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Abstract— This paper proposes a method to recover from the
failure or loss of a subset of agents in a distance-based formation
problem, where the system is initially deployed forming a
virtual shield embedded in the 3D space. First, a distributed
algorithm is proposed to restore the topology, which is a
Delaunay triangulation. After that, the nodes execute a distance-
based distributed control law that considers adaptive target
distances. These values are computed in parallel by the nodes,
which try to reach an agreement with some constraints, given
by the desired shield shape. The updating policy is based on
events. The results are illustrated through simulation examples.

I. INTRODUCTION

In recent years, the utilization of autonomous robot sys-
tems for a large number of tasks in the field of robotics
has surged. One critical facet of this paradigm shift has
been the deployment of cooperative multi-agent systems
(MAS) in many applications such as sampling, monitoring,
surveillance, and safeguarding critical infrastructures. In such
MAS, each individual entity is often referred to as an agent,
and complex behavior of the overall system can be achieved
from relatively simple local commands.

Central to the effectiveness of these MAS is the mainte-
nance of a formation among the agents [1]. Depending on
the measurement capabilities of the agents, various strategies
have been proposed [2]. One common approach assumes that
each agent can measure distances to its neighboring agents,
and then the concept of graph rigidity has allowed the design
of distributed control laws for formation control [3], [4].
Related to the concept of rigidity, a Delaunay triangulation
belongs to the class of proximity graphs [5], and it is the
dual of the Voronoi diagram [6]. The graph of a Delaunay
triangulation is rigid. Moreover, triangular formations have
been shown to be robust against agent failures [7], and
the concept of resilient formations has arisen. This line of
research borrows from results in network science [8].

In this paper, we present a novel approach to address
the issue of network reconfiguration for a team of agents
with the control objective of maintaining a rigid formation
with a desired given shape. A potential application of our
research involves a team of Unmanned Aerial Vehicles
(UAVs), deployed to form a protective ”shield” around an
area of interest, with the objective of safeguarding critical
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infrastructures, and in which one or more agents fail or are
lost. We propose a two-stage method: first, it restores and
maintains the topology, specifically a Delaunay triangulation;
and secondly, it introduces a novel distance-based control
law that considers dynamic values for the target distances
between nodes, thereby ensuring the reconfigured formation
remains rigid and closely approximates an almost uniform
distribution of agents. It builds up on our previous work [9],
where an algorithm to generate a target formation in 3D for a
given number of agents and a given shape (a quadric surface),
and a control law to achieve it were proposed. Then, in this
paper, we assume that the system is initially as designed in
[9], it loses a subset of agents, and we propose a distributed
strategy to find a new configuration that preserves the almost
uniform distribution of agents and a control law to reach it.

There are in the literature different approaches to deal with
the problem of reconfiguration of networks or formations.
In [10], an optimization formulation is used to solve the
problem of constructing a network topology and generating a
pairwise distance between communicating robots. However,
this solution presents scalability issues, since requires the
knowledge of the topology of the overall system. In [11] a
heuristic rule of edge allocation is presented to approximately
solve the original optimization design network problem.
In [12] the authors propose a scaling strategy that could
maneuver the system of mobile agents to achieve the desired
formation of which the size may change (the target distances
are scaled). Other works in the literature focus instead on
mitigating the interference of a malicious agent on the control
objective, such as [7]. The previous works differ from ours
in that or the problem is different or a simplified version, or
they need a centralized computation.

The rest of the paper is organized as follows: Section II
introduces some preliminary concepts used throughout the
paper. Section III describes the problem to be solved in this
paper, whereas the proposed solution is given in Section IV.
Section V illustrates with simulations the results of the paper.
Finally, Section VI provides the conclusions and future work.

II. PRELIMINARIES

A. Graph theory

Consider a set N of N agents. The topology of the MAS
can be modeled as a static undirected graph G, described by
the set of agent-nodes V and the set of edges E . For each
agent i, Ni represents the neighborhood of i, i.e., Ni =
{j ∈ V : (i, j) ∈ E}. Note that |Ni| = deg vi, where | · |
represents the cardinality of the set Ni and deg is the degree
of the vertex vi associated to the node i.
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Assume that the edges have been labeled as ek and
arbitrarily oriented, and its cardinality is labeled as Ne. Then
the incidence matrix H(G) = [hik] ∈ RN×Ne is defined as
hik = −1 if vi is the tail of the edge ek, hik = 1 if vi
is the head of ek, and hik = 0 otherwise. The Laplacian
matrix L(G) ∈ RN×N of a network of agents is defined
as L(G) = H(G)H⊤(G). The Laplacian matrix L(G) is
positive semidefinite, and if G is connected and undirected,
then 0 = λ1(G) < λ2(G) ≤ · · · ≤ λN (G), where {λj(G)}
are the eigenvalues of L(G). The adjacency matrix of G is
A(G) = [aij ], where aij = 1 if there is an edge between two
vertices vi and vj , and 0 otherwise.

