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Abstract— Early detection of delay attacks on feedback
control systems can be achieved by recursive identification of
delay and dynamics. The paper contributes with an analysis
of the convergence of a multiple-model based algorithm for
joint recursive identification of fractional delay and continuous
time nonlinear state space dynamics. It is proved that the true
parameter vector is in the set of global convergence points,
while reasons are given why a standard local stability analysis
fails. A numerical example illustrates these results.

I. INTRODUCTION

Delay plays the role as a main enemy of feedback in
a number of applications, among them feedback control
systems running over wireless interfaces [1]. Delay injection
can also be used by adversaries to launch attacks on feedback
control systems as noted e.g. in [10]. In case the dynamics
is known such attacks can be detected by estimation of
the delay [11]. In case the dynamics is unknown, recursive
identification of the delay together with the system dynam-
ics that would otherwise impair the delay identification is
needed. This application of recursive identification to delay
attack detection [26] has given rise to questions regarding the
convergence properties of the algorithm of [23]. The main
contribution of the paper provides answers to these questions.

Recursive identification of delay and system dynamics is
well established for linear systems, see e.g. [3] that showed
that output error methodology has performance advantages
for these systems. If needed, fractional delays can be handled
by exploiting zero order hold (ZoH) sampling zeros [2].
The above methods remain applicable for the Hammerstein
and Wiener models that contain cascaded linear dynamic
and static nonlinear blocks [17], [20]. For general nonlinear
models simultaneous recursive identification of delay and
dynamics becomes more intricate. Integer delays can be
handled by delay line chains augmented to nonlinear discrete
time models like the NARMAX model [6]. However, a
majority of the systematic methods for nonlinear controller
design are formulated in a continuous time setting, c.f. [5],
[7], [9], and [15]. It therefore makes sense to consider
joint recursive identification of delay and nonlinear dynamics
based on continuous time models combined with Euler
sampling schemes. Recursive sequential Monte-Carlo (SMC)
methods like the bootstrap particle filter then constitute
interesting alternatives, see [21]. Many SMC methods are not
recursive though, due to inherent smoothing steps, [21]. The
algorithm of [23] is however based on multiple nonlinear
time shifted continuous time state space models, that are
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interpolated to allow recursive fractional delay identification
after Euler sampling. Note that linear state space models with
delay is an important special case of [23], cf. [26].

The convergence analysis that forms the main contribution
of the paper exploits an analysis of associated ordinary
differential equations (ODEs), as developed in [12], [13].
Previous work, like the theses [4] and [19] supervised by the
author, analysed the convergence for single model nonlinear
dynamics without delay, while [25] generalized [4] and
[19] to include a nonlinear output. Because of the new
delay model and a subtle approximation in the gradient
computation of [23], the convergence results of the present
paper differ considerably from [4], [19] and [25]. As before
it is proved that the true parameter vector is in the set of
stationary points, towards which [23] converges globally.
However, the analysis of local convergence along the path
of [4], [19] and [25] fails. Therefore, a numerical example
of a delay attack on a nonlinear automotive cruise control
system, [16], is used to show that the stability of the true
parameter vector is not an issue in general. This application
is further treated in [27]. Another difference as compared to
[4], [19] and [25] is that the scaling of [22] is included in
the analysis.

The nonlinear model and the algorithm of [23] are re-
viewed in Sections II and III, to enable a self contained
analysis of local and global convergence in Section IV. The
convergence properties are illustrated numerically in Section
V. Conclusions appear in Section VI.

II. MODEL AND GRADIENT

A. Fractional time delay interpolation

The fractional delay model is based on interpolation
between adjacent states of multiple state and gradient ODEs,
each time shifted one sampling period. The following as-
sumptions relating to the delay are therefore introduced, cf.
[23]:

D1) The plant is time invariant and exponentially stable.
D2) The delay T is constant.

Because of D1, the initial conditions can be disregarded
when the time invariance of D1 and D2 is exploited. Sec-
ondly, time invariance implies that it does not matter if the
single delay appears at the input or at the output. In [23] the
delay is selected to affect the output signal model.

