
Efficient Zero-Order Robust Optimization for Real-Time Model
Predictive Control with acados

Jonathan Frey1,2, Yunfan Gao1,3, Florian Messerer1, Amon Lahr4, Melanie Zeilinger4, Moritz Diehl1,2

Abstract— Robust and stochastic optimal control problem
(OCP) formulations allow a systematic treatment of uncertainty,
but are typically associated with a high computational cost.
The recently proposed zero-order robust optimization (zoRO)
algorithm mitigates the computational cost of uncertainty-
aware MPC by propagating the uncertainties separately from
the nominal dynamics. This paper details the combination of
zoRO with the real-time iteration (RTI) scheme and presents
an efficient open-source implementation in acados, utilizing
BLASFEO for the linear algebra operations. In addition to
the scaling advantages posed by the zoRO algorithm, the
efficient implementation drastically reduces the computational
overhead, and, combined with an RTI scheme, enables the use of
tube-based MPC for a wider range of applications. The flexibil-
ity, usability and effectiveness of the proposed implementation
is demonstrated on two examples. On the practical example of
a differential drive robot, the proposed implementation results
in a tenfold reduction of computation time with respect to the
previously available zoRO implementation.

I. INTRODUCTION

A dedicated, explicit treatment of uncertainties allows
practical model predictive control (MPC) applications to
avoid heuristic and overly conservative safety margins and
to harness unused optimality potential. A wide variety of
uncertainty-aware OCP formulations exists, such as min-max
MPC, scenario-tree MPC and tube-based MPC with tubes
of various shapes [1], [2], [3], [4]. This paper focuses on
problem formulations where the uncertainties are represented
by ellipsoidal tubes in the robust case, and independent
distributed noise in the stochastic case. In the case of linear
dynamics and constraints, constraint tightenings can be pre-
computed and such problems can be solved at no additional
computational cost compared to their nominal correspon-
dents. In the case of nonlinear dynamics, it is sometimes
possible to design constraint tightenings offline by scaling
the uncertainty set [5]. However, the state-independent over-
approximation of the uncertainty may lead to significant
conservatism of the controller, especially when the shape of
the actual uncertainty set strongly varies along the prediction
horizon.

1Department of Microsystems Engineering (IMTEK),
University Freiburg, 79110 Freiburg, Germany
{name.surname}@imtek.uni-freiburg.de

2Department of Mathematics, University Freiburg, Germany
3Robert Bosch GmbH, Corporate Research, Stuttgart, Germany

yunfan.gao@de.bosch.com
4Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich,

Switzerland
This research was supported by DFG via Research Unit FOR 2401,

project 424107692 on Robust MPC and 525018088, by BMWK via
03EI4057A and 03EN3054B, and by the EU via ELO-X 953348.

In this work, we thus consider constraint tightenings based
on an approximate uncertainty propagation performed online.
Treating the nonlinear form of such problems conventionally
with standard OCP solvers requires a state augmentation
that is quadratic in the original state dimension. Since the
computational cost of most OCP solvers is cubic in the
state dimension, this complicates the exact treatment of tube-
based OCPs in real-time MPC applications with an overall
computational burden growing with the sixth power of the
state dimension. As a remedy, the recently proposed zero-
order robust optimization (zoRO) algorithm allows one to
treat these OCPs at a computational complexity of the order
corresponding to the one of a nominal OCP [6], [7], while
returning a suboptimal, yet feasible, point at convergence [6].
This algorithmic novelty has brought the application of tube-
based MPC with online uncertainty propagation on real
systems within reach, as zoRO has been applied successfully
on the experimental setup of a differential drive robot [8].
Furthermore, the zoRO algorithm has been extended in [9]
to incorporate learning-based model uncertainty, e.g., Gaus-
sian process-based MPC [10] or Bayesian last-layer net-
works [11]. In addition, the problem formulation allows one
to incorporate precomputed linear feedback laws.