Given a graph G, the line graph Ge ≡ (Ve, Ee) of G is
the graph that results from taking the edges of G as its
vertices of the new graph and joining two whenever the
corresponding edges share a vertex of G. Similarly to the
vertex-adjacency matrix, the edge-adjacency matrix can be
defined, i.e., Ae(Ge) = [aekl] so that aekl = 1 if ek and el
share a vertex, and 0 otherwise. Also, the neighborhood of
an edge k can be defined as N e

k = {l ∈ Ve : aekl = 1}.

B. Distributed averaging algorithms

Let us consider a system whose topology is described by
an undirected graph G = (V, E). Assume that each node vi
has some value Vi. The objective of the average consensus
is that all nodes calculate the average of these values: µV =
1
N

∑N
i=1 Vi. In a typical consensus formulation, each node

vi updates its state at iteration ℓ using a linear update as

xi(ℓ+ 1) = piixi(ℓ) +
∑
j∈Ni

pijxj(ℓ), (1)

where xi(0) = Vi.

Definition 1. The nodes are said to reach asymptotic average
consensus if limℓ→∞ xi(ℓ) =

1
N

∑N
j=1 xj(0) = µV , ∀i ∈ V.

Definition 2. A matrix P ∈ RN×N
>0 is called doubly

stochastic if it is both column and row stochastic, that is∑N
i=1 pij = 1,

∑N
j=1 pij = 1, ∀i = 1, . . . , N.

If the weights pij in (1) are chosen so that the matrix P =
[pij ] is doubly stochastic, then the system reaches average
consensus asymptotically and the convergence rate, at the
iteration k, is dominated by |λ2(P )|k, |λ2(P )| < 1 [13].

C. Rigidity and distance-based formation

Let us consider a graph G = (V, E) with N vertices
embedded in Rm, and define the composite vector p =
(p⊤1 , ..., p⊤N )⊤ ∈ RmN . A formation is defined as a set
of a graph G and its realization p, i.e., (V, E , p).

In distance-based formation, it is the constraints over the
distances of the edges in E what characterize the formation.
The distance rigidity theory includes several concepts, such
as distance rigidity and infinitesimal distance rigidity [3].

Let us consider the distance function fG(p) as fG(p) =
1
2 (. . . , ∥pj−pi∥2, . . . )⊤. We define the rigidity matrix R(p)
as follows:

R(p) =
∂fG(p)

∂p
∈ RNe×mN , (2)

Fig. 1. The triangle formed by {A,B,C}, its circumcircle, and its
circumcenter mABC .

where Ne is the number of edges of the graph G. If R(p)δp =
0, then δp is an infinitesimal distance motion of (V, E , p).
Analyzing the properties of R(p) allows us to infer further
properties of the formation (V, E , p) [3]:

Definition 3. A formation (V, E , p) is infinitesimally rigid if
rank(R(p)) = 2N − 3 (R2) or rank(R(p)) = 3N − 6 (R3).

Definition 4. A graph is minimally rigid if it is rigid and
the removal of a single edge causes it to lose rigidity.
Mathematically, this condition can be checked by the number
of edges Ne, so that if Ne = 2N −3 in R2 or Ne = 3N −6
in R3 the graph is minimally rigid.

We next introduce a control system derived from the
gradient descent flow. In [4], a distributed control law is
proposed for distance-based formation control. Let us denote
dij = ∥pi − pj∥ and d∗ij is the prescribed distance for the
edge (i, j) ∈ E . Define the potential function of the form
W = 1

4

∑
(i,j)∈E(dij − d∗ij

2)2. The gradient descent control
law for each agent i derived from this potential function is:

ui = −∇pi
W = −

∑
j∈Ni

(dij − d∗ij
2)(pi − pj). (3)

The control system ṗi = ui with ui (3) can be studied using
the infinitesimal distance rigidity property as follows [14]:

Theorem 1. All agents close to a target infinitesimally
distance rigid formation with the controller (3) exponentially
converge to a formation consistent with desired distances.

