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Abstract— Aircraft anti-skid systems are key to maintaining
directional control during ground handling and must balance
performance and robustness over a wide operational enve-
lope. In particular, the impact of longitudinal speed on the
braking dynamics induces an important coupling between the
longitudinal and vertical dynamics due to the aerodynamic
effects. In this paper, longitudinal slip-based and wheel speed
deceleration-based anti-skid controllers are designed based on
control-oriented models of the braking dynamics for an aircraft
with a tricycle landing gear configuration. A gain-scheduling
strategy is devised to achieve high performance and maintain
stability during landing maneuvers. The stability of the result-
ing closed-loop system affected by parametric variability and
discretization effects is later verified in the framework of Linear
Parameter-Varying systems by formulating a set of efficient
Linear Matrix Inequalities. The resulting anti-skid designs are
successfully evaluated in a validated multibody simulator for a
target aircraft.

I. INTRODUCTION

Anti-skid systems in aircraft are fundamental to safety and
efficiency during landing and rejected take-off maneuvers.
On the one hand, they ensure that – upon brake pedal
application by the pilot – the wheels do not go into a locked
condition, thus causing severe ground handling issues and
excessive wear on the tires. On the other hand, these systems
seek to maximize braking performance and reduce braking
distances along the runway by maximizing the exploitation
of the available tire-runway friction. The two objectives are
complementary to each other, which leads to a challenging
design problem that requires the anti-skid system engineer to
balance the aggressiveness of the controller with its robust-
ness properties. Moreover, there is a wide variation range of
parameters encountered in the operational envelope of the
system, which have important effects on the dynamics of
aircraft landings and rejected take-offs. Variables such as the
runway friction condition, the aircraft inertial characteristics,
or the dynamic variability of braking dynamics with respect
to aircraft speed have to be considered.

The variability of the braking dynamics concerning longi-
tudinal velocity is well-known in automotive anti-skid sys-
tems, and controller adaptation with respect to its variation is
used to increase performance due to a dedicated tuning that
captures the change in the open-loop response characteristics
[1]. The phenomenon is even more pronounced in aircraft, as
the braking maneuvers’ speed induces significant load vari-
ations due to speed-dependent aerodynamic effects, yielding
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a coupling between the vertical and longitudinal dynamics.
The most common approach to designing aircraft anti-

skid systems is based exclusively on the wheel deceleration
measurement [2], [3], as no aircraft velocity knowledge is
required, thus allowing the Brake Control Unit to work as
an isolated system. In recent years, some attempts have
been made to introduce more performing controllers based
on the longitudinal wheel slip, see e.g., [4]–[7], mimicking
techniques more widespread in the automotive realm [8]. The
present work is a new attempt in this direction, and the main
contributions are threefold. First, we propose gain-scheduled
strategies akin to the ones found in advanced automotive
systems to design both slip-based and deceleration-based air-
craft anti-skid systems that are able to cope with the impact
of longitudinal velocity on the braking system dynamics.
Second, we provide a sound verification process based on
formulating the closed-loop system dynamics as a Linear
Parameter-Varying (LPV) System and checking the feasibil-
ity of appropriate Linear Matrix Inequality (LMI) conditions.
Third, we compare the performance of the proposed meth-
ods on a validated aircraft simulator based on the metrics
proposed by the SAE AIR1739B standard, commonly used
in industry to evaluate aircraft anti-skid algorithms.

The structure of the paper is as follows. Section II de-
scribes the control problem and the simulation environment
for its evaluation. Section III describes the control-oriented
modeling, the structure of the anti-skid controllers, and the
proposed gain-scheduling strategy. Section IV describes the
approach used to verify the closed-loop stability of the de-
signs under parametric variability as well as under controller
discretization. Section V compares the performances of the
two anti-skid designs on a set of braking maneuvers. Finally,
Section VI provides some closing remarks.

II. PROBLEM DESCRIPTION AND SIMULATION
ENVIRONMENT

This work is concerned with the design, verification, and
performance evaluation of two aircraft anti-skid algorithms
during a landing maneuver for a target aircraft for which
experimental data was available, and that will serve as a
case study. The aircraft under study has a landing gear in
a tricycle configuration with only the Main Landing Gear
(MLG) wheels equipped with a hydraulic braking system. It
is assumed that the aircraft has established a proper ground
contact by the moment the pilot presses the brake pedals,
and also that the aircraft traces a straight trajectory along
the runway so that the lateral dynamics can be neglected.