Existing zoRO implementations have been written in
Python and are limited to their specific use-cases [6], [8],
[9]. In contrast to this, we present an efficient, flexible,
open-source C implementation of zoRO, which can be conve-
niently used from Python. The high-performance implemen-
tation utilizes intermediate results from the acados SQP
solver and performs the uncertainty propagation as well
as backoff computation using BLASFEO for the linear al-
gebra operations [12], leading to significant computational
speedups compared to the previous implementations.

In the following, we give a brief introduction into the
OCP formulation (Section II) and the zoRO algorithm (Sec-
tion III), before presenting the main features of the high-
performance implementation (Section IV). Finally, Section V
presents numerical experiments and Section VI concludes the
paper.

Notation. This paper uses the following Notation The
identity matrix of dimension n is written as 1n. For a
function f : Rn → Rm, the gradient symbol denotes the
transposed of the Jacobian ∇f = ∂f

∂x

⊤
. The concatenation of

vectors x ∈ Rn, y ∈ Rm is denoted as (x, y) = [x⊤, y⊤]⊤.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3463



II. ROBUST & STOCHASTIC OPTIMAL CONTROL

Let us regard optimal control problems (OCPs) of the form

min
x0,...,xN ,
u0,...,uN91
P0,...,PN

N−1∑
k=0

l(uk, xk) +M(xN ) (1a)

s.t. x0 = x̄0, (1b)
P0 = P̄0, (1c)

xk+1 = ψk(xk, uk, 0), (1d)
Pk+1 = Φk(xk, uk, Pk), (1e)

0 ≥ hk(xk, uk) + βk(xk, uk, Pk), (1f)
0 ≥ hN (xN ) + βN (xN , PN ), (1g)

with k = 0, . . . , N − 1

where xk ∈ Rnx are the state variables for k = 0, . . . , N , and
uk ∈ Rnu are the controls for k = 0, . . . , N−1. The nonlin-
ear, discrete-time system dynamics are given by ψk : Rnx ×
Rnu ×Rnw → Rnx and additionally depend on an uncertain
variable wk ∈ Rnw . The resulting uncertain trajectory is rep-
resented by the nominal trajectory (x0, u0, . . . , uN−1, xN )
and the matrices P0, . . . , PN ∈ Rnx×nx . A simulation
with zero noise characterizes the nominal trajectory (1d);
equation (1e) describes the uncertainty dynamics. Here, the
positive (semi)definite matrices Pk represent uncertainty in
state space and have the meaning of covariance matrices or
ellipsoidal shape matrices.

This formulation covers uncertainty-aware NMPC for both
a stochastic and robust setting. In the stochastic setting,
each wk follows an independent normal distribution with
zero mean and covariance Wk, e.g. wk ∼ N (0,Wk). Here,
xk and Pk parameterize mean and variance of a stochastic
state χk, usually approximated as χk ∼ N (xk, Pk), which
approximates the exact state distribution over the horizon for
fixed controls.

In the robust setting, the assumption is that the noise
variables are contained within an ellipsoidal set

(w0, . . . , wN−1) ∈ E (0,blkdiag(W0, . . . ,WN−1)) . (2)

Here, E(q,Q) := {x ∈ Rnq | (x − q)⊤Q−1(x − q) ≤ 1 }
denotes an ellipsoid with center q ∈ Rnq and shape described
by a positive definite Q ∈ Rnq×nq . This results in an
ellipsoidal tube such that χk ∈ E(xk, Pk).
The nominal initial state is x̄0 and has uncertainty described
by P̄0, e.g. the mean and covariance of the current state esti-
mate in the stochastic setting. The inequality constraints (1f)
and (1g) consist of the nominal term hk(·) and an additional
backoff βk(·) to account for the uncertainty, representing
chance constraints in the stochastic setting and worst-case
constraints in the robust setting [13].

