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Abstract— We introduce new techniques to check whether a
zonotope is contained in another zonotope. This fundamental
problem in control theory has many applications, such as the
verification of invariant sets, formal verification of controllers,
and fault detection. Our first method uses a search-based vertex
enumeration to quickly and efficiently check containment. We
also propose two stochastic methods that are able to rapidly
disprove or confirm containment with a certain probability.
Furthermore, we generalize the first approach to the case where
the circumbody is an ellipsotope and generalize the stochastic
methods to the case where both the inbody and the circumbody
are ellipsotopes. We conclude by comparing the efficiency of our
algorithms to currently available ones.

I. INTRODUCTION

The zonotope containment problem is a classical problem
in optimization that asks whether a zonotope is contained
within another zonotope. A zonotope is a type of convex
polytope that can be described as the Minkowski sum of line
segments. The containment problem is required for many ap-
plications, such as robust control [1], controller synthesis [2],
and conformance checking [3]. Unfortunately, the zonotope
containment problem is NP-hard [4], which helps explain
why only relatively simple methods (summarized in [4]) are
known in the literature, though approximative approaches
have also been developed in [5], and to some extent in [3].

The high runtime is the main drawback of existing meth-
ods. Workarounds have been explored in [5] by presenting
a necessary but not sufficient condition for containment.
While, in practice, this algorithm often predicts correctly
whether a zonotope is contained within another, in cases
where this algorithm fails to confirm containment (in which
case containment may still hold), there is no way to refine
the analysis (for instance, at the cost of additional runtime)
to disprove containment. Therefore, there is a need for new
strategies that can either quickly disprove containment or
have a tunable accuracy with respect to some metric we are
about to define.

This article introduces three novel techniques to check
for containment: The first is based on a search through a
binary tree and will be presented in Section III, while the
other two are stochastic algorithms that can either disprove
containment or confirm it with a certain probability, as we
will discuss in Section IV. This realizes a more flexible
approximation since the runtime is directly proportional to
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the number of samples the user wants to employ. We evaluate
their performance in Section V.

Moreover, we generalize our methods for zonotopes so
that they can also be applied, in most instances, to the
containment of ellipsotopes [6], which generalize zonotopes.

II. PRELIMINARIES

A. Basic Notation

A letter with an arrow (e.g., v⃗) represents a vector in Rn,
while matrices in Rn×m are denoted by bold, underlined
letters (e.g., M ). The vectors e⃗i ∈ Rn for i = 1, ..., n are
the canonical basis vectors of Rn. For a vector v⃗ ∈ Rn, vi
for i = 1, ..., n refers to the coordinates of v⃗ with respect to
the canonical basis. If A,B are matrices (or vectors), then

[A,B] is the horizontal,
[
A
B

]
the vertical concatenation of

A and B (assuming the dimensions of A and B match). For
a vector v⃗ and p ∈ [1,∞), ∥v⃗∥p := p

√
|v1|p + ...+ |vn|p is

the p-norm of v⃗, for p =∞, ∥v⃗∥∞ := maxi |vi|. We denote
by Bp the unit ball with respect to the p-norm. For vectors
v⃗, w⃗ ∈ Rn, their (Euclidean) inner product is written as
v⃗⊤w⃗ = ⟨v⃗, w⃗⟩, and their Hadamard product as v⃗ ◦ w⃗,
i.e., (v⃗ ◦ w⃗)i = viwi. For a probability space Ω and some
measurable subset S ⊆ E of some measurable space E with
a random variable s : Ω → E, P(s ∈ S) is the probability
that s ∈ S.

B. Duality

If ∥·∥ is a norm on Rn, we denote by ∥·∥∗ its dual norm
(see [7, Chapter 1.3]), which is defined as

∥y⃗∥∗ = sup
∥x⃗∥≤1

y⃗⊤x⃗. (1)

For the vector p-norms, it is a common exercise to prove

∥x⃗∥∗p = ∥x⃗∥p∗ , (2)

where p∗ is the Hölder-conjugate of p, i.e., 1
p +

1
p∗ = 1. For

sets S ⊆ Rn, the dual set is defined as

S∗ :=

{
y⃗ ∈ Rn

∣∣∣∣ sup
x⃗∈S

y⃗⊤x⃗ ≤ 1

}
. (3)

C. Ellipsotopes, Zonotopes, and Ellipsoids

Let us now introduce our primary object of study, namely
ellipsotopes:

Definition 2.1 (Ellipsotopes, see [6, Definition 2]): For
m,n ∈ N, let G ∈ Rn×m be a matrix, c⃗ ∈ Rn a vector, and
p ∈ [1,∞]. Then

Ep(G, c⃗) =
{
c⃗+Gα⃗

∣∣∣ ∥α⃗∥p ≤ 1
}

(4)
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is called a (basic) ellipsotope (or p-ellipsotope). The vector
c⃗ is the center, the matrix G the generator matrix, and
column vectors g⃗1, ..., g⃗m of G are generators. We will use
the shorthand Ep(G) to denote the p-ellipsotope centered at
the origin with generator matrix G. Ellipsotopes with p =∞
are called zonotopes. We will use the shorthand Z(G) to
denote the zonotope centered at the origin, with generator
matrix G.
Since ellipsotopes are convex and centrally symmetric, they
induce a norm:

