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Abstract— This paper proposes a functional observer-based
sliding mode control for position control of a Single-Link
Flexible Manipulator (SLFM). The proposed control considers
the unmodelled system dynamics as uncertainty and aims
to achieve position control. The proposed control scheme is
designed considering the reduced order dynamics. A functional
observer is used to directly compute a sliding function and the
control signal, which guarantees the system’s robustness and
stability. The proposed control scheme is validated for large-
order ordinary differential equation (ODE) model of the SLFM
using numerical simulations.

I. INTRODUCTION

In recent years, robotic manipulators have been explored
for a wide range of applications, including industrial produc-
tion [1], hostile environments (nuclear sites, deep sea, etc.)
[2], space exploration [3], health care equipment [4], building
construction [5]. It is required that the robotic manipulators
provide faster, cost-effective, and accurate operation [6]. The
rigid robot manipulators are made up of rigid links, which
makes them bulkier. The industries need an upgrade to the
existing classical robots in order to reduce construction costs,
minimize energy consumption brought on by big actuator
sizes, and increased production.

Thus, in applications where there is a requirement that the
weight-to-volume ratio of a manipulator is low, inevitably,
manipulators tend to be flexible. There are applications where
large and lighter manipulators are required [7], and as a
consequence of larger and lighter arms, flexibility comes into
the picture. Further, as the payload-to-weight ratio increases,
the tendency of flexible modes to get excited increases.
The flexibility in the manipulator can be modelled as the
link deformation [8]. Hence, analysis of such systems can
not be performed as rigid manipulators. If we consider the
flexibility, the system formed will be infinite-dimensional,
i.e., the dynamic model of the flexible link robot manipulator
is described as a distributed parameter system. This makes
the dynamics of a flexible link robot manipulator depend on
both space and time. Hence, the mathematical analysis of
a flexible link manipulator would involve partial differential
equations (PDE) rather than the ordinary differential equation
(ODE). From a control viewpoint, finding the direct analyt-
ical solution to PDEs may only sometimes be possible, and
the solutions obtained may only sometimes be realizable. So,
we need to approximate the PDE-based mathematical model
of the flexible link manipulator to an ODE-based model.
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There are various approximation methods available in the
literature [9] including finite element method (FEM) [10],
[11], assumed mode method (AMM) [12]–[15]. In this paper,
the assumed mode method is chosen over the finite element
method [16]. This is because the computational complexity
of the assumed mode method is better than the finite element
approach.

The study of the SLFM was the starting point for flexible
robot research. There are various methods of modelling
(SLFM) available in the literature, Lumped parameter ap-
proach [17], Euler-Bernoulli beam theory [18], Hamilton’s
principle [19], Lagrangian dynamics [20], Newton-Euler-
FEM method [21], [22], Finite Element Method (FEM) [10],
[11], assumed-modes method [12]–[15].

Due to the flexibility of the link, the tip position of a
flexible link robot manipulator depends on both the joint
angle and the link deformation variable. Even a small link
deformation has a very significant impact on the tip position.
Therefore, a control input must be designed to drive the tip
to the desired trajectory to perform the specific operation
using the flexible link manipulator. However, due to the
deformation in the link, the existing control algorithms are
insufficient to efficiently control the flexible link manipulator
[6], [23].

The most desirable characteristics of a control system are a
simple design, fast response, and robustness to uncertainties
and disturbances. The dynamic model of a flexible link
manipulator has inherent, unmodelled uncertainties.

Therefore, a robust control design is preferable for such a
system. Sliding mode control (SMC) is one of the most used
control schemes for uncertain nonlinear systems to provide
robustness and faster system response [24], [25]. The SMC
scheme is a model-based feedback control technique. This
paper uses the state feedback sliding mode control design
because of its simplistic design. Therefore, it is required that
the system states needed in the control input be available
for feedback control design. Nevertheless, in a flexible link
manipulator, all the states can never be available for the
feedback design. Hence, traditional SMC can not fit such a
system well. Therefore, an observer is designed to estimate
the unmeasurable system state by utilising the knowledge
of input and output. However, typically, a linear feedback
control law needs to estimate some linear function of states
of the form Kx(t). The estimation of the linear function of
the state vector can be done using a minimal-order observer.
Therefore, a functional observer is designed in this paper to
estimate the linear function of the state vector required in
the SMC design.
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A functional observer uses system outputs to estimate
the function of the linear combination of states required in
the control input. Previous works have demonstrated several
techniques to design functional observers for linear time-
invariant (LTI) systems [26]–[29].

