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Abstract— The Koopman operator framework is a promising
direction of analysis and synthesis of systems with nonlinear
dynamics based on (linear) Koopman operators. In this paper,
we address the resolvent of a Koopman operator for a nonlinear
autonomous discrete-time system, which we call the Koopman
resolvent, and its identification problem. First, we show that
for the nonlinear system with a scalar-valued output, the z-
transform of the output is represented by the action of Koop-
man resolvent. Second, we describe an identification method
of the Koopman resolvent directly from time-series data of the
output, in which we estimate parameters of the resolvent as
well as poles and residues of the z-transform of the output.
By combining the so-called frequency-domain Prony method
with the Vandermonde-Cauchy form in the Dynamic Mode
Decomposition (DMD), we propose the method which we call
the frequency-domain DMD, in which all the unknowns can be
estimated in the frequency domain.

Index Terms— Nonlinear system, Koopman operator, Resol-
vent, Dynamic mode decomposition, Prony method, Frequency
domain

I. INTRODUCTION

The Koopman operator framework is a promising direc-
tion of analysis and synthesis of systems with nonlinear
dynamics based on (linear) Koopman operators: see, e.g.,
[1]–[5]. The Koopman operator is a composition operator
based on a (possibly nonlinear) map [6]. It can capture
the complete information of the underlying nonlinear map
with a linear (but infinite-dimensional) setting, mirroring the
classical approach to linear systems. Of particular interest
here is the spectral analysis of the Koopman operator, which
establishes a mathematically and computationally tractable
way of solving a nonlinear problem without lacking any in-
formation. For instance, the point spectrum, called Koopman
eigenvalues, imply intrinsic modal frequencies embedding in
multivariate time series generated by a nonlinear system,
which was discovered in [7], [8] as the Koopman Mode
Decomposition (KMD). Its numerical algorithm is generally
termed the Dynamic Mode Decomposition (DMD): see, e.g.,
[9].

This paper focuses on utilizing the Koopman operator to
study the z-domain representation of nonlinear autonomous

The work was partially supported by JST PRESTO Grant Number JP-
MJPR1926, JSPS KAKENHI Grant Number 23H01434, and JST Moonshot
R&D Grant Number JPMJMS2284.

1Yoshihiko Susuki is with the Department of Electrical Engineer-
ing, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
susuki.yoshihiko.5c@kyoto-u.ac.jp

2Alexandre Mauroy is with the Department of Mathematics and Namur
Center for Complex Systems (naXys), University of Namur, Belgium.
alexandre.mauroy@unamur.be
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discrete-time systems. The z-domain is a classical approach
to linear systems that provides a systematic method to char-
acterize the systems through complex analysis techniques:
see, e.g., [10]. If a similar approach is established, it will
provide the principles and methodology for analyzing and
synthesizing nonlinear discrete-time systems in the frequency
domain. In [11], we presented a theory of the Laplace-
domain representation of nonlinear autonomous continuous-
time systems, proving that for a nonlinear continuous-time
system with a scalar-valued output, its Laplace transform is
represented by the action of the so-called resolvent (operator)
of a Koopman generator. This shows that the Laplace trans-
formation can completely capture properties of the nonlinear
system through the Koopman generator. In the present paper,
to establish its parallel theory to discrete-time systems, we
address the resolvent of a Koopman operator for a nonlinear
autonomous discrete-time system, which as in [11] we term
the Koopman resolvent.

The contributions of this paper are two. First, we show that
for a nonlinear discrete-time system with a scalar-valued out-
put, its z-transform is represented by the action of Koopman
resolvent. This is a parallel result to [11] and implies that
the z-transformation can completely capture properties of the
nonlinear system through the Koopman operator. The idea
is summarized in Table I and will be explained in further
detail later. Also, we provide several formulae describing
how the Koopman resolvent is connected to the z-transform
of the nonlinear output. Technically, parameterizations of
the Koopman resolvent and z-transform are derived under
an assumption of invariant subspace. By this derivation,
functional properties of the z-transform, precisely speaking,
its poles and residues, are connected to the KMD, which cor-
respond to the Koopman eigenvalues and Koopman modes
[8], respectively.