The uncertainty propagation can be written as

Φk(Pk, xk, uk) (3)

= (Ak +BkKk)Pk(Ak +BkKk)
⊤ +GkWkG

⊤
k ,

where Ak := ∂ψk

∂x (xk, uk, 0), and Bk := ∂ψk

∂u (xk, uk, 0).
The matrices Gk = ∂ψk

∂w (xk, uk, 0) are constant in case

of additive noise. Additionally, it is possible to include
precomputed linear feedback gains Kk ∈ Rnu×nx to reduce
conservatism [1].
The backoff term for a constraint component hk,i(·) of
hk : Rnx×Rnu →Rnh,k for i ∈ {1, . . . , nh,k} is given by

βk,i(xk, uk, Pk) := (4)

γ

√
∇hk,i(xk, uk)⊤

[
1nx

K

]
Pk

[
1nx

K

]⊤
∇hk,i(xk, uk).

In the robust setting, the backoff factor γ equals 1, while in
the stochastic setting, γ is the number of standard deviations
that the nominal trajectory should maintain a distance from
the nominal bounds. Depending on the interpretation of
xk, Pk as a normal distribution or the first two moments of a
general distribution, the choice of γ corresponds to different
probabilities of constraint satisfaction, which can be derived
via Chebyshev’s inequality or the inverse normal cumulative
density function, c.f. [14].

III. ZERO-ORDER ROBUST OPTIMIZATION (ZORO)

The key idea of zoRO is to eliminate the uncertainty
matrices from the OCP and solve reduced subproblems in
the nominal variables only,

min
x0,...,xN ,
u0,...,uN91

N−1∑
k=0

l(uk, xk) +M(xN ) (5a)

s.t. x0 = x̄0, (5b)
xk+1 = ψk(xk, uk, 0), (5c)

0 ≥ hk(xk, uk) + β̂k, (5d)

0 ≥ hN (xN ) + β̂N , (5e)
with k = 0, . . . , N − 1,

where the the values β̂k approximate the backoff terms
βk(xk, uk, Pk). For a detailed derivation, we refer the in-
terested reader to [6], [7].

The zoRO algorithm alternates the following two steps:
1) approximate the backoff terms using the current guess

of the nominal trajectory, by performing the uncer-
tainty propagation (3) and the backoff computation (4)

2) solve subproblem (5) approximately
Note that the accuracy up to which the subproblems are
solved is an implementation choice and depends on the
solver used to tackle the subproblems (5). For example,
the subproblems might be solved to convergence using an
interior point method, or with a limited number of SQP
iterations, c.f. Section IV-B.

A. Convergence properties

Comparing the solution of original problem (1) with a
Newton-type optimization method and the alternation per-
formed by zoRO, it can be seen that, while in the original
problem the uncertainty matrices correspond to optimization
variables, in the reduced subproblem they are inserted as
fixed parameters. Thus, it is possible to interpret the zoRO
algorithm as an inexact Newton-type method, which employs

3464



a tailored Jacobian approximation at each iteration, namely,
by neglecting the sensitivities of the uncertainty matrices
with respect to the state and input variables [6], [7].

By standard arguments for Newton-type optimization, see
e.g. [15], the zoRO algorithm hence returns a suboptimal,
yet feasible, solution of the original problem.

Moreover, due to the structure of the tailored Jacobian
approximation, the approximation error scales with the mag-
nitude of the uncertainty, leading to favorable convergence
properties for sufficiently small level of uncertainty under
the assumption of strong regularity, shown in [6]. First,
the incurred suboptimality approaches zero, i.e., the zoRO
algorithm recovers the optimal solution to (1) in the limit
for vanishing uncertainties. Second, for sufficiently small
uncertainties, zoRO converges linearly provided that the
unmodified SQP algorithm converges. While the results in [6]
hold for the case of constant additive uncertainties W , the
second convergence result has been extended to the case of
state- and input-dependent uncertainties W (y) in [9].

Note that it is possible to compensate for the suboptimality
that the tailored Jacobian approximation incurs by means
of an adjoint correction [15], [16], as done in [7], at the
additional expense of computing the neglected sensitivities
in the direction of the corresponding Lagrange multipliers
with the backwards-mode of automatic differentiation. In
this paper, we do not address this variant due to the higher
computational cost and the focus on real-time feasibility.