A functional observer estimates linear functions of states,
which are then used in the sliding mode controller. This
composite control strategy is the Functional Observer-based
Sliding Mode Control (FO-SMC) scheme. It has been
demonstrated that FO-SMC works well for controlling the
position of flexible link manipulators.

In this paper, we proposed FO-SMC to control the position
of a single-link flexible manipulator. Numerical simulations
are utilized to verify the proposed control scheme. The
results illustrate that the proposed FO-SMC technique can
precisely and successfully control the position of the single-
link flexible manipulator.

The contributions of this paper are:
• The FO-SMC based composite control scheme is de-

signed considering the reduced-order dynamics.
• Numerical simulation is used to validate the proposed

control scheme for a larger-order model.
• The demonstration of the efficacy of the proposed FO-

SMC scheme in controlling the position of a SLFM.

II. DYNAMIC MODEL OF SINGLE LINK FLEXIBLE
MANIPULATOR

The flexible manipulator having a single link is shown in
figure 1. The link under investigation has mass uniformly
distributed across its length l(m) with ρ(kg/m) as linear
mass density. In figure 1 CoM represents the position of
centre of mass. The SLFM is modeled with the following
assumptions taken into account.

Fig. 1. Single-Link Flexible Manipulator

Assumption 1: The mass is evenly distributed along the
entire length of the link.

Assumption 2: The link exhibits small deformation due to
pure bending. (Without any torsion or compression)

The link under investigation is modelled as an Euler-
Bernoulli beam with a cross-sectional moment of inertia I
and Young’s modulus E. The payload carried by the manipu-
lator has both mass mp(kg) and inertia Jp(kg−m2). Torque

(τ N-m) is supplied to the manipulator by an electrical motor
connected at its base with inertia J0(kg −m2).

The dynamic equations of SLFM are derived using Hamil-
ton’s principle and assumed mode method [30]. The Euler-
Lagrange equations for the generalized (n + 1) coordinates
q = (θ, ζi) = (θ, ζ1, · · · , ζn) are given as:

Mq̈(t) + D̄q̇(t) +Kq(t) = B̄τ(t) (1)

Where, ζi represents the ith vibrational mode.

M =

[
J 0
0 I

]
, D̄ =

[
0 0
0 2ξΩ

]
,

K =

[
0 0
0 Ω2

]
, B̄ =

[
1

ϕ′(0)

]
Ω = diag{ω1, · · · , ωn}, ϕ′(0) = (ϕ′

1(0), · · · , ϕ′
n(0))

T .
Where, J = J0 + ρ l3

3 + Jp +mpl
2, ϕ′

i(0) =
∂ϕi(x)

∂x at l = 0
and i = 1, 2, · · · , n denotes the assumed modes, ϕ(x) is the
shape function and ξ denotes the damping coefficient.
The state space representation of the dynamic model in (1)
can be written as:

ẋ(t) = Ax(t) +Bu(t) (2)
y(t) = Cx(t) (3)

where, x(t) ∈ R(2n+2), A ∈ R(2n+2)×(2n+2), B ∈
R(2n+2)×1, C ∈ R2×(2n+2), y(t) ∈ R2 denotes the output of
the system, and u(t) ∈ R represents the input to the system.

x(t) =
[
ϑ(t) ϑ̇(t)

]T
, y(t) =

[
θc(t) θt(t)

]T
Where, ϑ(t) = [θ(t), ζ1(t), ζ2(t), · · · , ζn(t)]T and θc(t) and
θt(t) are the clamped joint angle and tip position angle
respectively.

A =

[
0 I

−M−1K −M−1D̄

]
, B =

[
0

M−1B̄

]
(4)

C =
[
C1 C2

]
(5)

u(t) = τ(t)

where, C1 =

[
1 ϕ′

1(0) ϕ′
2(0) · · · ϕ′

n(0)

1 ϕ1(l)
l

ϕ2(l)
l · · · ϕn(l)

l

]
, and C2 =

0; C1 ∈ R2×(n+1) and C2 ∈ R2×(n+1)

III. COMPOSITE CONTROL DESIGN

A. Sliding Mode Control Design

In this section, the SMC law is designed to control the
position of the SLFM system. The sliding function is chosen
as follows:

σ(t) = Γ [x(t)− xd(t)] (6)

where, xd(t) is the desired position of states and Γ ∈
R1×(2n+2) is a constant, which is to be designed such that
the system is stable when confined to σ(t) = 0.