The inputs um(t), state vectors x̂m(t,θS), state gradients
ΨS,m(t,θS) and delay gradients ψT,m(t, θT ,θS), m =
0, ...,M , needed for identification of the delay are

um(t) =
(
uT
1,0(t−mTS) ... uT

K,0(t−mTS)
)T

,
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k = 1, ...,K, (1)

uk,0(t−mTS) =
(
uk,0(t−mTS) ... u

(nk)
k,0 (t−mTS)

)T
,

(2)

x̂m(t,θS)

= (x̂1,0(t−mTS ,θS) ... x̂n,0(t−mTS ,θS))
T
, (3)

ΨS,m(t,θS) = ΨS,0(t−mTS ,θS), (4)

ψT,m(t, θT ,θS) = ψT,0(t−mTS ,θS). (5)

The subscript m thus denotes the index of the m : th
multiple model. The dimensions of the input (disregarding
derivatives), state, output and parameter vectors are K, n, ℓ
and d+1. The superscript () denotes differentiation multiple
times and TS is the sampling period. θS is the parameter
vector of the ODE defined in section II.B, and θT is the
delay parameter. The total parameter vector, that is common
for all multiple models, is

θ =
(
θT θTS

)T
. (6)

To briefly outline the computation of the states and gradi-
ents, note that because of D1 and D2, the state vectors (3)
and the corresponding state gradients (4) can be generated
by solving the state and state gradient ODEs reviewed in
subsections II.B and II.C, for integer time delay m = 0. The
remaining states and state gradients are then obtained from
previously stored x̂0(t,θS) and Ψ0(t,θS). Asymptotically,
when µ(t)/t → 0 in the algorithm (31) this holds exactly
because of D1 and D2, which reduces the computational
complexity with a factor of M .

The delay parameter θT is related to the state and output
signals via a linear interpolation between the states and
gradients that are adjacent in the time delay domain, thereby
driving the adaptation of (31) exploiting (29). θT is parti-
tioned in integer and fractional delay as follows

θT = T = mTS + Tf , m ∈ [0,M − 1]. (7)

Here mTS is the integer part of the delay while m is the
number of sampling periods. The maximum delay is MTS .
The fractional delay is denoted Tf , and it fulfils

0 ≤ Tf ≤ TS . (8)

The linearly interpolated state vector, in between the m :
th and m+ 1 : th state vectors of (3), becomes

x̂(t− θT ,θS)

=

(
1− Tf

TS

)
x̂m(t,θS) +

Tf

TS
x̂m+1(t,θS). (9)

Note that interpolated quantities are not marked with any
subscript. The restriction (7) will keep the estimate interior
to the delay range of the multiple models. A differentiation
of (9) with respect to θS results in the gradient interpolation

ΨS(t− θT ,θS)

=

(
1− Tf

TS

)
ΨS,m(t,θS) +

Tf

TS
ΨS,m+1(t,θS). (10)

A similar treatment to derive the gradient ψT,m(t, θT ,θS)
of (5) appears complicated since it is not clear how the gra-
dient should be formed with respect to the integer numbering
of the multiple models. A direct differentiation of (9) would
also destroy the interpolation structure of (9) via Tf . For
these reasons, ψT,m(t, θT ,θS) is approximated here and in
[23], with the same interpolation as in (9), i.e.

ψT (t− θT ,θS)

=

(
1− Tf

TS

)
ψT,m(t,θS) +

Tf

TS
ψT,m+1(t,θS), (11)

The algorithm of [23] is therefore an approximate recursive
prediction error method (RPEM). The interpolated predicted
output signal is finally defined by the output matrix C as

ŷ(t, θT ,θS)

= ŷ(t− θT ,θS) = Cx̂(t− θT ,θS). (12)

B. Multiple state space models

To avoid overparameterization, the state coordinates of the
ODE model are defined in a canonical manner in [23], with
one parameterized nonlinear right hand side state component
that is processed by a chain of integrators. Since it is enough
to generate the first of the M+1 states and store time shifted
copies, the state space model of main interest is

˙̂x0(t,θS)

=


˙̂x1,0(t,θS)

...
˙̂xn−1,0(t,θS)
˙̂xn,0(t,θS)

 =


x̂2,0(t,θS)

...
x̂n,0(t,θS)

f (x̂0(t,θS),u0(t),θS)


(13)