Proposition 2.2 (Ellipsotope norm): Let m ≥ n, and sup-
pose G ∈ Rn×m has full rank. Then for any p ∈ [1,∞] the
function

Rn → [0,∞)

x⃗ 7→ min
Gα⃗=x⃗

∥α⃗∥p
(5)

defines a norm on Rn, which we denote by ∥x⃗∥Ep(G). Its
unit circle coincides with Ep(G). If p = ∞, we instead
denote this norm by ∥x⃗∥Z(G).
A proof of Proposition 2.2 for zonotopes is shown in [4,
Section 3.2.]. We leave the generalization to ellipsotopes
as an easy exercise for the reader. Note that evaluating
∥x⃗∥Ep(G) involves solving a convex minimization problem,
which can be done in polynomial time (with respect to
the size of G) up to arbitrary accuracy as described in [8,
Chapter 11].

D. The Containment Problem

We now turn towards the problem of checking whether
an ellipsotope Ê (called the inbody) is contained within
another ellipsotope Ê (called the circumbody). Suppose
Ê = Ep(G, c⃗) and Ê = Eq(H, d⃗) for p, q ∈ [1,∞],
G ∈ Rn×m, c⃗ ∈ Rn, H ∈ Rn×l, and d⃗ ∈ Rn. The
generalization of the containment problem of zonotopes [4,
Equation (18)] for ellipsotopes is as follows: Ê ⊆ Ê holds
if and only if r(Ê, Ê) ≤ 1, where

r(Ê, Ê) := max
∥x⃗∥Ep(G)≤1

∥∥∥x⃗+ c⃗− d⃗
∥∥∥
Eq(H)

= max
∥α⃗∥p≤1

min
Hβ⃗=Gα⃗+c⃗−d⃗

∥β⃗∥q
(6)

As we have shown in [9, Corollary 3.5.], the dual formulation
of (6) is

r(Ê, Ê) = max
∥H⊤x⃗∥q∗≤1

∥∥G⊤x⃗
∥∥
p∗ + x⃗⊤(c⃗− d⃗). (7)

III. SEARCH-BASED TECHNIQUES

In this section, we only consider the case where Ê is a
zonotope Ẑ, since the next few arguments fail for general
ellipsotopes, though Ê can still be an arbitrary ellipsotope.
In this case, according to the Bauer maximum principle,
the maximum of (6) is attained at one of the vertices of
{α⃗ ∈ Rm | ∥α⃗∥∞ ≤ 1}, i.e., at a point α⃗ ∈ {−1,+1}m. We
can thus iteratively choose either αi = −1 or αi = +1,
which can be seen as a depth-first search through a binary
search tree, where to each node at depth k for 0 ≤ k ≤ m
we associate a σ⃗ ∈ {±1}k, which corresponds to a choice

of the first k coefficients αi. We define the value of such a
node as

r̃k(σ⃗) :=

∥∥∥∥∥c⃗− d⃗+

k∑
i=1

g⃗iσi

∥∥∥∥∥
Eq(H)

. (8)

In each iteration, we greedily choose αk+1 to maximize
the total norm, which gives rise to Algorithm 1, where the
operation push(List, x) adds an element x to a list, pop(List)
returns the last element of the list before removing it from
the list, and dim(x⃗) for x⃗ ∈ Rk returns the dimension of x⃗
(i.e., k). We use the convention that a 0-dimensional vector
is just the empty set ∅. Note that by definition of the empty
set, ∅ = () (where () is the empty tuple) but ∅ ≠ (∅).

Algorithm 1 Depth-First Vertex Enumeration
Input: Zonotope Ẑ with generators g⃗1, ..., g⃗m and center c⃗,
ellipsotope Ê = Eq(H, d⃗).
Output: True if Ẑ ⊆ Ê, False otherwise.

1: Sort g⃗1, ..., g⃗m according to ∥g⃗i∥Eq(H), in descending order
2: List ← (∅)
3: M ← ∥c⃗− d⃗∥Eq(H)

4: if M > 1 then
5: return False
6: end if
7: while List ̸= ∅ do
8: σ⃗ ← pop(List)
9: k ← dim(σ⃗)

10: if hk(σ⃗) ≤ 1 then
11: continue
12: end if
13: Set σ⃗+ ←

[
σ⃗
+1

]
and σ⃗− ←

[
σ⃗
−1

]
14: if r̃k+1(σ⃗+) ≥ r̃k+1(σ⃗−) then
15: push(List, σ⃗−)
16: push(List, σ⃗+)
17: else
18: push(List, σ⃗+)
19: push(List, σ⃗−)
20: end if
21: M ← max{r̃k+1(σ⃗−), r̃k+1(σ⃗+)}
22: if M > 1 then
23: return False
24: end if
25: end while
26: return True