B. Remark on Nonlinear Constraints

Previous works have used the term zoRO for two slightly
different variants of the algorithm. In [8], the NLP with fixed
backoff terms (5) is solved with an SQP algorithm. On the
other hand, [6], [7], [9] directly take the SQP perspective and
suggest solving quadratic subproblems with the constraints

0 ≥ hk,i(ȳk) + βk,i(ȳk, P̄k) +∇yhk,i(ȳk)∆yk (6)

+∇yβk,i(ȳk, P̄k)
⊤∆yk +∇Pβk,i(ȳk, P̄k)

⊤∆Pk

see [6, Eq. (14)], where ȳk = (x̄k, ūk) and P̄k is the current
linearization point.

Thus, compared with [6], [7], [9], performing a single SQP
iteration on (5) corresponds to additionally neglecting the
derivative of the backoff with respect to the nominal variables
∇yβk,i. Further, in (5), the backoff βk,i is evaluated at P̄+

k ,
instead of linearizing hk,i with respect to Pk, as in (6).

In order to compute the backoff taking its partial deriva-
tives into account as in (6), on the one hand, the term
∇Pβk,i∆Pk has to be precomputed and added to βk,i.
Thereby, the difference ∆Pk is computed as ∆Pk = P̄+

k −
P̄k, where P̄+

k denotes the uncertainty matrix after the
performing the uncertainty propagation at ȳk. On the other
hand, for the term ∇yβk,i(ȳk, P̄k)

⊤∆yk the derivative of
the backoff terms βk,i with respect to the nominal variables

xk, uk are needed. Those are

∇yβk,i =
γ2

βk,i
· (7)(

∇yhk,i(·, ·)⊤
[

1nx

K

]
Pk

[
1nx

K

]⊤
∇yyhk,i(·, ·)

)⊤

,

which vanish for linear constraints hk,i. Neglecting those
terms results again in an inexact Jacobian.

We note that the convergence results of [6] for the zoRO
algorithm still hold under the same assumptions when ne-
glecting these additional derivatives. This can be seen by
the fact that the additionally neglected parts of the Jacobian
also scale with the magnitude of the uncertainty. Thus,
they similarly recover the unmodified Jacobian in the limit
for vanishing uncertainties and, ultimately, the convergence
properties outlined in Section III-A.

For computational efficiency and ease of implementation,
the remainder of this work considers the zoRO version that
neglects the terms in (7).

IV. acados ZORO SQP IMPLEMENTATION

In this section, we detail the ingredients for an efficient
zoRO implementation with SQP and RTI in acados [17].

A. Real-time iterations

The real-time iteration (RTI) scheme [18] allows one to
split an SQP iteration into a preparation and a feedback
phase. The preparation phase is carried out based on the
initial guess and evaluates the nonlinear functions and its
(approximate) derivatives to form the (approximate) Hessian
of the Lagrangian. The Hessian can then be used to prepare
the linear algebra operations for the feedback phase. The
feedback phase takes the best available estimate of the
current state value x̄0, evaluates the remaining parts of the
Lagrange gradient, and solves the QP subproblem.

We note that typically, only the component corresponding
to the constraint x̄0 = x0 is evaluated in this phase [18].
However, to allow updating all constraint bounds, such
as the backoffs in the zoRO algorithm, the acados RTI
implementation was adapted as follows: It makes all con-
straint evaluations available in the preparation phase, and
just subtract its bounds in the feedback phase, to complete
the computation of the Lagrange gradient. The only addi-
tional computational cost for this is performing additions
corresponding to the number of constraints in the feedback
instead of the preparation phase.

B. zoRO with SQP & RTI

When using an SQP solver, as is the focus in this paper,
a common choice is to update the backoffs after each SQP
iteration. For an efficient implementation of zoRO-SQP, the
current linearization of the dynamics and constraints, namely
Ak, Bk and ∇hk,i(xk, uk) can be taken directly from the
memory of the solver. The backoffs can then be inserted into
the subproblem by adapting the bounds of the constraints.