Second, we describe an identification method of the Koop-
man resolvent in the framework of DMD. Many variants of
the DMD are reported in the literature: see, e.g., recently
[12], [13]. The identification problem is to estimate the
parameters of the resolvent, including poles and residues
of the z-transform, where all the unknowns are related
to the frequency domain (precisely, the z-domain). Here,
we intend to develop a method of DMD suitable to the
frequency-domain (z-domain) theory of nonlinear systems.
The standard DFT (Discrete Fourier Transform) is a well-
established approach in signal processing. Still, it poses a
fundamental issue in the frequency resolution that might
be critical to the estimation accuracy of the poles. In this
paper, to estimate the parameters and poles, we utilize the so-
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TABLE I
z-DOMAIN REPRESENTATION OF DISCRETE-TIME SYSTEMS

Linear Nonlinear
System models xt+1 = Axt xt+1 = T (xt)
Scalar outputs yt = c⊤xt yt = f(xt)
z-transforms

zc⊤(zI−A)−1x0 zR(z;U)f(x0)of outputs yt

called Frequency-Domain Prony Method (FDPM) developed
by Ando [14], where he resolved the issue by combining the
DFT with the Prony formulation to estimate parameters of
sinusoidal signals. The Prony formulation (or generally, time-
delay embedding) has been utilized for the DMD [15]–[17],
and the FDPM was also utilized to estimate the Koopman
eigenvalues [18]. Furthermore, to estimate the residues in
the frequency domain, we utilize the Vandermonde-Cauchy
form [19] in DMD. By combining the FDPM with the
Vandermonde-Cauchy form, we propose the method which
we call the frequency-domain DMD, in which all the un-
knowns are estimated in the frequency domain.

Notation.—The sets of all real and complex numbers are
denoted by R and C, and the imaginary unit by i :=

√
−1.

The m-dimensional identity matrix is denoted by Im, and
the identity operator acting on a function space by I . The
transpose operation of vectors is denoted by >, the diagonal
matrix by diag(· · · ), the Kronecker product of two matrices
by ⊗. The linear hull in a vector space is denoted by
span{· · · }. The notion ‖ · ‖ stands for the standard vector
norm and the operator norm.

II. KOOPMAN RESOLVENTS FOR DISCRETE-TIME
SYSTEMS

A. System Models

Consider a discrete-time dynamical system on a finite-
dimensional state space X, described by a nonlinear con-
tinuous map T : X → X as

T : x 7→ T (x), ∀x ∈ X. (1)

A scalar-valued function defined on X, called the observable,
is denoted by f : X → C, and its linear space by F. Then,
the so-called Koopman operator U : F → F is defined to
map f to another observable in the following composition
(◦) manner:

U : f 7→ f ◦ T , ∀f ∈ F.

This U is linear and bounded with an operator norm ‖U‖
(it holds under a general choice of F). The Koopman
operator framework is to analyze the linear operator U in
order to understand the properties of the nonlinear map T .
As one of such analyses, it is possible to represent the
output {yt}t=0,1,... generated by the nonlinear map T and
observable f as follows:

yt = f(T t(x0)) = U tf(x0), t = 0, 1, . . . , (2)

where x0 is the initial state. This shows that U governs how
the output yt of the nonlinear system (1) through f behaves
in time t.

B. z-Transformation and Koopman Resolvent

Next, we consider the z-transformation of the nonlinear
output (2). For this, using the Neumann series of the bounded
U , i.e., for z ∈ C satisfying |z| > ‖U‖,

(zI − U)−1 = z−1
∞∑
t=0

(z−1U)t,

it is possible to represent the z-transform of (2), denoted by
Y (z; f), as follows:

Y (z; f) =

∞∑
t=0

ytz
−t =

∞∑
t=0

U tf(x0)z
−t

= z(zI − U)−1f(x0), |z| > ‖U‖. (3)

The operator (zI − U)−1 is the resolvent operator of U ,
which we denote by R(z;U) and call the Koopman resolvent.
This shows that the z-transform of the nonlinear output is
represented as the action of the Koopman resolvent to an
observable f with respect to initial state x0:

Y (z; f) = zR(z;U)f(x0), |z| > ‖U‖. (4)

This is a generalization of the classical approach to lin-
ear discrete-time systems as shown in Table I and paral-
lels the Laplace-domain representation [11] for nonlinear
continuous-time systems.