ŷ0(t, θT ,θS) = Cx̂0(t− θT ,θS), (14)

where ŷ0(t, θT ,θS) is the model output for m = 0.
The Stone-Weierstrass theorem, [18], proves that multi-

polynomials have universal approximation properties. For
this reason the parameterization of (13) is selected to be
polynomial, and given by

f(x̂0(t,θS),u0(t),θS) = φ
T (x̂0(t,θS),u0(t))θS , (15)

θTS =

(
θS,0...0 ... θS,0...I

u
(nK )
K

... θS,0...I
u
(nK−1)
K

I
u
(nK )
K

... θS,Ix1 ...Iu(nK )
K

)
, (16)

φT (x̂0(t,θS),u0(t)) =

(
1 ...

(
u
(nK)
K,0 (t)

)I
u
(nK )
K ...

(
(x̂1,0(t,θS))

Ix1 ... (x̂n,0(t,θS))
Ixn (u1,0(t))

Iu1

915



...
(
u
(nK)
K,0 (t)

)I
u
(nK )
K

))
. (17)

Here Im denotes a maximum degree and the regression
vector component 1 corresponds to θS,0...0. The vectors (16)
and (17) are filled from left to right when the indices vary,
where the rightmost index varies the fastest.

The notation is admittedly complicated, however the use
of more mathematically compact alternatives like Kronecker
powers and lexical ordering [8] would limit accessability for
the wide engineering audience.

C. Gradients
The continuous time gradient ψ(t, θT ,θS) follows from

the interpolated output (12), the interpolated state and delay
gradients (10) and (11), and from (6). The gradient is

ψ(t, θT ,θS) = ψ(t,θ) =
(
ψT

T (t,θ) ψT
S (t,θ)

)T
=
(
ψT

T (t− θT ,θS) ψT
S (t− θT ,θS)

)T
=

(
∂ŷ(t− θT ,θS)

∂θT

∂ŷ(t− θT ,θS)

∂θS

)T

=

(
∂ŷ(t,θ)

∂θT

∂ŷ(t,θ)

∂θS

)T

=

(
∂ŷ(t,θ)

∂θ

)T

. (18)

A differentiation of (12) gives

ψS(t,θ) = C

(
∂x̂(t, θ)

∂θS

)T

= CΨS(t,θ). (19)

ΨS(t,θ) is the interpolated matrix state space gradient.
The next step is to compute ΨS,0(t,θ). The remaining

matrix state space gradients are generated from ΨS,m(t,θ)
by shifting previously stored values. The computation of
ΨS,0(t,θ) is done by a differentiation of the ODE (13),
after which the resulting matrix ODE is integrated using the
discretization of subsection III.B. It follows from (13) that

Ψ̇S,0(t− θT ,θS) =


∂x̂2,0(t−θT ,θS)

∂θS

...
∂x̂n,0(t−θT ,θS)

∂θS
∂f(x̂0(t−θT ,θS),u0(t−θT ),θS)

∂θS

 .

(20)
The bottom row components of the right hand side of (20)
need to be computed for the parametrization of f(·, ·, ·) given
by (15), (16) and (17). The result is

∂f (x̂0(t− θT ,θS),u0(t− θT ),θS)

∂θS

= φT (x̂0(t− θT ,θS),u0(t− θT )) + θ
T
S

×


(

∂φ(x̂0(t−θT ,θS),u0(t−θT ))
∂x̂1,0(t−θT ,θS)

)T
...(

∂φ(x̂0(t−θT ,θS),u0(t−θT ))
∂x̂n,0(t−θT ,θS)

)T


T

∂x̂0(t− θT ,θS)

∂θS
,

(21)

(
∂φ(x̂0(t− θT ,θS),u0(t− θT ))

∂x̂i,0(t− θT ,θS)

)T

=
(
0T 1 u

(nK)
K,0 (t)

2x̂i,0(t− θT ,θS) 2x̂i,0(t− θT ,θS)u
(nK)
K,0 (t) ...

)
. (22)

Finally the gradient component ψT,0 of (11) is computed.
It is the key to enable recursive identification of the delay.
An introduction of τ̄ = t− θT , and then using (14) leads to

ψT,0(t− θT ,θS) =
∂ŷ0(t− θT ,θS)

∂θT
=

∂ŷ0(τ̄ ,θS)

∂τ̄

∂τ̄

θT

= ˙̂y0(t− θT ,θS)(−1) = −C ˙̂x0(t− θT ,θS), (23)

where ˙̂x0(t− θT ,θS) is given by (13) and in (31).