More specifically, when using the RTI variant, one can
compute the backoff terms as part of the preparation phase,

3465



i.e. first perform the preparation step of (5) then update the
backoff terms. Once the new state estimate is available, use
x̄0 to perform the feedback phase on the QP approximating
the subproblem (5) and deploy the solution. Note that,
when employing the RTI variant of zoRO, the algorithm
is equivalent to performing RTI and using the previous
MPC solution to propagate the uncertainties and compute
the backoffs. Using the previous MPC solution for backoff
computation with reduced computation time has also been
performed in [10].

C. Remark on non-tightened constraints

In many practical OCP formulations, it is not desired to
tighten all the constraints. Thus, we define the index sets
Ik,tight ⊆ {1, . . . , nh,k}, which denote the subset of con-
straints that are tightened in (1), i.e., for all other constraints
hk,i with i /∈ Ik,tight, the corresponding backoff is always
zero.

Constraints that are not supposed to be tightened are for
example bounds on slack variables. Additionally, two in-
equalities can be used to encode an equality constraint, such
as for the initial state constraint. Furthermore, inequalities
in acados are always formulated as two-sided, and if one
of the bounds is a place holder, those do not need to be
tightened.

D. acados template interface

An important aspect of the presented implementation is
to specify information on the zoRO algorithm compactly
in a predefined format, transfer it to C code and couple
it with the acados solver. This is achieved by utilizing
the acados template interface workflow, which is briefly
described in the following.

The acados high-level interfaces to Python and Matlab
allow one to conveniently and compactly formulate an OCP
and specify solver options. The nonlinear problem functions
can be formulated using CasADi [19] symbolics which
are generated as C code with the required derivatives using
automatic differentiation. The whole problem description is
written to a json-file which is then used to render different
templates. Most importantly, a C file is generated which uses
the acados shared library to create a solver specific to the
problem formulation and loads the nonlinear functions.

E. Generic Custom Updates

In order to allow updating numerical data in the solver
efficiently, i.e., without any calling functions outside the C
stack, we added the option of using a custom C update
function in between solver SQP solver calls. This custom
update function

• can access the solver;
• can allocate its own memory and store a pointer to

it in the solver capsule, implemented by calling an
init function at the end of the creation process of

the acados OCP solver and a terminate function
which is responsible for freeing it;

• is compiled together with the problem specific OCP
solver;

• can be conveniently used in the prototyping phase, as
it is fully integrated in the Python interface and can
simply be called using:
AcadosOcpSolver.custom update().

Moreover, the user is allowed to write information specific
to their problem into the json file and use that to generate
the custom update function from a custom template. The C
template implements the zoRO update and allows the user
to specify various options, as detailed in the next section.

We note that this feature can be useful to efficiently imple-
ment a variety of other advanced MPC schemes, other than
zoRO, which require one to update parameters, constraint
bounds, or other numerical data in the OCP solver in between
SQP iterations. Some examples include

• the advanced-step RTI variants [20],
• an efficient algorithm for robust MPC with optimal

linear feedback [21],
• custom backoff computations based on, e.g., poly- or

zonotopic tubes,
• state-dependent modelling, e.g. via splines, without ex-

plicit incorporation (and therefore differentiation) in the
nonlinear functions of the SQP scheme.

F. Template-based zoRO implementation

The uncertainty propagation and the constraint tightening
of the zoRO algorithm is implemented in a template-based
C function using BLASFEO [12] for all the linear algebra
operations. The constraint and model linearizations, i.e.,
∇hk, Ak, Bk, are obtained from the acados solver, using
the C interface, while linear constraints and simple bounds
on states and controls are handled efficiently.