D. Delaunay triangulation

The following definitions and concepts are the basics for
2D Delaunay triangulations.

Definition 5. A triangulation of a set P points is a planar
graph with vertices at the coordinates pi ∈ P and edges that
subdivide the convex hull H(P) into triangles, so that the
union of all triangles equals the convex hull.

Any triangulation with N vertices consists of 2(N − 1)−
Nb triangles and has Ne = 3(N − 1)−Nb edges, where Nb

denotes the number of agents on the boundary ∂H(P) of
the convex hull. The edges of a triangulation do not cross
each other. Furthermore, the triangulation of N > 3 points is
not unique. The Delaunay triangulation is a proximity graph
that can be constructed in terms of the circumcircle of each
of the triangles (the circumcircle is the unique circle passing
through the three vertices of a triangle, and its circumcenter
is the center of such circle, see Fig. 1).
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Definition 6. [15]. A triangle of a given triangulation of a
set P of points is said to be Delaunay if there is no point
pi ∈ P in the interior of its circumcircle.

Definition 7. [15]. A Delaunay triangulation is a triangula-
tion in which all triangles satisfy the local Delaunay property.

III. PROBLEM FORMULATION

The state of each mobile agent is described by the vector
pi(t) =

(
px,i(t) py,i(t) pz,i(t)

)⊤
, which represents the

Cartesian coordinates. Let the N agents obey the single-
integrator dynamics:

ṗi(t) = ui(t), i = 1, . . . , N, (4)

where ui(t) ∈ R3 are the control inputs of agent i, which
will be described later.

The team of agents is initially deployed to protect a certain
area of interest that, without loss of generality, is placed
around the origin, i.e., p∗0 = 0. For the aforementioned
purpose, the agents form a mesh with a certain shape that
we call a shield. We assume that the shape of this ”virtual”
shield is given by a quadric surface S ∈ R3 described in the
following compact form

S ≡ p⊤Q1p+Q2 = 0, (5)

where p ∈ R3, Q1 ∈ R3×3 such that Q1 = Q⊤
1 , and Q2 ∈ R.

Additionally, since the shield is deployed around the point
p∗0 = 0, we consider quadric surfaces in their normal form
[16], which imposes some constraints on the values of Qi.
Furthermore, the shield might require the definition of some
additional constraints for the positioning of the agents, for
example, having an upper and/or lower bound on some of
the coordinates. In general, we constrain z ≥ 0. For example,
for an hemispherical shield, Q1 = 1

R2 I3 and Q2 = −1, with
z ≥ 0, where I3 ∈ R3×3 is the identity matrix and R is the
radious of the sphere.

For an agent i, we can define a function fS(pi) such that
fS(pi) = 0 iff pi ∈ S:

fS(pi) = p⊤i Q1pi +Q2. (6)

In [9], an algorithm is proposed to the almost uniform
distribution of the N agents in V over the virtual surface
S (5), and the generation of a Delaunay triangulation for
the topology that provides target distances d∗ij for all edges
in E . In the current paper, we assume that this is the initial
configuration for the agents. Moreover, a distributed gradient
descent control law that adds an additional term to (3)

ui = −κ1

∑
j∈Ni

(d2ij−d∗2ij )(pi−pj)−
κ2

2
fS(pi)

∂fS(pi)

∂pi
, (7)

where fS(pi) given in (6), is also proposed in [9], proving
that the target formation is achieved locally and asymptoti-
cally while obtaining the desired shield shape.

Now assume that a subset of the N agents of the team is
lost due to internal (loss of connectivity or other failures) or
external (attack) reasons. Let us denote this subset as Nloss

Fig. 2. Example of links reconfiguration before executing Algorithm 4.

with |Nloss| = Nloss ≥ 1. Then, we are ready to formulate
the problem statement:

Problem 1. Given the team of N agents (4) deployed and
forming the virtual shield described by (5) that loses a subset
of them, Nloss, find a procedure that reconfigures the system
so that an almost uniform distribution for the agents is
recovered and that can be executed distributedly.

IV. PROBLEM SOLUTION

Next, we present the procedure to reconfigure the shield
after the loss of one or more agents. The idea is to redistribute
the rest of the agents to fill the gap left by the lost nodes.
The proposed solution has a twofold contribution: 1) The
restoration and maintenance of the topology, and 2) a control
law based on (7) that considers dynamic values for the target
distances between nodes instead of fixed values d∗ij .

