(12)

Since x̂i(k)− xi(k) = Ox(T 2) and σ̂(k)−σ(k) = Ox(T ), and
the from assumption that gi(x+Ox(T )) = gi(x)+Ox(T ), we
obtain

xi(k+1) = xi(k)+T gi(x(k))+Ox(T 2) (13)

whose trajectories starting in D , asymptotically (exponen-
tially) converge to the equilibrium x∗ (from Assumption (1)).
Next, we show the existence of the sampling time T ∗, for
asymptotic and exponential stability.
Case 1: (Asymptotic stability) Using the converse Lyapunov
theorem for asymptotic stability (Theorem 4.17, [20]), there
exists a positive definite V (x) and a continuous positive
definite W (x) which is bounded on any compact subset of
D , such that

V (x(k+1))−V (x(k))≤−TW (x(k))+Ox2(T 2)

≤−TW (x(k))+W (x(k))Ox2(T 2)

= TW (x(k))(−1+T ||x(k)||2)
≤ TW (x(k))(−1+Tr2)

where the second inequality comes from the fact that
W (x)Ox2(T 2) = Ox2(T 2), whenever ||W (x)|| ≤ r on D . The
last inequality is a consequence of W (x) being bounded on
a compact subset of D . By choosing T ∈ (0,T ∗], where
T ∗ = min{T1,

1
r2 }, we can guarantee the asymptotic stability

of x∗. This concludes the proof.
Case 2: (Exponential Stability) Using the converse Lyapunov
theorem(Theorem 4.14, [20]) for an exponentially stable
equilibrium point, there exists a positive definite V (x) and
K > 0 , such that

V (x(k+1))−V (x(k))≤−T K||x(k)||2 +Ox2(T 2)

≤−T K||x(k)||2 +M1T 2||x(k)||2

= T ||x(k)||2(−K +M1T )

and T ∈ (0,T2], such that T2 ≤ K/M1. Hence choose T ∗ =
min{T1,T2} such that the states xi, i ∈ P exponentially
converge to x∗. This concludes the proof.

VI. DISCUSSIONS

Obviating Persistency of Excitation: Owing to the online
nature of the data-driven controller, we do not require the
data to be persistently exciting. This is because the data-
driven estimator does not involve computing the pseudo-
inverses of the matrices Yi or Ui, which are otherwise needed
in offline data-driven control techniques like in [19].
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Node-Dynamics with Higher Relative Degree: The con-
trol scheme proposed can be generalized to node dynamics
with arbitrary relative degree ρ . In this case, the data-
driven estimator will require at least ρ + 1 past samples to
reconstruct the present states and extended states.

Sampling Time, Number of Samples and Noise: It
can be shown that for an essentially bounded noise in
the measurements, the estimation error is at most of order
σi − σ̂i = Ox(T )+Od̄(T

−ρ) where ρ is the relative degree
of the node dynamics and d̄ = esssupt∈R+ ||d(t)|| where d(t)
is the additive noise in the sensor measurements. Hence the
lower bound on the sampling time is dictated by the amount
of noise in the system. The effect of noise can also be
reduced by increasing the number of samples collected for
estimation. This is because the estimator averages out the
noise over a larger sample size.

VII. SIMULATIONS

In this section, we validate the results presented in Section
V using simulations. To this end, we use a network of
Kuramoto oscillators that model a large variety of systems
like the power grid, synchronized behavior of neurons in the
brain, etc. We show how online data-driven control can be
implemented to control the states in Kuramoto oscillators and
achieve behaviors like synchronization, traveling waves, and
clustering when the underlying graph topology is unknown.
Consider the Kuramoto dynamics (14) on a graph G =
(V ,E ) with n = 10 nodes and an edge set E with control
injections ui.