A model-based design of both a slip-based and a
deceleration-based anti-skid controller will be conducted that
satisfy a set of specifications in the form of minimum gain
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Fig. 1. Isometric view of the multibody model in the Matlab/Simulink
interface.

margins, phase margins, and bandwidth for different regions
of the operational envelope. In particular, the system dynam-
ics’ strong dependence on the aircraft’s longitudinal velocity
calls for gain-scheduling strategies to achieve the perfor-
mance objectives. Therefore, the proposed controller should
also guarantee that the closed-loop stability is preserved
when the controller’s parameters are actively modulated.

A validated multibody simulator will be used to eval-
uate the algorithms’ performance. The simulator runs in
a Matlab/Simulink environment employing the Simscape
Multibody library to describe the landing gear kinematics
and dynamics of the target aircraft. In Fig. 1, a view of
the aircraft is shown. The simulation environment includes a
wide range of complex phenomena that have been modeled
using experimental data from real landing maneuvers. The
interested reader is referred to the work [9] for an in-depth
description of the model’s characteristics and a comparison
between simulated and experimental data. For the purposes
of this work, a brief overview of some relevant characteristics
of the simulator follows. As seen in Fig. 1, the aircraft is
modeled as a chain of rigid bodies connected by different
sets of joints. The geometric and kinematic description of
the landing gear retains the most important elements and
constraints from the target aircraft. Detailed modeling has
been employed to capture the shock absorber dynamics, the
compliance that exists between the landing gear structural
elements, and the track variation, which allows to mimic
load transfer effects during a landing maneuver.

The contact between the runway and tire has been im-
plemented using a Fiala model [10], with the appropriate
parameters of the tires being extracted from the supplier’s
data. The longitudinal friction coefficient µ is described by
a Burckhardt model [11], with the following relationship:

µ(λ) = θ1
(
1− e−λθ2

)
− λθ3 (1)

with θ1, θ2 and θ3 the parameters that describe the run-
way condition, and λ is the longitudinal wheel slip. This
work uses eight friction conditions to evaluate the anti-
skid algorithms’ robustness to environmental variability. In
Fig. 2, a graphical representation of the friction curves is
shown. Also relevant for anti-skid design is the braking
actuator model. The simulation environment describes the
generation of braking torque Tb at the disc brakes of the
MLG from an input pressure command P ref

b given by the
anti-skid controller. The model is shown in Fig. 3. More
precisely, the model illustrated in Fig. 3 assumes that a
low-level high-bandwidth closed-loop pressure controller is
in place that tracks a given reference pressure command
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Fig. 2. Burckhardt friction model. The eight represented curves allow
conditions ranging from wet/slippery surfaces (bottom curves) to dry/high-
grip surfaces (top curves).
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Fig. 3. Schematic representation of the braking actuator dynamics.

P ref
b , as is common in industrial practice. The low-level

pressure controller can be represented as a second-order
transfer function PCL(s), with a cutoff frequency of around
20 Hz. In turn, the pressure Pb at the end of the hydraulic
line is converted to an effective braking torque Tb through
the conversion coefficient kb, which depends on the braking
friction coefficient µb between the wheel brake assembly
and the disc brakes. See [12] for details on the modeling of
the braking actuator. Finally, a set of external forces affect
the aircraft during a landing maneuver. In particular, a drag
force FD = Cdragv

2
a is applied opposite to the direction

of movement of the aircraft, described by a conventional
quadratic dependence on the longitudinal velocity va with a
drag coefficient Cdrag; a residual thrust force Fth is applied
along the direction of movement using a nonlinear map
depending on the aircraft velocity va; and a lift force FL =
Cliftv

2
a is applied in the vertical direction, also described by

a quadratic dependence on va with a lift coefficient Clift.

III. CONTROLLER DESIGN
In this Section, the two anti-skid controllers are designed.

For each one, a control-oriented model is developed based
on a simplified representation of the dynamics. Then, the
controller structure is presented, as well as the tuning strategy
adopted to cope with the design constraints. Note that in
each design, an independent anti-skid controller operates on
each MLG side having the same parameters, so that both
MLG anti-skid controllers are symmetric. For this reason, the
design of a single MLG side will be described. The general
scheme valid for both designs is shown in Fig. 4.