We added the Python class ZoroDescription to con-
veniently specify the zoRO specific information. Specifically,
this contains:

• the initial uncertainty matrix P̄0,
• a constant feedback K = Kk, for k = 0, . . . , N − 1,
• a constant covariance W =Wk for k = 0, . . . , N − 1,
• a constant sensitivity function G(x, u) = ∂ψ

∂w (x, u),
• the index sets of constraints to be tightened: Ik,tight,

which are assumed to be constant for the intermediate
shooting nodes k = 1, . . . , N−1, but might be different
for the initial k = 0 and terminal k = N shooting node,

• the backoff factor γ.

The matrices Wk are often constant, which corresponds
to an invariant noise distribution. It is possible to update
the Wk matrices outside, based on the current nominal
iterates to realize a state-, control-, or time-dependent noise
distribution, as e.g. done in [9]. Moreover, the initial un-
certainty matrix P̄0 can be conveniently changed during
runtime. The implementation could be easily modified to
allow for different matrices Kk,Wk at each shooting node
and respective updates during runtime.

3466



V. NUMERICAL EXPERIMENTS

This Section presents numerical results comparing the
proposed zoRO implementation, labeled zoRO-24, with pre-
viously existing implementations that were tailored to the
specific examples in [6], [8] and are labeled zoRO-21. The
experiments have been performed on a Laptop with an Intel
i5-8365U CPU, 16 GB of RAM running Ubuntu 22.04. All
code to reproduce the results is open-source. All experiments
have been conducted with acados v.0.2.5.

A. Chain benchmark

The code of the chain benchmark used in [6] has been
adapted to contain the new zoRO implementation zoRO-241.
Additionally, the benchmark includes a nominal controller,
i.e., without uncertainties and backoffs, a naive robust ver-
sion, where the uncertainty is implemented by augment-
ing the state only exploiting symmetry of the uncertainty
matrices, and the zoRO implementation zoRO-21 proposed
in [6], which propagates the uncertainties and computes the
backoffs in Python.

Figure 1 shows a timing comparison of these variants
when varying the number of masses. One can observe that the
computation times of both zoRO implementations scale with
the same order of complexity. The zoRO-24 implementation
is able to bring the computational cost of zoRO much closer
to the one of the nominal OCP. For higher state dimensions,
the computation time is dominated by other computations,
such as the QP solution.

3 4 5 6
nmass

10−2

10−1

100

101

m
ea

n
C

P
U

ti
m

e
p

er
O

C
P

in
[s

] nominal

zoRO-24

zoRO-21

naive

O(n3
x)

O(n6
x)

Fig. 1: Mean computation time for solving one OCP for
different number of masses nmass.

B. Differential drive robot

In order to illustrate the effectiveness of our implementa-
tion on a practically relevant problem, we regard the system
of a differential drive robot, which has been considered
in [8] and controlled with a zoRO implementation which uses
Python for the uncertainty propagation and backoff computa-
tion, labeled zoRO-21. In this system, the state vector is given
by x= (px, py, θ, v, ω)

⊤, where px, py parametrize the 2D-
position of the center of the robot, θ is the heading angle, v

1https://github.com/FreyJo/zoro-NMPC-2021

−2 0 2 4 6 8

x [m]

0

2

4

y
[m

]

Obstacles

zoRO trajectory

Reference trajectory

Fig. 2: Closed loop trajectory differential drive robot.

10−1 100 101

computation time [ms]

total

propagation

zoRO-24

zoRO-21

Fig. 3: Computation times of zoRO variants. The whiskers
indicate the minimum and maximum value.

the forward velocity and ω the angular velocity. The controls
are the forward acceleration a and angular acceleration α.
The ODE is given by

dx

dt
= (v cos(θ), v sin(θ), ω, a, α)⊤. (8)

In this OCP, the cost penalizes deviations from a given refer-
ence trajectory by linear least-squares. A multiple shooting
discretization with 20 shooting intervals and a horizon of 2.0s
is used. To arrive at discrete dynamics, an implicit Runge-
Kutta integrator of order four with Gauss-Legendre Butcher
tableau is chosen, which performs three Newton iterations
over which the Jacobian is reused. The constraints consist
of bounds on the controls and the states v, ω, and collision
avoidance constraints of the form:∥∥(px, py)⊤ − (qx,i, qy,i)

⊤∥∥
2
≥ r + robsi , (9)

where r denotes the radius of the robot, robsi the radius of
the obstacle i at position (qx,i, qy,i) for i = 1, . . . , nobs.