θ̇i(t) = ωi +
10

∑
j=1

ai j sin(θ j −θi)+biui, yi = ciθi (14)

where yi is the output of the ith node. Note that the (un-
known)adjacency matrix need not be symmetric, i.e. the
graph can be undirected. Let the underlying topology be
as shown in Fig 2. The objective here is to modify the
behavior of the nodes in subgraph P = {1, 2, . . . , 5},
such that they achieve synchrony, phase balance or form
clusters, by injecting appropriate control signals. The rest of
the nodes in the system form subgraphs B and C. Note that
the subgraph B is a tree and C is a complete graph, both of
which have almost global synchronizing behavior (refer [21],
[22] ), and hence have an equilibrium that is asymptotically
stable. This guarantees that the system is minimum-phase.
We also assume that the oscillators are homogenous, i.e. ωi =
ω j = ω ∀i, j ∈ V . We set ω = 1 rad/s for the simulations.
The response of the system without the control input, (i.e.
setting ui = 0 ∀i ∈ P and initial conditions θ0 = {π

5 , 0.9+
2 π

5 , 4 π

5 , 0.1+ 8 π

5 , −0.1+ 8 π

5 , 4 π

5 , 4 π

5 , 0, 0, 0}). The state
trajectories are given in Fig 3. Note that the states θi are
plotted in the synchronous (rotating) frame of reference,
i.e. with a change of coordinates θi(t)→ θi(t)−ωst where
ωs is the mean of all ωi. Next, we design the coupling
function gi(·) for the required behavior (synchronizing, Phase
Balancing, and Cluster Formation). The sampling time is
chosen to be T = 0.05s.

Fig. 2. The Underlying topology of the network: The set of nodes P are
shown in red, with their corresponding input injections. The subgraph B
with nodes {6, 7} is connected to node 3 and forms a tree. The subgraph B
with nodes {8, 9, 10} are connected to node 1 and form a complete graph.
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Fig. 3. When control inputs are zero: The states converge to some
equilibrium point in the synchronous frame.

1) Case 1 (Synchronization): For synchronization, we
design the coupling such that nodes form a complete
graph (Refer Fig 5.a), as it supports an almost global
exponentially stable synchronizing equilibrium point
[23]. (Note that several other topologies such as trees
will also exhibit almost global synchronization). We
do not change the oscillator frequencies and assume
ωi = 1 rad/s ∀ i ∈ P . The desired adjacency matrix
Ades

p ∈R5×5 for the subgraph P and the corresponding
coupling functions are

Ades
p =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0



gi(θ) = 1+
5

∑
i=1, i̸= j

sin(θ j −θi). (15)

States vs time plots given in Fig 4 depict how the states
converge to the same value (consensus) exponentially.

2) Case 2: (Phase Balancing) Phase balancing of oscilla-
tors is achieved when the states are equally spaced on
the unit circle, i.e. M = {θ ∈ Tp : |∑p

j=1 eiθ j/n|= 0}
(Refer [24]). In order to achieve phase balancing, the
topology has to be designed in such a way that the
stable equilibrium point belongs to the set M . For a
homogenous Kuramoto oscillator on a 5-node graph,
a cyclic graph (Refer Fig 5.b) has a stable phase
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balancing equilibrium point [25]. Hence the desired
adjacency matrix for the nodes in P is

Ades
p =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .

Similar to Case 1, we derive the coupling functions,
keeping the desired frequency of oscillation constant.
The initial conditions are chosen inside the region of
attraction of the phase-balancing equilibrium point. To
demonstrate the robustness of the technique in the
presence of noise, we add a zero-mean Gaussian noise
with a deviation of 0.05 using the randn() function in
MATLAB to the sensor measurements. The states vs
time plots for this case are given in Fig 6.

3) Case 3 (Cluster Formation): A cluster is a group of
nodes that are in phase synchrony. In a heterogeneous
Kuramoto oscillator, multiple clusters can be formed
based on the coupling weights and the frequencies
of the oscillators. Specifically, the clusters have been
shown to be stable when the intra-cluster couplings
are sufficiently stronger than the inter-cluster coupling,
the natural frequencies of nodes in a cluster are ho-
mogenous and the natural frequencies of the oscillators
belonging to different clusters are sufficiently heteroge-
neous (Refer [26]). Let the nodes C1 = {1, 2, 3} form
a cluster and let C2 = {4, 5} form a second cluster
which is at a fixed phase difference with respect to
C1. To this end, first, we design the desired adjacency
matrix for the subgraph P such that the inter-cluster
couplings are weaker than the intra-cluster couplings.
Let the desired adjacency matrix be

Ades
p =


0 60 60 5 0

60 0 60 0 0
60 60 0 0 0
5 0 0 0 60
0 0 0 60 0

 .