We distinguish two types of nodes in the network: fixed
(anchor) and moving. The anchors denoted byNF keep fixed
positions and the distances between anchors also remain
constant. Typically, the anchors are the nodes in the boundary
of the triangulation ∂T (at z = 0). The moving agents are
denoted by NM such that V = NF ∪NM.

Assumption 1. The lost agents are all moving agents, i.e.,
Nloss /∈ NF . Furthermore, the number of losses Nloss is
upper bounded by |NM| − 1.

A. Restoring and maintaining the topology

To illustrate the procedure by a graphical example first.
For simplicity, we consider the case of 1 lost agent, but
the designed algorithm is for a general set. Moreover, the
drawing is presented in the plane, but we remark that the
setting of this work is on a surface S ∈ R3. The initial
configuration is depicted in Fig. 2a. Assume that agent i
(in red) is lost (Fig. 2b). One of the neighboring agents
(A ∈ NM) takes control and creates new links (Fig. 2c).

The agents need to maintain local information Ij that
includes: the position pj , the set of neighbors, Nj , and the
set of triangles that agent j forms part of, Tj . All the nodes
j in the boundary of the gap, ∂H, execute these two actions:
Nj ← Nj \{i}, ∀t ∈ Tj : i ∈ t, Tj ← Tj \ t, that is, all the
triangles that included node i are removed. Then, Algorithm
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Algorithm 1 Restoring triangulation algorithm for node A

1: Require: IA = {pA,NA, TA}
2: for j ∈ ∂H
3: if j /∈ NA

4: NA ← NA ∪ {j}
5: Find j′ ∈ NA ∩ ∂H : j′ ∈ Nj

6: TA ← TA ∪ {j, j′}
7: end
8: end

Algorithm 2 Restoring triangulation algorithm for j ∈ ∂H
1: Require: Ij = {pj ,Nj , Tj}
2: if A /∈ Nj

3: Nj ← Nj ∪ {A}
4: end
5: find j′ ∈ Nj ∩ ∂H : j′ ∈ NA

6: Tj ← Tj ∪ {A, j′}
7: end

1 shows the local information is updated for the agent A
that takes control to restore the triangulation. The rest of the
nodes j ∈ ∂H, j ̸= A, execute Algorithm 2.

Once the triangulation is restored, the new triangles might
not meet Delaunay’s condition. The following result provides
a condition that can be checked locally by the three nodes
that form a triangle. Let us denote them as A, B, and C and
their positions as pA, pB , pC ∈ R3, respectively. The idea is
to check if any node D at pD ∈ R3 is at a distance shorter
than the radius of the circumcircle of the triangle formed by
A,B,C (see Fig. 1). This is an extension of the results in
R2 of [17] to an embedded surface S ∈ R3.

Theorem 2. Let OABC = (pA pB pC), and the plane in
which the triangle formed by A,B,C is embedded as fπ
with normal vector vπ . If there not exist any other node D
with position pD that satisfies that |MABCD| > 0, then the
triangle formed by A,B,C is Delaunay’s, where

MABCD =

(
Λ vP(

p⊤D 1
)
∥pD∥2

)
,Λ =

(
OABC 1
v⊤π 0

)
,

(8)
with v⊤P = (∥pA∥2 ∥pB∥2 ∥pC∥2 2|OABC |) and 1 =
(1 1 1)⊤.

Proof: The proof is omitted here due to space con-
straints but can be deduced following Lemmas 1-2 and
Theorem 1 in [9].

Remark 1. The plane fπ and its normal vector vπ are
obtained easily from relative coordinates between the points,
for example, pBA = pB − pA, pCA = pC − pA.

If any of the new created triangles in the gap is not
Delaunay, then the algorithm known as Lawson Flip is
applied [17]. Fig. 2d-f illustrates it with an example. For
the triangle formed by A,B,C, nodes D and E violates the
condition of Theorem 2, and this also holds for the triangle
ACD and node B, respectively. Then link AC is replaced
by BD. Note that when a triangle is not Delaunay’s, so is
one of the adjacent, and the problematic edge is the one

Algorithm 3 Lawson Flip Algorithm
1: Require: IA = {pA,NA, TA}
2: Identify the two neighbors B and D that share the common

edge AC using TA
3: Gather current pos. pB , pC , pD to construct MABCD

4: if |MABCD > 0|
5: NA ← NA \ {C}, TA ← TA \ {B,C}, {C,D}
6: TA ← TA ∪ {B,D}
7: end

that that the two triangles share in common, in the case
of Fig. 2, AC. Algorithm 3 lists the set of actions taken
by agent A. Node C executes similar actions but replacing
lines 6-9 by NC ← NC \ {A}, TC ← TC \ {A,B}, {A,D},
and TC ← TC ∪ {B,D}. Finally, agents B and D updates
its local information as follows: NB ← NB ∪ {D}, TB ←
TB\{A,C}, TB ← TB∪{A,D}, {C,D}; ND ← ND∪{B},
TD ← TD \ {A,C}, TD ← TD ∪ {A,B}, {B,C}.