C. Resolvent-Based Formulae

Following [16], let Fn = span{f, Uf, . . . , Unf} be a
(finite) k-dimensional subspace of F which is invariant under
the action of U , which is coined in [20] as the Koopman
invariant subspace. This is the case, for example, where
(possibly damped) sinusoidal components are dominant in
the output yt as for the KMD. Now, consider the first k
elements of Fn, that is, {f, Uf, . . . , Uk−1f}, which are
linearly independent. If Ukf is nonzero, then there exists
k scalars a0, a1, . . . , ak−1, not all zero such that

Ukf = a0f + a1Uf + · · ·+ ak−1U
k−1f. (5)

Equation (5) is an Auto-Regressive (AR) model with order
k for the time evolution of the observable f and associated
with the Arnoldi-type formulation [8] in DMD. The scalars
a0, a1, . . . , ak−1 then become elements of the companion
matrix (see Section III-C) that is a finite-dimensional ap-
proximation of the action of U |Fn

(U restricted on Fn).
Now, we derive several resolvent-based formulae describ-

ing how the Koopman resolvent in the invariant subspace
is connected to the z-transform Y (z; f). First, acting the
resolvent R(z;U) to both sides of (5), we have the z-domain
version of (5) as

R(z;U)Ukf = a0R(z;U)f + a1R(z;U)Uf + · · ·
+ ak−1R(z;U)Uk−1f, |z| > ‖U‖. (6)

Second, multiplying by z both sides of (6) and using (4) with
initial state x0, we have

Y (z;Ukf) = a0Y (z; f) + a1Y (z;Uf) + · · ·
+ ak−1Y (z;Uk−1f), |z| > ‖U‖. (7)
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Equation (7) will appear when we think of a connection with
the Prony formulation for the identification problem. Lastly,
by using1

R(z;U)U jf = zjR(z;U)f − zj−1f − zj−2Uf − · · ·
− U j−1f,

we rewrite (6) as

pk(z)R(z;U)f =

k−1∑
j=0

pj(z)U
jf, |z| > ‖U‖,

with

pk(z) := zk − (a0 + a1z + · · ·+ ak−1z
k−1)

p0(z) := zk−1 − (a1 + a2z + · · ·+ ak−1z
k−2)

p1(z) := zk−2 − (a2 + a3z + · · ·+ ak−1z
k−3)

...
pk−2(z) := z − ak−1

pk−1(z) := 1


. (8)

Because of the linear independency of {f, Uf, . . . , Uk−1f}
and of the fact pk−1(z) = 1, we conclude that pk(z) 6= 0
for |z| > ‖U‖. Therefore, we have

R(z;U)f =

k−1∑
j=0

pj(z)

pk(z)
U jf, |z| > ‖U‖, (9)

and from (4),

Y (z; f) = z

k−1∑
j=0

pj(z)

pk(z)
U jf(x0), |z| > ‖U‖. (10)

Equation (9) implies that the resolvent R(z;U) is
parametrized by the (at most) k-th order polynomials
p0(z), . . . , pk(z) with the k scalars a0, . . . , ak−1. The scalars
are targets of the identification in the next section. Equa-
tion (10) implies that the z-transform Y (z; f) can be an-
alyzed with the polynomials p0(z), . . . , pk(z). The poles
of Y (z; f), which can exist in the disk |z| ≤ ‖U‖, are
equivalent to the k roots of pk(z) that are the eigenvalues of
U |Fn , namely, Koopman eigenvalues. For a pole λ of order
m, the residue of Y (z; f) around z = λ can be located, e.g.,
with the formula using the resolvent

Res
z=λ

Y (z; f)dz =
1

(m− 1)!
·

· dm−1

dzm−1
z(z − λ)mR(z;U)f(x0)

∣∣∣∣
z=λ

.