A. Slip-based Controller
The slip-based controller aims to control the value of the

longitudinal wheel slip λ, defined as:

λ = (va − ωr)/va, (2)
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Fig. 4. General anti-skid control design scheme. WBA stands for Wheel
Brake Assembly.
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Fig. 5. Single corner model of the braking dynamics.

where ω is the rotational wheel speed, va is the longitudinal
aircraft speed, and r is the effective radius of the wheel.
Referring to Fig. 4, y(t) = λ(t) in this case.

1) Control-oriented Model: A simple yet effective model
of the slip dynamics is the single corner model, used both
in automotive [8] and aerospace [3] realms to capture the
most important dynamical effects at the wheel level. A rep-
resentation of the model is shown in Fig. 5, where ma is the
load sustained by a single MLG side, J is the wheel inertia,
while Fz and Fx are the vertical and longitudinal forces
at the contact patch, respectively. The implicit assumptions
involve neglecting the vertical suspension dynamics, the tire
compression, and the load transfer effect along the pitch
axis. Considering that the time constants of the rotational
dynamics of ω and the longitudinal dynamics of va are
vastly different, it can be assumed that va is a slowly-varying
parameter va from the point of view of the braking dynamics,
which evolve according to the relationship:

Jω̇ = rFx − Tb (3)

By combining the definition of λ in (2), Eq. (3), the static
conversion between pressure and torque in the braking actu-
ator, and assuming a linear relationship between the vertical
and longitudinal forces of the form Fx = Fzµ(λ), the slip
dynamics are obtained:

λ̇ = − 1

va

(1− λ

ma
+

r2

J

)
Fzµ(λ) +

r

Jva
kb(µb)Pb (4)

Finally, by linearizing Eq. (4) around an equilibrium (λ,P b)
the following transfer function can be obtained:

Gλ
Pb
(s) =

kb(µb)r
Jva

s+ Fzµ1(λ)
mava

[(
(1− λ) + mar2

J

)] (5)

where µb is the average friction coefficient value, ma is the
average single corner mass over the operational envelope,
and where it has been assumed that µ1(λ) is significantly
larger than µ(λ) with µ1(λ) the slope of the friction curve
at the equilibrium. The anti-skid system can enforce the
assumption with an appropriate choice of the reference λ.
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Fig. 6. Normalized gain-scheduling laws for Rλ(s).

2) Controller Tuning and Scheduling Strategy: Equation
(5) includes parameters that depend implicitly on the aircraft
velocity va, as both the wheel radius r and the effective
vertical force Fz are affected by the lift force Flift. There-
fore, the resulting transfer function is highly affected by va,
which makes it an immediate candidate for a gain-scheduling
strategy. Referring to Fig. 4, the structure of the proposed
controller R(s) = Rλ(s) in its continuous-time version is a
Proportional-Integral-Derivative (PID) controller:

Rλ(s) = Kp(va)

(
1 +

1

TI(va)s
+

TD(va)s
TD(va)
N(va)

s+ 1

)
(6)

where the free variables have been scheduled in va. The con-
troller implementation includes a conventional anti-windup
back-calculation strategy to handle the integral term. To
tune the parameters, the longitudinal velocity range has
been partitioned into seven regions, ranging from 18 km/h
to 220 km/h, with a higher granularity towards the low-
speed regime since the open loop braking dynamics get
infinitely fast at low speeds [1]. For each region, a controller
Ri

λ(s) with i = {1, ..., 7} is tuned on the loop function
Li
λ(s) = Ri

λ(s)PCL(s)G
λ
Pb
(s) to achieve a phase margin

ϕm ≥ 75° and gain margin gm ≥ 20 dB for all speeds va in
its corresponding region. Moreover, the imposed crossover
frequency ωc on each Li

λ(s) is progressively reduced at
lower speeds to account for the open loop braking dynamics
variability. The tuning for each velocity region is shown in
the appropriate columns in Table I. Note a small overlap was
introduced in the first two regions to handle the low-speed
regime smoothly. The parameters for Ri

λ(s) are assigned
to the centroid of its corresponding region. Each tuning
parameter then is linearly interpolated in va to construct
the gain-scheduling lookup table, shown in Fig. 6, which
is expressed in normalized units for confidentiality reasons.