The index set of constraints to be tightened Ik,tight is set
to contain the upper bounds on v and ω, the lower bound
on v and the collision avoidance constraints. The terminal
constraint consists of very tight bounds on the velocities,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

computation time [ms]

preparation

propagation

feedback

total

Fig. 4: Computation times for the proposed zoRO implemen-
tation zoRO-24 on the differential drive robot. The whiskers
indicate the minimum and maximum value.

3467



corresponding to the nominal trajectory of the robot not
moving at the end of the horizon. Those constraints are not
tightened to avoid infeasibility.

The robot is simulated in closed-loop by adding process
noise to the output of an RK4 integrator at every simula-
tion instance. The process noise is sampled from a multi-
variate normal distribution with zero mean and covariance
W = diag

(
2 · 10−6, 2 · 10−6, 4 · 10−6, 1.5 · 10−3, 7 · 10−3

)
.

The initial uncertainty matrix is P̄0 = W , and γ = 3.0.
The QP subproblems are solved using full condensing and
DAQP [22]. The code to reproduce the results discussed next
is publicly available2.

Figure 2 visualizes the closed-loop trajectory and a refer-
ence trajectory of the robot in a scenario with three obstacles.
We observe that the robot is able to avoid the obstacles,
even in the described scenario with process noise. Figure 3
visualizes the computation times of both zoRO implementa-
tions. All timings are obtained by running the exact same
simulation 50 times with the same noise realization and
taking the minimum of each execution to remove artifacts.
It can be seen that the total computation time of zoRO-24 is
roughly ten times lower compared to zoRO-21. The share of
computation time for the propagation and backoff compu-
tation is ≈ 90% for the zoRO-21 implementation and only
≈ 10% for zoRO-24.

Figure 4 shows how the computation times of different
algorithmic components of zoRO-24 on this example. The
total computation time consists of the times corresponding
to the acados preparation and feedback phases, and the
uncertainty propagation and backoff computation, labeled as
propagation. The preparation step contains the linearization
operations of the OCP, such as nonlinear constraints and
simulation of the dynamics with sensitivities. The compu-
tation time of the feedback phase is dominated by the QP
solution. The propagation and backoff computation can be
carried out either as part of the preparation or the feedback
phase. The initial uncertainty matrix P̄0 is constant in this
example. However, if it was obtained from a state estimator,
it might be worth to use the new initial uncertainty of the
initial state, since the corresponding computations can be
carried out quickly relative to the QP solution.

VI. CONCLUSION & OUTLOOK

This paper presented an efficient implementation of the
zoRO algorithm for real-time application with an SQP-type
solver in acados detailing its stochastic and robust inter-
pretation. We believe that this work allows the realization of
embedded, tube-based MPC in a wider range of real-world
control tasks.

The effectiveness and flexibility of the proposed imple-
mentation has been demonstrated on two examples from
previous studies. Future work includes the extension of
the presented implementation to optionally perform adjoint
corrections as proposed in [7] and to optimize over linear
feedback matrices [21].

2https://github.com/acados/acados/tree/v0.2.5/
examples/acados_python/zoRO_example/diff_drive

REFERENCES

[1] D. Mayne, E. Kerrigan, E. J. van Wyk, and P. Falugi, “Tube-based
robust nonlinear model predictive control,” International Journal of
Robust and Nonlinear Control, vol. 21, pp. 1341–1353, 2011.

[2] D. Kouzoupis, Structure-exploiting numerical methods for tree-sparse
optimal control problems. PhD thesis, Univ. of Freiburg, 2019.

[3] D. Telen, M. Vallerio, L. Cabianca, B. Houska, J. Van Impe, and
F. Logist, “Approximate robust optimization of nonlinear systems
under parametric uncertainty and process noise,” vol. 33, pp. 140–
154.