A simple pole λ (with m = 1) and associated residue
Res
z=λ

Y (z; f)dz characterize a single mode embedded in the
nonlinear output yt, represented as

λt Res
z=λ

Y (z; f)dz, t = 0, 1, . . . .

where the residue corresponds to the Koopman mode [8],
and its finite sum over multiple poles is called the KMD.

1To derive it, we use zR(z;U)− I = R(z;U)U = UR(z;U).

Note that the residue is connected to the projection operation
onto spaces spanned by the Koopman eigenfunctions via the
Cauchy integral formula, see [11]. The pole and residue are
the other targets of the identification in the next section.

III. IDENTIFICATION OF KOOPMAN RESOLVENTS

The identification problem is to estimate the scalars
a0, . . . , ak−1 as the parameters in (9) of the Koopman
esolvent R(z;U), as well as the poles λi and residues
Res
z=λi

Y (z; f)dz in (10) of the z-transform Y (z; f) as the

Koopman eigenvalues and modes. Identifying poles and
residues is of great interest in science and technology;
see, e.g., [21], [22]. In Section III-A, we formally show
that the Prony formulation is capable of the estimation of
a0, . . . , ak−1. In Sections III-B.1 and III-B.2, we introduce
the FDPM (Frequency-Domain Prony Method) [14] and
the Vandermonde-Cauchy form [19] utilized in this paper.
Finally, as their combination, in Section III-C, we propose a
method to estimate all the above unknows in the frequency
domain.

A. Connection to the Prony Formulation
The resolvent-based formula (7) is connected to the so-

called Prony formulation of signal processing. The Prony
formulation is used in the DMD [15], [16] and to esti-
mate k scalars c0, . . . , ck−1 from finite-length time series
{y0, y1, . . . , yk+n−1} as

yk
yk+1

...
yk+n−1

 =


y0 y1 · · · yk−1

y1 y2 · · · yk
...

...
. . .

...
yn−1 yn · · · yk+n−2




c0
c1
...

ck−1

 , (11)

where we have assumed k known. As in [16], that is, by
using (2), this Prony formulation can be interpreted in terms
of the action of the Koopman operator as

Ukf(x0)
Uk+1f(x0)

...
Uk+n−1f(x0)



=


f(x0) Uf(x0) · · · Uk−1f(x0)
Uf(x0) U2f(x0) · · · Ukf(x0)

...
...

. . .
...

Un−1f(x0) Unf(x0) · · · Uk+n−2f(x0)




c0
c1
...

ck−1

 .

(12)

Comparing (12) with (5) implies cj = aj , that is, the
Prony formulation is capable of estimating the k parameters
a0, . . . , ak−1. Now, by applying [1, z−1, z−2, . . . , z−(n−1)]
to both sides of (12) from the left, we have
n−1∑
t=0

U t(Ukf)(x0)z
−t =

[
n−1∑
t=0

U tf(x0)z
−t,

n−1∑
t=0

U t(Uf)(x0)z
−t, . . . ,

n−1∑
t=0

U t(Uk−1f)(x0)z
−t

]
c0
c1
...

ck−1

 .
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By taking the infinite sequence of time series (n → ∞) and
using (3), we have

zR(z;U)Ukf(x0) = [zR(z;U)f(x0),

zR(z;U)Uf(x0), . . . , zR(z;U)Uk−1f(x0)
]


c0
c1
...

ck−1

 ,

with |z| > ‖U‖. This corresponds to (7), also implying cj =
aj . This shows that the Prony formulation (11) is capable of
estimating the k parameters a0, . . . , ak−1, namely, the action
of the Koopman resolvent R(z;U). This finding is valid for
the general case of multi-channel time series yt ∈ Rm, m >
1.