Algorithm 1 starts by sorting the generators according to
their ∥·∥Eq(H)-norm, as generators with a higher ∥·∥Eq(H)-
norm have a higher chance to contribute more to the total
value of r(Ẑ, Ê). Additionally, we can eliminate certain
nodes that have no chance of leading to the maximum:
suppose that in an arbitrary iteration, we want to continue
with the node given by σ⃗ ∈ {−1,+1}k for 0 ≤ k < m.
For each sub-node σ⃗′ ∈ {−1,+1}k′

for k < k′ ≤ m,
σ′
i = σi holds for each of the first 1 ≤ i ≤ k. By the
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triangle inequality we have

r̃k′(σ⃗′) =

∥∥∥∥∥∥c⃗− d⃗+

k′∑
i=1

g⃗iσ
′
i

∥∥∥∥∥∥
Eq(H)

≤

∥∥∥∥∥c⃗− d⃗+

k∑
i=1

g⃗iσi

∥∥∥∥∥
Eq(H)

+

k′∑
i=k+1

∥g⃗i∥Eq(H)

= r̃k(σ⃗) +

k′∑
i=k+1

∥g⃗i∥Eq(H) .

Consequently, we may consider the value

hk(σ⃗) := r̃k(σ⃗) +

m∑
i=k+1

∥g⃗i∥Eq(H) (9)

as a heuristic to eliminate certain nodes, since if hk(σ⃗) ≤ 1,
there is no chance for any sub-node to achieve a greater value
than 1. Since the values of ∥g⃗i∥Eq(H) are already computed
in Line 1, computing hk(σ⃗) boils down to summing already
known terms and thus does not significantly contribute to the
runtime.

Finally, since we are primarily concerned with determining
whether Ẑ ⊆ Ê (and not necessarily computing the exact
value of (6)), we can interrupt the algorithm whenever a
value of M has been found such that M > 1, in which
case containment has been disproven. Combined with the
use of the heuristic hk(σ⃗), this enables Algorithm 1 to be
particularly fast whenever Ẑ is significantly smaller or larger
than Ê, and only in cases where most vertices of Ẑ are
close to the boundary of Ê, it may happen that Algorithm 1
needs to check a large number of vertices. As we will see
in Section V, this leads to a significantly better runtime for
most instances of the containment problem, even though the
worst-case runtime is still exponential in m.

IV. SAMPLING-BASED TECHNIQUES

We now introduce methods that solve the containment
problem via random sampling. These algorithms are typically
fast and have a runtime that is easy to control (it suffices to
set a maximum number of samples). However, they do not
always yield guaranteed results. For the remainder of this
section, N ∈ N denotes the number of random samples used
for the algorithms.

A. Naive Approaches for the Zonotope Containment Problem

Before introducing more refined stochastic methods, we
present some deliberately simple sampling-based approaches
to intuitively introduce our two main sampling techniques.

1) Naive Vertex Sampling: This method only works if Ê
is a zonotope Ẑ (though Ê can be an arbitrary ellipsotope),
and is based, again, on the Bauer maximum principle: Since
the maximum in (6) is reached at one of the vertices of
the convex domain {α⃗ ∈ Rm | ∥α⃗∥∞ ≤ 1}, it would suffice
to randomly sample points α⃗ ∈ {−1,+1}m and take the

maximum of the function ∥Gα⃗+ c⃗− d⃗∥Eq(H) over all sam-
pled points. Specifically, if N points a⃗1, ..., a⃗N are sampled
uniformly in {−1,+1}m, this yields an approximation

rvs := max
1≤i≤N

∥∥∥Ga⃗i + c⃗− d⃗
∥∥∥
Eq(H)

, (10)

such that rvs ≤ r(Ẑ, Ê). We will call this approach naive
vertex sampling.

2) Naive Halfspace Sampling: This approach only works
if Ê is a zonotope Ẑ (though Ê can be an arbitrary
ellipsotope). It is dual to the first approach in that it does not
sample the vertices of Ẑ, but rather the facets of Ẑ. Indeed, if
Ẑ is non-degenerate and Z(H) is in halfspace representation
as described in [10, Theorem 2.1] with halfspace matrix Λ
and coefficient vector b⃗ (note that none of the bi can be 0,
since Z(H) is non-degenerate), by using [4, Corollary 2] we
can deduce

r(Ê, Ẑ) = max
∥α⃗∥p≤1

max
i

|λ⃗⊤
i (Gα⃗+ c⃗− d⃗)|

|bi|

= max
i

∥∥∥G′⊤λ⃗i

∥∥∥
p∗

|bi|
,

(11)

where λ⃗i is the i-th row of Λ, G′ =
[
G c⃗− d⃗

]
, and the

last equality follows by duality. The strategy is therefore to
randomly select n − 1 out of the l generators from Z(H)
and to compute the corresponding halfspace normal vector
l⃗ and coefficient b as in [10, Theorem 2.1] (note that we
do not need to compute all halfspaces, which would lead
to an exponential runtime; instead, we compute only one
of the halfspace normal vectors, which has runtime O(n4)).
Doing this N times yields N normal vectors l⃗1, ..., l⃗N and
coefficients b1, ..., bN that lead to the approximation

rhs := max
1≤i≤N

∥∥∥G′⊤⃗li

∥∥∥
p∗

|bi|
, (12)

which satisfies rhs ≤ r(Ẑ, Ẑ). We will call this approach
naive halfspace sampling.