B. Adaptive distance-based control law

After the loss of the agents, the condition of almost
uniform distribution does not hold anymore. Hence, the
method presented next has the objective of recovering this
property on the virtual surface. For that purpose, the control
law (7) is adapted to consider target values d∗ij that are
updated at discrete instances of time ℓ and denoted by µij :

ui = −κ1

∑
j∈Ni

(d2ij − µ2
ij(ℓ))(pi − pj)− κ2fS(pi)

∂fS(pi)

∂pi
.

(9)
The proposed updating law for µ2

ij uses the concepts pre-
sented in Section II-A and Section II-B. In an ideal case,
when no boundaries and other constraints exist, an equal
value for all the target distances d∗ij is compatible with a
uniform distribution of all nodes in a plane. If updating laws
of the form (1) are used with adequate choices of weights
pij for d∗ij (see Definition 2), they result in a common
value that is the average of the initial values. One choice
of pij compatible with distributed implementations are the
Metropolis weights [13]. Let us denote µ2

ij ≡ µ2
k, i.e., and

let us formulate the problem in terms of the line graph of
G, Ge. Furthermore, Assumption 1 allows us to introduce
anologous categories for the edges, i.e, fixed and moving
edges, respectively, N e

F and N e
M.

Definition 8. An edge k that connects two nodes i and j is
in the set N e

F if i, j ∈ NF , i.e, both agents are anchors in
the system. However, k ∈ N e

M if i ∈ NM or j ∈ NM, i.e.,
if at least one the agents is not an anchor.

Then, we propose the following updating law with
Metropolis weights:

µ2
k(ℓ+ 1) = pkkµ

2
k(ℓ) +

∑
l∈N e

k∩N e
M

pklµ
2
l (ℓ), (10)

pkl =


1

1+max(deg ek,deg el)
, ∀l ∈ N e

k ∩N e
M

1−
∑

j∈N e
k∩N e

M
pkj , k = l

0 otherwise,

(11)
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Algorithm 4 Algorithm to update target distances
1: Require: pi, pij : j ∈ Ni, fS
2: if i ∈ NM
3: Compute eij = d2ij − µ2

ij

4: If |eij | ≤ δµ2
ij

5: Compute θi→j according to (14) for all j ∈ Ni

6: Send each θi→j and |Ni| to the neighbor j
7: Receive θj→i and |Nj | from each neighbor j ∈ Ni

8: Compute for each edge ij µ2
ij according to (12)

9: Update µ2
ij in control law in (9)

10: end
11: end

that is, the target value for the distance of each edge k
is set in terms of the neighboring edges (those that share
a vertex with k), excluding those that are connecting two
fixed nodes. However, edges are not physical entities with
computing capacity. Then, we need to transform updating
law (10)-(11) to other that can be computed at the nodes.

Proposition 1. The updating control laws (10)-(11) can be
computed distributedly at the nodes i ∈ NM for the target
square distances µ2

ij in (9), ∀j ∈ Ni, as follows

µ2
ij(ℓ+ 1) = µ2

ij(ℓ) + θi→j(ℓ) + θj→i(ℓ), (12)

if i, j ∈ NM, and

µ2
ij(ℓ+ 1) = µ2

ij(ℓ) +

{
θi→j(ℓ) if j ∈ NF

θj→i(ℓ) if i ∈ NF ,
(13)

θi→j =
∑

l∈(Ni\j)

1
|Ni|+max(|Nj |,|Nl|)−1

(
µ2
il − µ2

ij

)
(14)

θj→i =
∑

l∈(Nj\i)

1
|Nj |+max(|Ni|,|Nl|)−1

(
µ2
jl − µ2

ij

)
. (15)

Proof: The proof is omitted due to space constraints.