B. Deceleration-based Controller

The deceleration-based controller aims to control the value
of the normalized wheel deceleration η, defined as:

η = −(ω̇r)/g, (7)

with g the gravitational acceleration. In Fig. 4, y(t) = η(t).
The dynamics of η are the basis for the controller design.
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TABLE I
PHASE MARGIN ϕm , GAIN MARGIN gm AND CROSSOVER FREQUENCY

ωc OF Li
λ/η

(s) FOR EACH REGION i ON BOTH ANTI-SKID DESIGNS

Velocity λ-based η-based
Region [km/h] ωc[Hz] ϕm[°] gm[dB] ϕm[°] gm[dB]
18 ≤ va ≤ 30 1 130 20 110 20
20 ≤ va ≤ 50 1.5 130 20 110 20
50 ≤ va ≤ 80 1.5 120 20 100 20
80 ≤ va ≤ 120 2 110 25 90 25
120 ≤ va ≤ 160 2.5 105 25 90 25
160 ≤ va ≤ 200 2.5 85 25 90 20
200 ≤ va ≤ 220 2.5 75 30 75 20

1) Control-oriented Model: The single corner model il-
lustrated in Fig. 5 is also used to design this controller. In
this case, combining Eqs. (3) and (7) we obtain:

η = r(Tb − rFzµ(λ))/(Jg) (8)

Similarly as done in Section III-A.1, by linearizing Eq. (8)
around an equilibrium (η,P b), using the static conversion
between pressure and torque, assuming a linear relationship
between the vertical and longitudinal forces, and assuming
that µ1(λ) is significantly larger than µ(λ), we obtain:

Gη
Pb
(s) =

kb(µb)r

Jg

s+ Fz

mava
[(1− λ)µ1(λ)]

s+
[
Fz

va

((
1−λ
ma

+ r2

J

)
µ1(λ)

)] (9)

2) Controller Tuning and Scheduling Strategy: Equation
(9) is also highly affected by the longitudinal velocity va, for
which a similar scheduling strategy as the one designed in
III-A.2 will be proposed. Referring to Fig. 4, the structure of
the proposed controller R(s) = Rη(s) in its continuous-time
version consists of two poles and one zero to achieve a loop
function of the same relative degree as in III-A.2:

Rη(s) = K(va)
s+a1(va)

s(s+b1(va))
= A(va)

s + B(va)
s+b1(va)

(10)

where A(va) = K(va)a1(va)/b1(va), B(va) =
K(va)(b1(va) − a1(va))/b1(va), while K, a1, and b1
are the parameters of the controller. Note that the last
expression in Eq. (10) isolates the purely integral term,
which is also handled with an anti-windup back-calculation
strategy. The same scheduling strategy in va as the one
in III-A.2 is used. The same seven velocity regions are
used, and for each one, a controller Ri

η(s) is tuned on the
loop function Li

η(s) = Ri
η(s)PCL(s)G

η
Pb
(s) to achieve a

phase margin ϕm ≥ 75° and gain margin gm ≥ 20 dB for
all speeds va in its region. The tuning for each velocity
region is shown in the appropriate columns in Table I. The
obtained gain-scheduling lookup table is shown in Fig. 7.

Remark 1: The design of both controllers is comple-
mented by an adaptive reference that seeks the friction
curve’s peak by a heuristic typical of industrial algorithms.
However, its description is left out due to space limitations.

Remark 2: Note that for the scope of this work, the veloc-
ity va is assumed to be known. A practical implementation
requires some estimation strategy. For the η-based controller,
since va is only used in the scheduling phase, a simple
algorithm as the one in [13] can be used. In the λ-based
case, a more involved methodology is needed, as in [14].
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Fig. 7. Normalized gain-scheduling laws for Rη(s).

IV. CONTROLLER VERIFICATION

In this Section, the verification of the stability properties
of both anti-skid designs is conducted. First, the stability
of the closed-loop system is checked against the parametric
variations induced by the operational envelope of the system
by appropriate Linear Matrix Inequality (LMI) conditions.
Then, the stability is also checked against the discretization
process to obtain the implementable controller Rλ/η(z).