[4] J. Gillis and M. Diehl, “A positive definiteness preserving discretiza-
tion method for nonlinear Lyapunov differential equations,” in Proc.
IEEE Conf. Decis. Control (CDC), 2013.

[5] J. Köhler, M. A. Müller, and F. Allgöwer, “A novel constraint
tightening approach for nonlinear robust model predictive control,”
Annual American Control Conference (ACC), 2018.

[6] A. Zanelli, J. Frey, F. Messerer, and M. Diehl, “Zero-order robust
nonlinear model predictive control with ellipsoidal uncertainty sets,”
Proc. the IFAC Conf. Nonlinear Model Predictive Control (NMPC),
2021.

[7] X. Feng, S. D. Cairano, and R. Quirynen, “Inexact Adjoint-based SQP
Algorithm for Real-Time Stochastic nonlinear MPC,” in Proc. IFAC
World Congr., 2020.

[8] Y. Gao, F. Messerer, J. Frey, N. van Duijkeren, and M. Diehl,
“Collision-free motion planning for mobile robots by zero-order robust
optimization-based mpc,” in Proc. Eur. Control Conf. (ECC), 2023.

[9] A. Lahr, A. Zanelli, A. Carron, and M. N. Zeilinger, “Zero-order
optimization for Gaussian process-based model predictive control,”
European Journal of Control, p. 100862, 2023.

[10] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predic-
itive control using gaussian process regression,” IEEE Transaction on
Control Systems Technology, vol. 28, no. 6, pp. 2736–2743, 2020.

[11] F. Fiedler and S. Lucia, “Model predictive control with neural network
system model and Bayesian last layer trust regions,” in 2022 IEEE 17th
International Conference on Control & Automation (ICCA), pp. 141–
147.

[12] G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl, “BLAS-
FEO: Basic linear algebra subroutines for embedded optimization,”
ACM Trans. Math. Softw., vol. 44, no. 4, pp. 42:1–42:30, 2018.

[13] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization.
Princeton Univ. Press, 2009.

[14] T. A. N. Heirung, J. A. Paulson, J. O’Leary, and A. Mesbah, “Stochas-
tic model predicitive control – how does it work?,” Comp. Chem. Eng.,
vol. 114, pp. 158–170, 2018.

[15] H. G. Bock, M. Diehl, E. A. Kostina, and J. P. Schlöder, “Constrained
optimal feedback control of systems governed by large differential
algebraic equations,” in Real-Time and Online PDE-Constrained Op-
timization, pp. 3–22, SIAM, 2007.

[16] L. Wirsching, H. G. Bock, and M. Diehl, “Fast NMPC of a chain of
masses connected by springs,” in Proc. the IEEE International Conf.
Control Applications, Munich, pp. 591–596, 2006.

[17] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl,
“acados – a modular open-source framework for fast embedded
optimal control,” Math. Program. Comput., Oct 2021.

[18] M. Diehl, H. G. Bock, and J. P. Schlöder, “Real-time iterations
for nonlinear optimal feedback control,” in Proc. IEEE Conf. Decis.
Control and Eur. Control Conf. (CDC-ECC), pp. 5871–5876, 2005.

[19] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – a software framework for nonlinear optimization and
optimal control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36,
2019.

[20] A. Nurkanović, A. Zanelli, S. Albrecht, and M. Diehl, “The Advanced
Step Real Time Iteration for NMPC,” in Proc. IEEE Conf. Decis.
Control (CDC), 2019.

[21] F. Messerer and M. Diehl, “An efficient algorithm for tube-based
robust nonlinear optimal control with optimal linear feedback,” in
Proc. IEEE Conf. Decis. Control (CDC), 2021.

[22] D. Arnstrom, A. Bemporad, and D. Axehill, “A dual active-set solver
for embedded quadratic programming using recursive LDLT updates,”
IEEE Trans. Automatic Control, 2022.

3468