C. Event-based implementation

The system (4) with control law (7) is locally asymptot-
ically stable [9], so that if the initial configuration is in a
given formation over the surface, then small variations in
d∗ij are also asymptotically stable if the formation is feasible.
However, the feasibility of new target distances is difficult
to be known a priori. Thus, we propose an event-based
implementation of (12)-(13). Then, µ2

ij is only updated if

|eij | = |d2ij − µ2
ij(ℓ)| ≤ δµ2

ij(ℓ), (16)

where δ ∈ (0, 1). That way, µ2
ij is only updated when

the relative error goes beyond δ. The event-based updating
mechanism (16) will make that the target square distances µ2

ij

are not updated synchronously. Therefore, the convergence to
the average of the initial values is no longer guaranteed, and
the final value of target distances for each edge will depend
on the sequence of events, which, in the end, depends on the
feasibility of the updated target formation. The analytical
study is left for future work. Algorithm 4 summarizes the
proposed solution.
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Fig. 3. 2D view of situations 1)-4) in Example 1.
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Fig. 4. 3D view of the shield and trajectory of agent 7 (left), and time
evolution of the distances between agents 1-5 to 7 (right) in Example 1.

V. SIMULATION EXAMPLE

We illustrate the proposed strategy through two examples
with different N , shapes, and Nloss. We analyze four situ-
ations: 1) The initial configuration with N agents; 2) after
the loss of one or more agents (Nloss) once the Delaunay
condition of all triangles is checked and before the execution
of Algorithm 4; 3) after the execution of Algorithm 4; and
4) the configuration generated by the Algorithm proposed
in [9] with N −Nloss. The loss of the agent(s) is generated
randomly. The trigger function (16) is defined with δ = 0.05.

A. Example 1

Let us consider a hemispherical shield of N = 7 agents
and R = 10 that loses one of them (i = 6). Fig. 3 shows
the projection over the XY plane of the four situations 1)-4)
described above. Agent 7 executes the procedure presented
in Section IV-A to restore the triangulation (see Fig. 3 top-
right). In this case, the Delaunay’s condition is not violated.
Observe that agent 7 moves and reaches the zenith of the
semi-sphere (Fig. 4 left). In that case, the distances of all
moving edges, di7 with i = 1, . . . , 5, converge to a common
value (14.16), very close to the mean of the initial values of
di7 (14.06) (see Fig. 4 right). Note that Algorithm 4 reaches a
common value because this configuration is feasible over the
surface. Moreover, the error to the surface is fS(p7) = 0.005.

B. Example 2

Let us consider a shield of N = 25 agents and with a given
semi-ellipsoid shield of the form x2

102 + y2

82 + z2

72 = 1, z ≥ 0,
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Fig. 5. 2D view of situations 1)-4) in Example 2.
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Fig. 6. 3D view of the shield and trajectories of the agents (left), and time
evolution of the distances of moving edges in Example 2.

that loses three agents (agent 15, 20, and 22). Fig. 5 shows
the projection over the XY in cases 1)-4), and the 3D view of
the moving agents (12-25) is shown on the left of Fig. 6. The
number of edges in this case is 52, 41 of them are moving.
The convergence analysis of the distances between agents is
not straightforward, but the time evolution of d(t) is shown
on the right of Fig. 6. A useful tool when the number of
edges is large is the histogram, shown in Fig. 7. On the top-
left, the initial distribution of distances is shown (case 1)).
When the agents 15, 20, and 22 are removed, this distribution
changes according to the top-right plot. After the execution
of Algorithm 4, the distribution of agents is shown in the
bottom-left. Note that this distribution has a symmetric shape
that fits with a Gaussian. Actually, if we compute the average
distances for cases 3) and 4), we obtain similar values, 5.43
and 5.49, respectively, but the distribution of distances is
more symmetric in case 3) than in case 4). This illustrates
the good performance of the proposed method (Algorithm
4). Finally, if the distance to the surface is computed for all
moving agents, all are bounded by 0.025.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a distributed strategy
to reconfigure a distance-based formation for multi-agent
systems that suffer a failure or loss of a subset of agents,
consisting of two steps. First, the topology (triangulation)
is restored creating new links, which might be flipped if
the Delaunay’s condition, which is evaluated distributedly,
does not hold. Secondly, new values for target distances
are computed following a distributed event-based updating
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Fig. 7. Histogram of distances for the situations 1)-4) in Example 2.

mechanism, and used in the control law. The results show
that convergence properties depend on the number of con-
straints, but in any case, the resulting formation approaches
a uniform distribution of nodes over the virtual surface.

Future work will include the study of the impact of mali-
cious agents over the resulting formation and the validation
over an experimental platform.
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