B. Review of Frequency-Domain Methods

1) Frequency-Domain Prony Method: First, we present an
extended version of the FDPM (Frequency-Domain Prony
Method) [14] to the m-channel time series yt ∈ Rm.
Regarding (11), let us identify the AR model with order k
as

yt = c0yt−k + c1yt−(k−1) + · · ·+ ck−1yt−1 + rt, (13)

where rt ∈ Rm is the residual at time t or noise (driv-
ing term) that can appear when applying (11) to real
data. The identification is to determine the k coefficients
c0, . . . , ck−1 ∈ R directly from finite-length time series that
provide frequencies and damping coefficients of sinusoidal
signals embedded therein. The problem is formulated using
finite-length time series {y0, . . . ,yk+n−1} (n > k) as
follows:

y0 y1 · · · yk−1 yk

y1 y2 · · · yk yk+1
...

...
. . .

...
...

yn−1 yn · · · yk+n−2 yk+n−1




c0
c1
...

ck−1

−1

 = −r̃k,

(14)
where r̃k is again the residual [r⊤k , . . . , r

⊤
k+n−1]

⊤. To han-
dle the problem with the n snapshots {y0, . . . ,yn−1}, by
multiplying a matrix W(m)

n := Wn ⊗ Im, where Wn :=
diag(w0, . . . , wn−k−1, wn−k = 0, . . . , wn−1 = 0), to both
hand sides of (14) (saying in [14], windowing the AR model),
we have the following circulant matrix-based formulation:

W(m)
n



y0 y1 · · · yk−1 yk

y1 y2 · · · yk yk+1
...

...
. . .

...
...

yn−k−1 yn−k · · · yn−2 yn−1

yn−k yn−k+1 · · · yn−1 y0
...

...
. . .

...
...

yn−1 y0 · · · yk−2 yk−1




c0
c1
...

ck−1

−1


= −W(m)

n r̃k. (15)

By using F (m)
n := Fn ⊗ Im with the DFT matrix

Fn :=

{
Ω

(i−1)(j−1)
n √

n

}
i,j=1,...,n

, Ωn := e−i2π/n, (16)

and by defining Q(m)
n := F (m)

n W(m)
n (F (m)

n )−1 = Qn ⊗ Im
with Qn := FnWnF−1

n , we can rewrite (15) as follows:

Q(m)
n F (m)

n


y0 y1 · · · yk

y1 y2 · · · yk+1
...

...
. . .

...
yn−1 y0 · · · yk−1



c0
c1
...

−1


= −Q(m)

n F (m)
n r̃k,

and

Q(m)
n


η0 η0 · · · η0

η1 Ωnη1 · · · Ωk
nη1

...
...

. . .
...

ηn−1 Ωn−1
n ηn−1 · · · Ω

(n−1)k
n ηn−1



c0
c1
...

−1


= −Q(m)

n F (m)
n r̃k,

with the DFTs ηi of {yt}, given by

[η0, . . . ,ηn−1] := [y0, . . . ,yn−1]︸ ︷︷ ︸
Yn

Fn, (17)

where i represents the frequency (it corresponds to i/(nh)
if yt is derived under an equally-spaced sampling h of
continuous-time signal). The term F (m)

n r̃k above contains
the DFTs of the residual. By defining a convolution (see
[14] in detail) of ηi with Qn as

η
[d]
i :=

n−1∑
j=0

[Qn]ijΩ
jd
n ηj , i = 0, . . . , n− 1, d = 0, . . . , k,

(18)
where d represents the delay, we obtain the equation for
determining a1, . . . , ak in the frequency domain as
η
[k]
0
...

η
[k]
n−1

 =


η
[0]
0 · · · η

[k−1]
0

...
. . .

...
η
[0]
n−1 · · · η

[k−1]
n−1


 c0

...
ck−1

+Q(m)
n F (m)

n r̃k.

A solution ĉ0, . . . , ĉk−1 of min
c0,...,ck−1

‖Q(m)
n F (m)

n r̃k‖ can be

located using the n DFTs (17) via (18). It is remarked that
the window matrix Wn is synthesized in the same manner
as [14].