B. Shenmaier Halfspace Sampling

The two naive approaches can be evaluated quickly. How-
ever, our analysis so far offers no guarantees about the
accuracy of the result, only that it under-approximates the
true value r(Ẑ, Ẑ). A result from [11] will allow us to devise
algorithms for which we can estimate the likelihood that we
are within a certain accuracy ϵ of the exact solution, without
the assumption that Ê or Ê should be a zonotope. We first
need a technical definition:

Definition 4.1: Let K ⊂ Rn be compact with vol(K) > 0
and let v⃗ ∈ K be a random variable. Then v⃗ is said to be
ϑ-uniformly distributed on K for some ϑ ≥ 0, if for any
Lebesgue-measurable subset S ⊆ K∣∣∣∣P(⃗v ∈ S)− vol(S)

vol(K)

∣∣∣∣ ≤ ϑ. (13)

Unless explicitly stated otherwise, for the present subsection
and the next one, we assume ϑ > 0 to be arbitrary but fixed.
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Our main tool will be the following generalization of [11,
Theorem 3]:

Theorem 4.2: Let K ⊂ Rn be compact with vol(K) > 0,
c⃗ ∈ Rn a vector, ∥·∥ some norm on Rn, and B the unit ball
of the norm ∥·∥. For N ∈ N, let v⃗i ∈ B be independently,
ϑ-uniformly sampled on B, for i = 1, ..., N , and let

z⃗i = argmax
z⃗∈B∗

z⃗⊤v⃗i. (14)

We define the approximation

rS := max
i

max
x⃗∈K

z⃗⊤i x⃗. (15)

Then
rS ≤ max

x⃗∈K
∥x⃗∥ (16)

always holds, and for any ε ∈ (0, 1] we have

(1− ε) ·max
x⃗∈K
∥x⃗∥ ≤ rS (17)

with a probability of at least

PS(ε) := 1−
(
1−

(
ε

2 + ε

)n

+ ϑ

)N

. (18)

Note that PS(ε) may become negative, in which case we
treat it as PS(ε) = 0. For a proof of Theorem 4.2, see the
appendix. If K is convex, the expression

max
x⃗∈K

z⃗⊤i x⃗

coincides with the so-called support function of K evaluated
at z⃗i, which can usually be computed in polynomial time (it
is the maximum of a linear function over a convex set), and
even has a simple closed form for ellipsotopes: Given an
ellipsotope E = Ep(c⃗,G) = Ep(G) + c⃗, using duality its
support function in direction z⃗ can be computed as

max
x⃗∈E

z⃗⊤x⃗ =
∥∥G⊤z⃗

∥∥
p∗ + z⃗⊤c⃗. (19)

Applying Theorem 4.2 to approximate (6), we end up with
Algorithm 2, which provides the following result:

Theorem 4.3: Let Ê, Ê, ϑ, rShs, and PShs be as in Algo-
rithm 2, and assume that Ê is non-degenerate. Then Ê ̸⊆ Ê
if rShs > 1, and PShs is a lower bound on the probability that
Ê ⊆ Ê if rShs ≤ 1.

Proof: We can reformulate (6) to obtain

r(Ê, Ê) = max
x⃗∈Ep(G)+c⃗−d⃗

∥x⃗∥Eq(H) .

On the other hand, in Algorithm 2 we define

rShs,i ←
∥∥G⊤z⃗i

∥∥
p∗ + z⃗⊤i (c⃗− d⃗). (20)

As discussed in (19), the right-hand side of (20) coincides
with the support function of Ep(G)+ c⃗− d⃗ = Ep(G, c⃗− d⃗)
evaluated at the point z⃗i, which entails

rShs,i = max
x⃗∈Ep(G)+c⃗−d⃗

z⃗⊤i x⃗.

By Theorem 4.2, we can conclude r(Ê, Ê) ≥ rShs, and
additionally (1 − ε)r(Ê, Ê) ≤ rShs holds with probability
PS(ε) for any ε ∈ (0, 1]. So, if rShs > 1, it follows that

r(Ê, Ê) > 1, which is equivalent to Ê ̸⊆ Ê. If, on the
other hand, rShs ≤ 1, we may choose ε = 1 − rShs, and
conclude that r(Ê, Ê) ≤ 1 holds with a probability of at
least PS(1 − rShs) = PShs, which implies Ê ⊆ Ê with the
same probability.

Remark 4.4: Line 2 of Algorithm 2 requires solving a
nonlinear optimization problem, which is difficult in general.
However, since the constraint is convex and the objective
function is linear, this can be solved efficiently in polynomial
time, for example, using interior point algorithms (see [8,
Chapter 11]).

Remark 4.5: To apply Algorithm 2, it remains to discuss
how to uniformly sample points on an ellipsotope Eq(H).
As suggested in [11], this can be done using the ball walk
algorithm described in [12, Section 3b.]. The conditions for
applying the ball walk are addressed in the appendix.

Algorithm 2 Shenmaier Halfspace Sampling
Input: Non-degenerate ellipsotopes Ê = Ep(G, c⃗) and
Ê = Eq(H, d⃗) in Rn, number of samples N , parameter ϑ > 0.
Output: False if Ê ̸⊆ Ê could be confirmed, otherwise output a
lower bound PShs on the probability that Ê ⊆ Ê.