Differentiating σ(t) in (6) with respect to time:

σ̇(t) = Γ [ẋ(t)− ẋd(t)] (7)
= Γ [Ax(t) +Bu(t)− ẋd(t)]
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The proposed control law u(t) has two components: nominal
control unom and discontinuous control udisc. The expres-
sion for u(t) is given as:

u(t) = (ΓB)−1 [−ΓAx(t) + Γẋd(t)]︸ ︷︷ ︸
unom

− (ΓB)−1 [k1σ(t) + k2sgn(σ(t))]︸ ︷︷ ︸
udisc

(8)

Where, k1 , k2 > 0(∈ R) are constants to be designed and
(ΓB)−1 is invertible.

Lemma 1 (Finite-time convergence lemma [31]):
Consider a continuous time system Ψ̇ = f(Ψ), Ψ ∈ Rn

with zero as the only equilibrium point. Consider a positive
definite Lyapunov candidate function V(Ψ) : Rn → R, with
α1 > 0, α2 > 0, χ ∈ (0, 1), and an open vicinity of origin
∆0 ⊆ Rn, such that the inequality in (9) is satisfied.

V̇(Ψ) ≤ −α1V(Ψ)− α2Vχ(Ψ); Ψ ∈ ∆0 {0}, (9)

then the equilibrium point is finite-time stable. Further,
if ∆0 = Rn, then the global finite-time stability of the
equilibrium point is guaranteed.

Theorem 2: Consider the state space model in (2) and the
sliding function in (6). With the application of the proposed
controller, (8), the sliding phase will be attained in finite time
(i.e., σ(t) = 0, ∀ t > T, T < ∞), and the system states will
converge asymptotically to the desired position.

Proof: Define a Lyapunov function V1 as:

V1(t) =
1

2
σ2(t). (10)

The time derivative of V1(t) gives

V̇1(t) = σ(t)σ̇(t). (11)

From equation (7) put σ̇(t) in (11) and use (2):

V̇1(t) = σ(t)Γ (Ax(t) +Bu(t)− ẋd(t)) . (12)

Putting u(t) from (8) into (12):

V̇1(t) = σ(t) (−k1σ(t)− k2sgn(σ(t)))

= −k1σ
2(t)− k2|σ(t)|

= −2k1
σ2(t)

2
−
√
2k2

(
|σ2(t)|

2

) 1
2

V̇1(t) = −α1V1(t)− α2V
1
2
1 (t) (13)

where α1 = 2k1, α2 =
√
2k2 and χ = 1/2. From

equation (13) it is clearly visible that it satisfies the inequality
condition in lemma 1’s finite time inequality equation. Thus,
it can be inferred that the sliding variable in equation (6)
converges to zero in finite time, thereby guaranteeing the
convergence of system state x(t) to the desired position xd(t)
as sliding function σ(t) has been designed in a manner that
the system dynamics is asymptotically stable when confined
to σ(t) = 0.

The control input in equation (8) can be equivalently
written as:

u(t) = −(ΓB)−1 [ΓA+ k1Γ]x(t)

− (ΓB)−1 [k2sgn(Γx(t)− Γxd(t))]

+ (ΓB)−1 [Γẋd(t) + k1Γxd(t)] (14)

The SMC law in (14) needs the system states for closed-
loop design. But the system under consideration does not
have all the required states available for the measurement.
Therefore, an observer is to be designed to implement the
control law. As the control input in (14) needs estimation of
some linear function of states, a linear state function observer
is proposed such that the output of the functional observer
can be directly used in the controller.

B. Functional Observer

This section introduces a functional observer that estimates
the linear combination of states required by the control input
function.