A. LPV Problem Formulation

Once the loop function Lλ/η(s) = Rλ/ηPCL(s)G
λ/η
Pb

(s)
is operated in closed loop, a Linear Parameter-Varying (LPV)
system is obtained. In particular, the velocity va continuously
decreases during a braking maneuver, which has important
effects on the dynamics, as analyzed in Section III. Moreover,
the dynamics depend on the instantaneous friction exploited
out of the runway, represented by µ1(λ). Therefore, an
uncertainty parameter vector p = [va, µ1(λ)] is defined.
Vector p = p(t) is an unknown function of time, and the
values it assumes define the parameter space P. To verify
the stability of the closed-loop system inside P, a state space
representation of the system dependent on p ∈ P is obtained:

ẋ(t) = A(p)x(t) +B(p)u(t)

y(t) = C(p)x(t)
(11)

where u(t) = λref (t) or ηref (t) while y(t) = λ(t) or
η(t), depending on each controller design. For numerical
conditioning reasons, the transformation between the closed-
loop transfer functions and system (11) for every value of p
has been obtained using a balanced realization.

B. LMI Feasibility Conditions

The stability of system (11) can be assessed by resorting
to a useful result shown in [15], originally developed in [16]:

Theorem 1: The closed-loop system (11) is stable if there
exists a C1 matrix function X(p) satisfying:

X(p) > 0 (12)

AT (p)X(p) +X(p)A(p) +

M∑
j=1

±νj
∂X(p)

∂pj
< 0 (13)
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with M = 2 the dimensionality of the parameter space P,
νj an element of vector ν that satisfies |ṗ(t)| ≤ ν element-
wise, and the operator ± indicates that every combination of
signs should be taken into account in the second inequality
so that Eq. (13) represents 2M inequalities. The bounds νj
can be obtained by physical considerations. In particular,
ν1 corresponds to the magnitude of the maximum aircraft
longitudinal deceleration, which can be computed by noting
that mav̇a = −Fx so that |v̇a| is maximized at the peak of
the friction curve in a high-grip condition during the low-
speed regime in which the effective load Fz is maximum.
An additional slack can be included in the bound ν1 to
account for the drag force FD. In turn, ν2 is related to the
maximum rate of change of the runway friction conditions.
More concretely, µ̇1 = (∂µ1/∂λ)λ̇ where the first factor can
be computed by Eq. (1) while the second one is shown in
Eq. (4) in which all terms are bounded as long as va > 0.

The conditions shown in Theorem 1 can be formulated as
a finite-dimensional problem by a gridding approach [15].
First, a basis for the matrix function X(p) is chosen to set
a dependence on p. Then, the parameter space P is gridded
so that for each point in the grid, the conditions from Eqs.
(12) and (13) can be numerically checked. For both anti-skid
designs, the following linear basis has been employed:

X(p = [va µ1]) = X0 +X1va +X2µ1 (14)

The chosen basis allows to cast efficiently the problem as
an LMI with X0, X1, and X2 as unknowns. Parameter va
has been divided into 202 grid points equally spaced ranging
from 18 km/h to 220 km/h. Instead, eight grid points have
been selected for the parameter µ1, each one corresponding
to the slope of each friction curve µ(λ) evaluated at λ =
0.12, which is a value located at the stable part of all the
curves, compatible with a high-performing anti-skid system.
Hence, the gridding of P is constituted by 1616 points. The
previous approach leads to a system of 6465 LMIs for each
anti-skid design. The conditions were checked via YALMIP
[17] and SeDuMi [18], which verifies the closed-loop system
stability under the gain-scheduling approach.

C. Discretization Verification
Both anti-skid controllers Rλ/η(s) are discretized by a

Tustin discretization scheme with a sampling time of Ts

= 1 ms to obtain Rλ/η(z). To verify that the stability
properties of the resulting LPV system are not lost during
the discretization, the approach from [19] is considered.
The following expression indicates the upper bound Td that
preserves the stability of the closed-loop system:

Td = max
p∈P

(
max

λ∈σ(A(p)) and Im(λ)=0

2

Re(λ)

)
(15)

where σ(A) indicates the spectrum of matrix A. Using the
same gridding strategy as the one from Section IV-B, it has
been verified that for both controllers, Ts < Td and thus the
discretization process preserves stability.