The corresponding network is shown in Fig 5.c, where
the nodes in C1 and C2 are connected as complete
subgraphs with coupling strength of 60. Choosing the
inter-cluster coupling ainter << 60 and the cluster
frequencies ωc1 = 5 and ωc2 = 2, we get a constant
phase difference between the clusters. Varying these
three values varies the phase difference between the
clusters. Fig 7 shows how the states, of the nodes in
subgraph P , evolve and form two clusters oscillating
with a constant phase difference between them. Note
that these plots are in the static frame and not in the
synchronous frame as in Fig 4 and Fig 6.

Remark 3 (Choice of Desired Topologies). In the case of
synchronization, any connected undirected network, can be
designed for local exponential stability of the equilibrium
point [24]. The choice of a complete graph is made in

0 5 10 15 20 25

time (s)

0

1

2

3

4

5

6

7

i

1 2 3 4 5

6 7 8 8 9

Fig. 4. Case 1: The states corresponding to the nodes in P converge to
span{1p}(consensus), in the synchronous frame, thus oscillating in phase
due to the control injected at the nodes. The nodes in V \P , due to their
connected topology, synchronize to the same consensus value.

Fig. 5. In Fig 5.a The nodes in P form a complete graph as the
control input eliminates the existing incoming edges and assigns the desired
coupling in feedback. In Fig 5.b The nodes in P form a cycle in feedback,
due to the control input and the desired coupling functions. In Fig 5.c Nodes
in C1 (in red) and C2 (in green) form two clusters, where the dashed line
represents the weak inter-cluster coupling and the solid lines represent the
strong intra-cluster couplings. The blue nodes belong to V \P .

0 10 20 30 40 50
time (s)
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6

i

1 2 3 4 5

6 7 8 9 10

Fig. 6. Case 2: The states converge to a small neighborhood around the
phase balancing equilibrium asymptotically, in the synchronous frame in the
presence of noise. Similar to case 1, the states {θ6, θ7} converge to θ3 and
{θ8, θ9 ,θ10} converge to θ1.
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Fig. 7. Case 3: The states {θ1, . . . ,θ5} form two clusters, and oscillate
with a constant phase difference between the clusters (in the static frame).
The states {θ6, . . . ,θ10} also converge to an oscillatory behavior.

order to utilize its almost global synchronization property,
which provides us with the largest region of attraction, with
the highest convergence rate. As for Case 2, the only 5-
node network that has a locally stable phase balancing
equilibrium is a cycle graph. In Case 3, we can design the
edge weights and the oscillator frequencies such that any set
of nodes can be made to form clusters. In all three cases, we
can adjust the edge weights to alter the convergence rates.

VIII. CONCLUSIONS

The article discusses the online data-driven control of
nonlinear network systems with unknown edges. The control
technique introduced provides a method to assign a desired
topology to the network when the underlying topology is
unknown. The proposed results guarantee the existence of
a sampling time such that the network states flow along
a desired vector field locally, and converge to the desired
equilibrium point. Unlike the state-of-the-art offline data-
driven techniques, the control law does not require any
persistently exciting data. The method also reduces the
number of data points used for estimating the state and
the value of the nonlinear coupling between the agents at
each instant. We provide simulations-based validation of
the results proposed using Kuramoto oscillators and show
that behaviors like synchronization, phase balancing, and
cluster synchronization can be achieved even in the presence
of essentially bounded measurement noise by assigning the
required network topology. Network systems like the human
brain or communication networks, in practice, do not have
a static network topology, but rather a network whose in-
terconnections switch from one topology to another. These
networks are referred to as temporal networks, and hence,
as part of ongoing research, the authors are now focusing on
expanding the results to temporal networks.
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