In order to implement the control in (14), we need two
linear functionals of the state, which are g1(t) = F1x(t) and
g2(t) = F2x(t). Where F1 and F2 are given as:

F1 = −(ΓB)−1 [ΓA+ k1Γ] ; F2 = Γ

Then control law can be written as:

u(t) =
[
I 0

]
g(t)− (ΓB)−1[k2sgn(

[
0 I

]
g(t)−

Γxd(t))]

+ (ΓB)−1 [Γẋd(t) + k1Γxd(t)] (15)

where, I represents the identity matrix.
Now, the requirement boils down to designing a functional

observer that estimates

g(t) =
[
g1(t) g2(t)

]T
=

[
F1 F2

]T
x(t) = Fx(t) (16)

where, F ∈ R2×(2n+2) and g(t) ∈ R2.
In order to achieve this linear state function estimation, an

observer of the form (17) needs to be designed.

˙̂η(t) = Nη̂(t) + Ly(t) +Hu(t) (17a)
ĝ(t) = Gy(t) +Dη̂(t) (17b)

where, η̂(t) ∈ Rv is a state vector. ĝ(t) ∈ R2 is the desired
estimate of functional. N ∈ Rv×v , L ∈ Rv×2, H ∈ Rv ,
G ∈ R2×2, and D ∈ R2×v are unknown matrices.
The output ĝ(t) of (17b) is said to estimate Fx(t) in an
asymptotic manner if

lim
t→∞

[ĝ(t)− Fx(t)] = 0 (18)

Now let us suppose that if η̂(t) estimates the linear function
of x(t) as η(t) = Tx(t) (where T ∈ Rv×(2n+2)) then, ĝ(t)
estimates the Fx(t) for which we have the theorem 3.

Theorem 3: The completely observable vth order observer
will estimate g(t) = Fx(t) if and only if the following
conditions are satisfied:

1) N is a Hurwitz matrix.
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2) TA−NT − LC = 0
3) H = TB
4) F = GC +DT
5) v ≥ rank(F −GC)

where F ∈ R2×(2n+2) is the linear state function gain matrix
and T ∈ Rv×(2n+2) is the unknown matrix which is to be
determined.

Proof: The proof of the theorem is given in [28].

C. Proposed Functional Observer-based Sliding Mode Con-
trol

This section proposes a composite control law using the
sliding mode design and functional observer output. The
error between the linear function estimates is expressed as
e(t) as:

e(t) = η(t)− η̂(t) = Tx(t)− η̂(t) (19)

Using equations (2), (17a) in the derivative of e(t) in (19),
we get:

ė(t) = T ẋ(t)− ˙̂η(t) (20)

On simplifying equation (20) and using Theorem 3 we get:

ė(t) = Ne(t) (21)

Using the results in theorem 3 control input u(t) can be
rewritten as:

u(t) = [I 0]Fx(t)− [I 0]De(t)

− (ΓB)−1 [k2sgn(Γx(t)− Γxd(t)]︸ ︷︷ ︸
uswitching control

+

(ΓB)−1 [Γẋd(t) + k1Γxd(t)]︸ ︷︷ ︸
ureference

(22)

Now equation (2) is rewritten using (22).

ẋ(t) = Ax(t) +B [I 0]Fx(t)−B [I 0]De(t)

+B [uswitching control − ureference]︸ ︷︷ ︸
ubounded

(23)

A composite system is formed using (21) and (23).[
ẋ(t)
ė(t)

]
=

[
A+B [I 0]F −B [I 0]D

0 N

]
︸ ︷︷ ︸

AC

[
x(t)
e(t)

]

+

[
B
0

]
︸︷︷︸
BC

ubounded (24)

where, AC ∈ R(2n+2+v)×(2n+2+v), and BC ∈ R(2n+2+v).
If observer matrix N and system matrix A have distinct

eigenvalues, then TA−NT − LC = 0 will have a solution
for T . Also, if the composite system matrix AC has all
the eigenvalues in the plane’s left half, the system will be
uniformly ultimate bounded. Hence, the observer matrix N
is chosen such that the composite system matrix has stable
eigenvalues.

By using the theorem 3 and the condition of stable
eigenvalues for the composite system matrix AC in (24),
the observer matrices can be obtained. Hence, the control
input u(t) can be further rewritten using the observer output
obtained in (17b).

u(t) =
[
1 0

]
ĝ(t)− (ΓB)−1[k2sgn(

[
0 1

]
ĝ(t)−

Γxd(t))] + (ΓB)−1 [Γẋd(t) + k1Γxd(t)] (25)

The state space model in (2) is of (2n+2) order, designing
the control for a large value of n results in a complex and
difficult-to-implement control law. Therefore, in this paper,
the proposed control in (25) is designed for (i) two (n = 2)
vibratory modes and (ii) three(n = 3) vibratory modes.