1: Draw v⃗1, · · · , v⃗N independently, ϑ-uniformly from Eq(H)
2: For i = 1, · · · , N , compute

z⃗i ← argmax
∥H⊤z⃗∥∗

q
≤1

z⃗⊤v⃗i

3: rShs,i,ϑ ←
∥∥G⊤z⃗i

∥∥
p∗

+ z⃗⊤i (c⃗− d⃗)
4: rShs ← maxi rShs,i
5: if rShs > 1 then
6: return False
7: else
8: PShs ← PS(1− rShs)
9: return PShs

10: end if

C. Shenmaier Vertex Sampling
In Lines 1 and 2 of Algorithm 2, we essentially sample

points from the boundary of (E(H)q)
∗, which by duality

correspond to halfspaces containing E(H)q . We then com-
pute the size of Ê − d⃗ in the direction of those halfspaces,
which is reminiscent of the naive halfspace sampling al-
gorithm. Therefore, one may ask oneself whether another
method could correspond to the naive vertex sampling.
This is indeed the case if we apply Theorem 4.2 to (7)
instead of (6). This time, instead of sampling points on the
boundary of (E(H)q)

∗, we sample points on the boundary of{
x⃗ ∈ Rn

∣∣∣ ∥∥G⊤x⃗
∥∥
p∗ ≤ 1

}∗
= Ep(G), which is similar to

the naive vertex sampling. Furthermore, instead of sampling
points from Ep(G), we can use Theorem 4.2 on K =
G⊤(Eq(H))∗, which means that we only need to sample
points on Bp∗ , which is far easier (see [13, Theorem 1]).
The overall method is depicted in Algorithm 3, where the
notation |[x⃗]|s refers to the vector with coordinates |xi|s.

Theorem 4.6: Let Ê, Ê, rSvs, and PSvs be as in Algorithm
3. Then Ê ̸⊆ Ê if rSvs > 1, and PSvs is a lower bound on
the probability that Ê ⊆ Ê if rSvs ≤ 1.
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Proof: The proof is essentially the same as that of
Theorem 4.3, using the fact that, for any x⃗ ∈ Rn,

argmax
z⃗∈Bp

z⃗⊤x⃗ =
sign(x⃗) ◦ |[x⃗]|p∗−1

∥x⃗∥p
∗−1

p∗

, (21)

as mentioned, e.g., in [14, Section 2.2].

D. Revisiting the Naive Algorithms

Using similar techniques as for the proofs of Theorem 4.3
and Theorem 4.6, we can improve our accuracy assessment
of the naive algorithms presented in Section IV-A. For the
remainder of this section, we take ϑ = 0 since Section IV-A
only involves uniform sampling over certain domains.

Corollary 4.7: For a zonotope Ẑ and an ellipsotope Ê
in Rn, let rvs be the result of the naive vertex sampling
algorithm as described in Section IV-A.1. Then Ẑ ̸⊆ Ê if
rvs > 1, and Ẑ ⊆ Ê with a probability of at least PS(1− rvs)
if rvs ≤ 1.

Proof: This follows directly from Theorem 4.6, since
Algorithm 3 reduces to the naive vertex sampling algorithm
if Ê is a zonotope.
The corresponding corollary for the halfspace sampling can
not be deduced easily from Theorem 4.3, so we need another
argument:

Corollary 4.8: For an ellipsotope Ê and a non-degenerate
zonotope Ẑ in Rn, let rhs be the result of the naive halfspace
sampling algorithm as described in Section IV-A.2. Then
Ê ̸⊆ Ẑ if rhs > 1, and Ê ⊆ Ẑ with a probability of at
least PS(1− rhs) if rhs ≤ 1.

Proof: Suppose Ê and Ẑ are given as Ê = Ep(G, c⃗)

and Ẑ = Z(H, d⃗), respectively, let Λ and b⃗ be a halfspace
representation of Z(H), with λ⃗j being the rows of Λ as
described in Section IV-A.2, and let k be the number of
such halfspaces. It follows from (11) that

r(Ê, Ẑ) = max
j

∥∥∥G′⊤λ⃗j

∥∥∥
p∗

|bj |
,

Algorithm 3 Shenmaier Vertex Sampling
Input: Non-degenerate ellipsotopes Ê = Ep(G, c⃗) and
Ê = Eq(H, d⃗) in Rn, number of samples N .
Output: False if Ê ̸⊆ Ê could be confirmed, otherwise output a
lower bound PSvs on the probability that Ê ⊆ Ê.