2) Vandermonde-Cauchy Form for DMD: Second, we
review the Vandermonde-Cauchy form [19] for DMD. For
the data matrix Yk = [y0, . . . ,yk−1], let us denote the
shifted one by Y′

k := [y1, . . . ,yk]. Then, by virtue of (13)
at t = k, we have

Y′
k = Yk


0 0 · · · ĉ0
1 0 · · · ĉ1
0 1 · · · ĉ2
...

...
. . .

...
0 0 · · · ĉk−1


︸ ︷︷ ︸

Ĉk

+ [0, . . . ,0, rk]︸ ︷︷ ︸
Rk

, (19)
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where Ĉk is the companion matrix. It is known in matrix
theory that the characteristic polynomial of Ĉk corresponds
to pk(λ) = 0 using ĉ1, . . . , ĉk, for which we denote the k
roots by λ̂1, . . . , λ̂k. The Ĉk can be diagonalized using the
Vandermonde matrix V̂k as

Ĉk = V̂−1
k diag(λ̂1, . . . , λ̂k)︸ ︷︷ ︸

Λ̂k

V̂k

V̂k :=


1 λ̂1 λ̂2

1 · · · λ̂k−1
1

1 λ̂2 λ̂2
2 · · · λ̂k−1

2
...

...
...

. . .
...

1 λ̂k λ̂2
k · · · λ̂k−1

k




.

Then, by constructing Ŵk = [Ŵ 1, . . . , Ŵ k] := YkV̂
−1
k ,

from (19), we have the modal decomposition of yt as
follows:

yt =

k∑
j=1

λ̂t
jŴ j +

{
0, t = 0, . . . , k − 1,
rt, t = k,

(20)

where λ̂j is called the j-th Ritz value [8] or Prony value [15]
as an estimated Koopman eigenvalue, and Ŵ j the associated
Ritz vector [8] or Prony vector [15] as an estimated Koopman
mode. A numerical difficulty of the decomposition arises
from the potentially high condition number of V̂k, which
precludes exploiting it in numerical computations. To avoid
V̂−1

k , according to [19], by multiplying F−1
k in (16) to both

sides of (19) from the right, we derive the following formula
of (19) in the frequency domain:

Y′
kF−1

k = (YkF−1
k )(V̂kF−1

k )−1Λ̂k(V̂kF−1
k ) +RkF−1

k

= (YkF−1
k )(D1CD2)

−1︸ ︷︷ ︸
Ŵk

Λ̂k(D1CD2) +RkF−1
k ,

with

[D1]iiCij [D2]jj =

[
λ̂k
i − 1√
k

][
1

λ̂i − Ω1−j
k

]
[Ω1−j

k ],

i, j = 1, . . . , k,

where D1 and D2 are diagonal, C is a Cauchy matrix,
and D2 = diag(1,Ω−1

k , . . . ,Ω
−(k−1)
k ) is unitary. The term

YkF−1
k is exactly the DFT of Yk = [y0, . . . ,yk−1]. One

computation formula of Ŵk is taken from [19] in the
frequency domain as follows:

Ŵk =
((
YkF−1

k

)
(CD2)

−1
)
D−1

1 . (21)

The key for the accuracy of (21) is high accuracy computa-
tion of the LU and the SVD decompositions of the scaled
Cauchy matrix D1CD2 (or CD2) [23], [24].

C. Proposed Method

Finally, by combining the FDPM with the Vandermonde-
Cauchy form, we propose a novel method of DMD consist-
ing of three steps (S1,S2,S3), where all the unknowns are
estimated in the frequency domain.

(S1) Estimate the k scalars ĉ0, . . . , ĉk−1 in the Koopman
resolvent by using the FDPM.

(S2) Estimate the k poles (Koopman eigenvalues) of the z-
transform λ̂1, . . . , λ̂k by locating the eigenvalues of the
companion matrix Ĉk.

(S3) Estimate the associated k residues (Koopman modes)
Ŵ 1, . . . , Ŵ k by using the Vandermonde-Cauchy
form, i.e., (21).