The proposed control law in (25) designed for the systems
having two and three assumed modes are separately tested
on the larger-order system (n > 3), i.e. considering the
dynamic model with more number of modes.

IV. SIMULATION AND RESULTS

This section includes the numerical simulations and results
that demonstrate the effectiveness of the presented control
approach for the SLFM. This paper simulates the developed
control law on the system having first five vibrational modes.
The physical parameter specifications of the SLFM are given
in Table I.

TABLE I
PHYSICAL PARAMETERS OF SINGLE-LINK FLEXIBLE MANIPULATOR

Parameters Value Parameters Value Parameters Value

ρ 0.5 ω2 55.88 ϕ′
4(0) 3.8529

l 1 ω3 101.36 ϕ′
5(0) 2.4422

mp 0 ω4 177.66 ϕ1(l) 0.3214
Jp 0 ω5 286.84 ϕ2(l) -1.6407
J0 0.002 ϕ′

1(0) 32.8184 ϕ3(l) 2.4586
EI 1 ϕ′

2(0) 10.4096 ϕ4(l) -2.3010
ω1 20.53 ϕ′

3(0) 6.1588 ϕ5(l) 2.1568
ζ 0.05

The observer designed for the state space model in (2) and
(3) by considering n = 2 and n = 3 are of order two.

The observer matrices are chosen such that the composite
matrix AC has all its eigenvalues in the left-half plane, which
guarantees the stability of the composite system.

The control input (25) designed for n = 2 and n =
3 is applied to the model having five vibration modes.
The simulation is being performed for both regulation and
tracking problems.

A. Regulation Problem

The reference values for the angle are chosen as:

θd =
π

4
rad.

Figure 2 shows the convergence of tip position θt(t)
to the desired position θd with vibrations suppressed for
both the designed controllers. The figure also shows the
plots for clamped joint angle θc(t). The output response
for the controller designed considering n = 3 is more
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smooth and transient free as compared to the controller
designed considering n = 2. But this comes at the cost
of increased computational complexity. Furthermore, the
convergence time is quite similar for both the controllers.
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Fig. 2. Output Plot for Regulation Problem

The plot for the sliding variable versus time for both two
and three oscillatory modes based controllers is shown in
figure 3. The figure indicates that the sliding variable for the
controllers converges to zero in finite time.
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Fig. 3. Sliding Function Plot for Regulation Problem
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Fig. 4. Control Input for Regulation Problem

Figure 4 shows the actuator torque applied to the manip-
ulator. The actuator torque applied is well within the bound
of ± 0.5N − m, i.e., the applied control input is bounded.
The response of the controller designed using three vibratory
modes have significant amount of chattering compared to the
controller designed with two oscillatory modes.

B. Tracking Problem

The desired trajectory for the position of a manipulator is
chosen as:

θd(t) = e−0.5t sin(t) + (1− e−0.5t) rad.

Figure 5 shows the convergence of tip position θt(t) to
the desired trajectory θd(t) smoothly for both the designed
controllers. The figure also shows the trajectory for clamped
joint angle θc(t). The tip position angle converges to the
desired trajectory faster with the controller designed with
two modes of vibration. But the output transient response
is better for the controller designed using three modes of
vibration.
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Fig. 5. Output Plot for Tracking Problem

The plot of the sliding variable vs time is shown in figure
6 for both the controllers. It is evident from the figure that
the sliding variable converges to zero in a finite amount of
time.
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The plot of actuator torque applied to the manipulator with
respect to time is shown in figure 7. The figure shows that the
actuator torque has a range of ±0.5 N−m. The control input
response for the controller designed considering n = 3 have
quite high chattering component compared to the controller
designed considering n = 2.
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Fig. 7. Control Input for Tracking Problem

V. CONCLUSION

The paper proposes a sliding mode approach based on
a functional observer for controlling the position of the
SLFM system. In this paper, the controller is designed by
considering two (n = 2) and three (n = 3) vibratory modes
in the system model and the designed control is validated
using numerical simulation for the dynamic model with the
first five vibration modes considered in the system modelling.
The simulation results for both the controllers are presented.
The response of the system for the controller designed using
three oscillatory modes is more smooth and transient free
compared to the controller designed using two oscillatory
modes, but that comes with increased computational cost.
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