1: Draw v⃗1, · · · , v⃗N uniformly from Bp∗ using [13, Theorem 1]
2: For i = 1, · · · , N , compute

z⃗i ←
sign(⃗vi) ◦ |[⃗vi]|p

∗−1)∥∥v⃗i∥∥p∗−1

p∗

3: rSvs,i ←
∥∥∥G⃗zi + c⃗− d⃗

∥∥∥
Eq(H)

4: rSvs ← maxi rSvs,i
5: if rSvs > 1 then
6: return False
7: else
8: PSvs ← PS(1− rSvs), with ϑ set to 0
9: return PSvs

10: end if

with G′ =
[
G c⃗− d⃗

]
. Using the Bauer maximum princi-

ple, it is easy to see that this can be reformulated as

r(Ê, Ẑ) = max
∥x⃗∥1≤1

∥∥G′⊤M x⃗
∥∥
p∗ ,

where M is the matrix whose columns are the vectors
λ⃗j/|bj |. Using duality, one can show

r(Ê, Ẑ) = max
∥y⃗∥p≤1

∥∥M⊤G′y⃗
∥∥
∞ . (22)

Suppose v⃗ is chosen uniformly on B∞. Then, it is easy to
see that the vector

z⃗ = argmax
∥z⃗∥1≤1

z⃗⊤v⃗

can be assumed to be one of the vertices of B1 by using
the Bauer maximum principle. Since these vertices are just
the vectors ±e⃗s, where s = 1, ..., k, we may assume that
z⃗ equals one of these vectors with equal probability, which
in turn means that M z⃗ = ±λ⃗j/|bj | for some i = j, ..., k,
each with equal probability. Therefore, M z⃗ randomly selects
a halfspace vector l⃗ and a coefficient b from λ⃗j , bj , just
like for the naive halfspace sampling algorithm. It is then
easy to see that the approximation given by Theorem 4.2
applied on (22) yields the same result as the naive halfspace
sampling procedure. The rest of the Corollary can then be
proven similarly to the proof of Theorem 4.3.

V. NUMERICAL RESULTS

We demonstrate the efficiency of our novel algorithms for
solving the containment problem by modeling zonotopes and
ellipsoids (i.e., 2-ellipsotopes) using the CORA toolbox [15].
We solve linear programs using the MOSEK optimization
suite [16]. All computations were made in MATLAB on an
Intel Core i7-8650U CPU @1.9GHz with 24GB memory.1

A. Advantages of Tree Search

For our first experiment, we confirm the efficiency of the
search-based method described in Algorithm 1 compared to
the original, brute-force vertex enumeration from [4, Algo-
rithm 1]. We evaluated both algorithms on zonotopes Ẑ and
Ẑ in R5 with 10 generators, both centered at the origin with
generator entries randomly and uniformly sampled within
[−1, 1]. Additionally, to better analyze in which situations
each algorithm performs best, we multiplied all entries of
the generators of Ẑ with a factor ϱ ∈ [0, 1.2], which we
changed over different runs. We did so for 100 zonotope
pairs for each run and present the results in Fig. 1, where
the points represent the average over 100 zonotope pairs
and the error bars correspond to the worst case and best
case runtimes (not the standard deviation). Our new search-
based approach yields significantly better results for smaller
ϱ, which corresponds to the case where Ẑ is much smaller on
average than Ẑ, as the original vertex enumeration method
needs to cycle through every single vertex to confirm that

1The scripts of our results, including the code generating the figures
in this document, are available at the URL https://github.com/
AdrianKulmburg/ellipsotopeContainmentProblem
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it is indeed contained in Ẑ, whereas Algorithm 1 can make
use of the heuristic to quickly determine that no vertex can
possibly be outside of Ẑ. On the other hand, for higher values
of ϱ, the likelihood that Ẑ is not contained in Ẑ is high
enough that pretty much any vertex of Ẑ is not contained
in Ẑ, so the common vertex enumeration technique is likely
to quickly find a vertex that lies outside of Ẑ. The same
holds for the search-based method, even though it requires
a bit more time because it needs to sort the length of the
generators beforehand. Overall, this additional runtime is
relatively insignificant. We also compared our runtimes to
those of the approximative algorithm given in [5, Corollary
4], but did not include the results in Fig. 1 for the sake
of readability; in all instances, the approximative algorithm
was faster than the search-based approach (on average by a
factor of 0.5). However, as mentioned in the introduction,
this should be taken with a grain of salt, since the approach
from [5, Corollary 4] is not exact, whereas our search-based
approach is.

B. Accuracy of the Sampling Methods

We now compare the efficiency of the vertex and halfspace
sampling algorithms for the zonotope containment problem.
We computed rvs and rhs for different values of N and
compared the results to the exact value of r(Ẑ, Ẑ) computed
using the search-based vertex enumeration. Specifically, we
calculated the approximation ratio

ρ =
r

r(Ẑ, Ẑ)
, (23)

where r is either rvs or rhs. For each value of N , we computed
the average over 100 zonotope pairs that were chosen just
like in the previous experiment. The results are shown in Fig.
2 (just like for Fig. 1, the points correspond to the average
over 100 runs, while the errorbars correspond to the best
and worst cases). To compare those results to the accuracy
predicted by Theorem 4.2, we added the value 1 − ε99.99%
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Fig. 1. Runtime of the original vertex enumeration algorithm, compared to
that of the search-based algorithm, for varying sizes of the inner zonotope.

that corresponds to the case where PS(ε99.99%) = 99.99%
(when the value 1 − ε99.99% was negative for some N ,
we interpreted it as being equal to 0 instead). We also
summarized the average runtime (over the 100 zonotope
pairs) of each algorithm in the case of N = 104 samples
in Table I.

TABLE I
AVERAGE RUNTIMES OF EACH ALGORITHM, FOR N = 104 SAMPLES.

ALL VALUES ARE DISPLAYED IN MILLISECONDS.