V. PERFORMANCE EVALUATION

In this Section, the controllers are evaluated in a set of
braking maneuvers using the simulator from Section II. The

TABLE II
EVALUATED LANDING CONFIGURATIONS

CONFIGURATION Mass [kg] Initial Speed v0 [km/h]
Light landing 2800 180

Medium landing 1 3150 195
Medium landing 2 3300 190

Heavy landing 4450 220

maneuvers and the performance metrics used are described.
Then, a summary of the results obtained is shown.

A. Simulated Scenarios and Performance Indexes
A braking maneuver is simulated by initializing the aircraft

with a set of inertial parameters and initial velocity v0. Four
conditions relevant to the case study are considered and
shown in Table II. The four conditions are combined with
the eight friction curves from Fig. 2 for a total of 32 sce-
narios. For each case, a virtual pilot fully presses the pedals
simultaneously on both MLG sides and requests maximum
braking pressure within 1 second. The anti-skid system will
actively regulate the pressure, aiming to maximize braking
performance until the end of the maneuver at 18 km/h, in
which the anti-skid disengages. Three performance indexes
compliant with SAE AIR1739B [20] are used for evaluation:

• Braking Distance (BD): Runway length travelled from
braking maneuver start until anti-skid disengagement.

• Developed µ efficiency (Jµ): Indicates how well the anti-
skid system can exploit the runway friction condition. For
each MLG wheel, it is defined as:

Jµ =
(∫ tend

tstart

µ(t)dS(t)
)
/
(∫ tend

tstart

µmax(t)dS(t)
)

(16)

with tstart and tend the starting and ending times of
the maneuver, dS(t) the infinitesimal space displacement,
while µ(t) and µmax(t) are the exploited friction and
the maximum attainable one at time t, respectively. The
average for both MLG wheels is considered.

• Stopping Distance Efficiency (ηdist): Ratio of the perfect
braking distance by always braking at the peak of the
friction curve over the actual braking distance.

B. Results
The results for the two designs over the operational

envelope are shown in Table III. Across all maneuvers, no
wheel locking events were observed, indicating that the gain-
scheduling approach was effective while actively modulating
the controller parameters. From Table III, it can be noted
that the slip-based controller significantly outperformed the
deceleration-based one, in line with what has been observed
in automotive braking dynamics [8]. As a representative
example, in Fig. 8 a maneuver using the slip-based controller
for a configuration of 3300 kg of mass and high grip runway
is shown. As can be seen, the anti-skid controller maintains
a value close to the peak of the friction curve for most of the
maneuver. In contrast, in Fig. 9, the same braking maneuver
is conducted with the deceleration-based algorithm, which is
markedly slower to get close to the optimal friction value
but nonetheless maintains the system stability.
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Fig. 8. Braking maneuver with aircraft mass of 3300 kg, high grip, and slip-
based anti-skid. Top plot: Longitudinal aircraft velocity and wheel speeds.
Middle plot: Longitudinal slip and corresponding reference. Bottom plot:
Effectively exploited friction and optimal friction.The vertical line indicates
the anti-skid system engagement.
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Fig. 9. Braking maneuver with aircraft mass of 3300 kg, high grip,
and deceleration-based anti-skid. Top plot: Longitudinal aircraft velocity
and wheel speeds. Middle plot: Normalized wheel deceleration and corre-
sponding reference. Bottom plot: Effectively exploited friction and optimal
friction. The vertical line indicates the anti-skid system engagement.

VI. CONCLUDING REMARKS
This paper studied the problem of designing robust

and performing aircraft anti-skid algorithms for a tricycle
landing gear configuration. A model-based control design
process was illustrated that incorporated a velocity-based
gain-scheduling law that adapts the parameters of the con-
trollers during a braking maneuver to maximize performance.
Moreover, the stability of the resulting closed-loop systems
was studied in the framework of Linear Parameter-Varying
systems and later checked in simulation using a validated
multibody model of the target aircraft. As future research
directions, ongoing efforts are being devoted to conducting
a practical implementation of the slip-based controller, as
well as to integrating the slip-based controller in a ground
handling system for pilot assistance during landings.
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