Several remarks on the proposed method are made. The
existing methods of DMD conduct (S1) to (S3) in the
time domain with singular value decomposition as [16] and
without it as [15]. We have derived the method of DMD
in the frequency domain, that is, using the DFTs YnFn and
YkF−1

k . As stated in [18], by using the FDPM, it is expected
to be robust against observational noise by formulating the
estimation procedure in the frequency domain, where around
a peak frequency, the parameters are estimated with the
best signal-to-noise ratio and isolation from another peak.
Also, it can be stated in an equivalent sense that the time-
variant noise as a stationary process has a steady Fourier
spectrum, which is easily filtered out. Furthermore, by us-
ing the Vandermonde-Cauchy form, it becomes possible to
accurately estimate the residues even in the case of a high
condition number of the Vandermonde matrix V̂k. We term
the proposed method the frequency-domain DMD.

D. Numerical Example

Here, as the simplest case, we numerically evaluate the
frequency-domain DMD using a synthetic time series (sam-
pled data of the damped oscillation) modeled by

yt = e−µhtRe

[
eiωht

[
1

1.5eiπ/3

]]
+

[
1
1

]
ξt, (22)

where t = 0, . . . , n − 1 is the discrete-time, n = 64 the
number of samples, h = 2/(50Hz) is the sampling period,
µ = 0.1Hz is the decay coefficient, ω = 2π× (0.5Hz) is the
angular frequency, and ξt is the observation noise obeying
the normal distribution with zero mean and variance σ2.
The Koopman principal eigenvalues in a latent discrete-time
system are e−µhe±iωh with modulus e−µh and arguments
±ωh, and the associated Koopman mode, precisely, its
second element is 1.5eiπ/3. The frequency ω/(2π), decay
µ, modulus 1.5, and argument π/3 are the targets for the
evaluation.2 For comparison, we apply the Arnoldi method
[8] and the Time-Domain Prony Method (TDPM) [15] to the
same time series.

Figure 1 shows a comparison result of the estimation,
where the horizontal axis is σ2 and the vertical axis is
the medians of squared errors between estimated and true
values. 2000 trials of the estimation (i.e., using 2000 sample
processes of {ξt}t=0,...,n−1) were performed for each noise
variance σ2. Regarding the frequency and decay, the FDPM
outperforms both the Arnoldi method and TDPM, implying
the robustness of the FDPM. Regarding the modulus and

2Hereafter, we do not discuss the coefficients cj of the resolvent because
their accuracy can be evaluated with the resultant Koopman eigenvalue and
mode.
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Fig. 2. Comparison of the number of outliers for the estimation

argument, we use the two schemes—using the inverse as
YkV̂

−1
k and using the Vandermonde-Cauchy form as (21)—

and show that their squared errors are comparable in terms
of the median.

Figure 2 shows another comparison result of the estima-
tion, where we show the number of outliers for the estimated
modulus and argument, that is, we visualize how they are
varied for the 2000 trials. For this, we used the command
isoutlier with quartitles in MATLAB. The number
of outliers for the Vandermonde-Cauchy form is smaller than
for taking the inverse. Note that for the inverse approach
in the figure, there are more outliers for lower levels of
noise because the pure (clean) damped oscillation poses
the high condition number of V̂k. This implies that the
Vandermonde-Cauchy form effectively avoids less accurate
estimation, thereby robustifying the DMD.

IV. CONCLUSION

We reported the formalism of z-domain representation
of nonlinear autonomous systems in the Koopman operator
framework. The Koopman resolvent is the key mathematical
object for capturing dynamics described by nonlinear sys-
tems through the traditional z-transformation. An identifica-
tion method related to the Koopman resolvent, the frequency-
domain DMD, was also reported. Extending the formalism
and method to vector-valued observations is possible without

significant modification. Extending the z-domain representa-
tion to nonlinear systems with inputs is crucial and listed as
our next topic. Integrating the signal-processing technique of
the FDPM [25] with the DMD is also interesting for real-time
implementation. In this, exemplifying it for nonlinear time
series and evaluating its computational cost are necessary.
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[1] I. Mezić, Annual Review of Fluid Mechanics, vol. 45, no. 1, pp. 357–
378, 2013.
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