Algorithm Exact Search Vertex Sampling Halfspace Sampling
(Algorithm 1)

Runtime 466.6±24.5 3177.5±29.2 93.1±0.2

As one can see in Fig. 2, the overall accuracy of both
sampling algorithms is always better than that predicted by
Theorem 4.2 with probability 99.99%, with the halfspace
sampling typically performing better than the vertex sam-
pling. While this shows that Theorem 4.2 does indeed yield
a plausible lower bound for the accuracy, it also indicates
that this bound is perhaps too conservative, so that tighter
accuracy estimations could be deduced in the future. On the
other hand, Table I shows that halfspace sampling has a much
lower runtime than vertex sampling, the latter one performing
even worse than the exact calculation using Algorithm 1.
While this tendency could be reversed for cases where Ẑ
has a significantly lower number of generators than Ẑ, in
the general case the halfspace sampling algorithm seems to
be the better choice in terms of accuracy and runtime.

C. Quadrotor Reaching a Target Area

To illustrate how solving the containment problem for el-
lipsotopes can be useful in practice, we consider a quadrotor
changing its altitude and moving to an ellipsoidal target area.
We assume that the state of the quadrotor is characterized by
the following variables: The inertial (north) position x1, the
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Fig. 2. Comparison of the accuracy of the sampling methods against the
expected accuracy according to Theorem 4.2.
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inertial (east) position x2, the altitude x3, the longitudinal
velocity x4, the lateral velocity x5, the vertical velocity x6,
the roll angle x7, the pitch angle x8, the yaw angle x9, the
roll rate x10, the pitch rate x11, and the yaw rate x12. The
quadrotor obeys the dynamics derived in [17, Equations (16)-
(19)] and similar to the specifications laid out in [18, Section
3.3.2], the initial position of the quadrotor is uncertain in all
directions within [−0.4, 0.4]. Contrary to [18], we assume
that the quadrotor is immobile at the start so that the velocity
is zero in all directions. The remaining variables are also zero
in the beginning. Finally, we use the same approach as in
[18, Section 3.3.1] to control the behavior of the quadrotor,
resulting in the input variables u1, u2, and u3, which control
the height, roll, and pitch, respectively. We use the constant
input values u1 = 1, u2 = 0, and u3 = −0.05. The
target area for x1, x2, and x3 is modeled as an ellipsoid
E2(G, c⃗), with G = diag(0.8, 1, 0.1) and c⃗ = (4, 0, 1)⊤.
For the containment check, we apply Algorithm 1 using the
fact that ∥x⃗∥E2(G) =

√
x⃗⊤G−1⊤G−1x⃗ for an invertible

matrix G. The reachable sets are represented as zonotopes
and computed using the CORA toolbox [15]. As seen in
Fig. 3, the target area contains the final reachable set. The
containment check took only 0.84 seconds despite the final
set having 600 generators.

VI. CONCLUSION

We present a deterministic algorithm based on a bi-
nary tree search that performs better at solving exactly the
zonotope containment problem in practice than the vertex
enumeration in [4], even though it may still have exponential
runtime in the worst case. In addition, we present two
techniques to solve the ellipsotope containment problem via
sampling. In practice, these algorithms are significantly more
accurate than the theoretical lower bound we derived in
Section IV, which indicates that this bound may be improved
in the future. Overall, the new deterministic algorithm is
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Fig. 3. Reachable set computation of a quadrotor. The quadrotor reaches
the ellipsoidal target area, which can be confirmed using Algorithm 1.

particularly suitable for cases where containment has to be
computed exactly, at the cost of an exponential runtime in the
worst case. As for the sampling-based algorithms, they can
ideally be used after the method in [5, Corollary 4] (which
can quickly confirm containment in most cases) has been
used without being able to confirm containment, since the
sampling-based algorithms have a controllable accuracy and
runtime.

APPENDIX

A. Proof of Theorem 4.2

In this section, we show how to prove Theorem 4.2. Since
(16) is obvious, we will only show (17). We begin with a
similar approach to that of the proof of [11, Theorem 3]: Let
x⃗△ be a maximizer of

max
x⃗∈K
∥x⃗∥ .

If x⃗ = 0⃗, the proof is trivial, so assume without loss
of generality that x⃗ ̸= 0⃗ and define χ⃗△ = x⃗△/

∥∥x⃗△
∥∥.

By construction, the points (1 + ε/2)⃗vi are ϑ-uniformly
distributed in (1 + ε/2)B. Moreover, since χ⃗△ lies on the
boundary of B, the set Bε/2(χ⃗△) := χ⃗△+ ε

2 ·B is contained
in (1+ ε/2)B. This means that the probability of one of the
points (1 + ε/2)⃗vi hitting Bε/2(χ⃗△) is at least

vol(Bε/2(χ⃗△))

vol((1 + ε/2)B)
− ϑ =

(ε/2)n

(1 + ε/2)n
− ϑ =

(
ε

2 + ε

)n

− ϑ.

Therefore, the probability that at least one of the N points
(1 + ε/2)⃗vi hits the ball Bε/2(χ⃗△) is PS(ε) = 1 −(
1−

(
ε

2+ε

)n

+ ϑ
)N

. Let v⃗△ be such that (1 + ε/2)⃗v△

is the closest point to χ⃗△ (with respect to the ∥·∥-
norm). Then, by what we discussed above, there holds∥∥χ⃗△ − (1 + ε/2)⃗v△

∥∥ ≤ ε/2 with a probability of at least
PS(ε). Let w⃗△ = v⃗△/

∥∥v⃗△∥∥ if v⃗△ ̸= 0⃗, and w⃗△ = 0⃗
otherwise. It follows by the triangle inequality that, if w⃗△ ̸=
0⃗, with a probability of at least PS(ε),∥∥χ⃗△ − w⃗△∥∥ ≤ ∥∥∥χ⃗△ − (1 +

ε

2
)⃗v△

∥∥∥+
∥∥∥(1 + ε

2
)⃗v△ − w⃗△

∥∥∥
≤ ε

2
+ (1 +

ϵ

2
− 1

v⃗△
)
∥∥v⃗△∥∥

≤ ε

For the last inequality, we utilize the fact that v⃗△ ∈ B, and
thus

∥∥v⃗△∥∥ ≤ 1. Instead, if w⃗△ = 0⃗, it is easy to check
that

∥∥χ⃗△ − w⃗△
∥∥ ≤ ε/2 ≤ ε. Let z⃗△ be the vector in

(14) corresponding to v⃗△. Note that, by definition and using
duality, it follows that z⃗△⊤v⃗△ =

∥∥v⃗△∥∥. Then,

max
i

z⃗⊤i χ⃗
△ = max

i
z⃗⊤i (w⃗

△ − (w⃗△ − χ⃗△))

≥
(
max

i
z⃗⊤i w⃗

△
)
−

(
max

i
z⃗⊤i (w⃗

△ − χ⃗△)
)

≥ z⃗△⊤w⃗△ −max
z⃗∈B∗

z⃗⊤(w⃗△ − χ⃗△)

= 1−
∥∥w⃗△ − χ⃗△∥∥

= 1− ε
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where for the first inequality, we have used the fact that, for
any two functions f(x) and g(x), we have maxx(f(x) −
g(x)) ≥ maxx f(x) − maxx g(x) (this can be proven just
like the inverse triangle inequality, using the fact that for any
two functions f(x) and g(x), we have maxx(f(x)+g(x)) ≤
maxx f(x) + maxx g(x)). We can thus conclude that, with
a probability of at least PS(ε),

max
i

max
x⃗∈K

z⃗⊤i x⃗ = max
x⃗∈K

max
i

z⃗⊤i x⃗

≥ max
i

z⃗⊤i x⃗
△

= max
i

(⃗z⊤i χ⃗
△)

∥∥x⃗△∥∥
≥ (1− ε)

∥∥x⃗△∥∥
= (1− ε)max

x⃗∈K
∥x⃗∥

□

B. Uniform Sampling within Ellipsotopes

We now discuss the pre-processing steps that are required
to apply the ball walk algorithm from [12, Section 3b.] to
ellipsotopes. The ball walk yields a point that is ϑ-uniformly
distributed, provided that the convex, compact set S on which
it is applied satisfies the following two conditions:

1) More than 2/3 of the volume of the unit ball B2 is
contained in S.

2) For some parameter 1 ≤ ξ ≤ n3/2, more than 2/3 of
the volume of S is contained in ξB2.

One common technique to ensure that these two conditions
are met is called rounding, and consists in transforming
S beforehand in such a way that it matches as closely as
possible the unit ball. For ellipsotopes, this is particularly
easy: Suppose q ∈ [2,∞], then there holds

B2 ⊆ Bq ⊆ n1/2−1/qB2.

The ellipsotope Eq(H) can equivalently be described as
Eq(H) = HBq , therefore we may write

HB2 ⊆ Eq(H) ⊆ n1/2−1/qHB2.

Let H = U ΣV ⊤ be the singular value decomposition of
H . Since U and V are, by construction, orthogonal matrices,
they are both invertible and leave the unit ball B2 invariant,
i.e., UB2 = B2 and V B2 = B2. Furthermore, since we may
assume that H is full-rank (since Eq(H) is non-degenerate),
it follows that Σ has the form Σ =

[
D 0

]
for some

invertible, diagonal matrix D. This allows us to conclude
that

B2 ⊆ Eq(D
−1U⊤H) ⊆ n1/2−1/qB2.

For q ∈ [1, 2], the analysis is similar, except that we end up
with

B2 ⊆ n1/q−1/2Eq(D
−1U⊤H) ⊆ n1/q−1/2B2.

Therefore, in order to sample points on Eq(H), one can ap-
ply the ball-walk algorithm on the set S = Eq(D

−1U⊤H)
if q ∈ [2,∞] (or S = n1/q−1/2Eq(D

−1U⊤H) if q ∈ [1, 2]).

We multiply the resulting points by U D (or n1/2−1/qU D)
to obtain ϑ-uniformly distributed points on Eq(H).

This entire procedure can be performed in polynomial
time with respect to the dimension n and the number of
generators m of Eq(H), since the runtime of computing the
singular value decomposition is well-known to be polynomial
with respect to the size of the matrix H , and the ball walk
algorithm has polynomial runtime according to [12, Theorem
3.7.].
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