III. RECURSIVE IDENTIFICATION ALGORITHM

A. Projection

As discussed in [12], [13], [14], a projection algorithm is
needed to keep the running parameter estimate in the model
set Ds

M. In [23] the set of linearized asymptotically stable
models that have a delay in the interval of (7) is used. Hence

Ds
M =

{(
θsT (θs)T

)T
| |eig(Ss(θs))| < 1− κ,ms ∈ [0,M − 1]} (24)

Ss(θs)

= In + αTS



0 1 0 . . . 0

0 0 1
. . . 0

...
...

. . . . . . 0
0 0 . . . 0 1

(θs)
T dφs(xs

0(t,θ
s),u0)

dxs
0(t,θ

s)


.

(25)
where κ > 0 is small. The projection algorithm of [23]
prevents whole update steps of (31) that end up outside
Ds

M. The superscript s is used to indicate the scaling of the
sampling period introduced by (26) in the next subsection.

B. Scaling and discretization

The scaling of the sampling period is applied to improve
the numerical properties when discretization is performed,
see Theorem 1 and 3 of [22]. This scaling is only applied
for the discretization of the ODEs, and it is given by

T s
S = αTS , (26)

The parameter vector θS is changed to θsS because of the
scaling. However, Theorem 2 of [22] states a linear relation
between θS and θsS that is easily used to recover θS .

Running estimates are now introduced, marked byˆand an
added time dependence. To define the discretization, stored
states are first shifted one time step according to

x̂s
m(t+ Ts, θ̂

s
S(t))

= x̂s
m−1(t, θ̂

s
S(t− TS)), m = 1, ...,M. (27)
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Thereafter x̂s
0(t + Ts, θ̂

s
S(t)) is generated by the Euler

forward integration method applied to (13), using (15)-(17):
x̂s
1,0(t+ TS , θ̂

s
S(t))

...
x̂s
n−1,0(t+ TS , θ̂

s
S(t))

x̂s
n,0(t+ TS , θ̂

s
S(t))

 =


x̂s
1,0(t, θ̂

s
S(t))

...
x̂s
n−1,0(t, θ̂

s
S(t))

x̂s
n,0(t, θ̂

s
S(t))



+αTS


x̂s
2,0(t, θ̂

s
S(t))

...
x̂s
n,0(t, θ̂

s
S(t))

(φs(x̂s
0(t, θ̂

s
S(t)),u0(t))

T θ̂sS(t)

 . (28)

The discretization and scaling is identical for the gradient
equations (20)-(22) and (23), see (31) for all details.

C. Search method and algorithm

The scaled algorithm of [23] follows by application of the
Gauss-Newton algorithm of [14], for minimization of

V (θs,Λs) =
1

2
lim
t→∞

E[(εs(t,θs))T (Λs(t,θs))−1εs(t,θs)

+ ln (det (Λs(t,θs)))]. (29)

Λs(t,θs) is the covariance matrix of the prediction error

εs(t,θs) = y(t)− ŷs(t, θT ,θ
s
S), (30)

where y(t) is the measured output signal. Λs(t,θs)) > 0
provided that an assumption like S3 below holds.

The approximate RPEM is then given by

µ(t) =
t

t+ µ1TS
µ̄(t)

µ̄(t+ TS) = µ0µ̄(t) + 1− µ0

εs(t) = y(t)− ŷs(t)

Λs(t) = [Λs(t− TS)

+
µ(t)

t

(
εs(t)(εs(t))T −Λs(t− TS)

)]
Ds

M

Rs(t) = [Rs(t− TS)

+
µ(t)

t

(
ψs(t)(Λs(t))−1(ψs(t))T −Rs(t− TS)

)]
Ds

M(
θ̂sT (t)

θ̂sS(t)

)
=

[(
θ̂sT (t− TS)

θ̂sS(t− TS)

)

+
µ(t)

t
(Rs(t))−1ψs(t)(Λs(t))−1εs(t)

]
Ds

M

m̂s(t) =

⌊
θ̂sT (t)

TS

⌋

T̂ s
f (t) = θ̂sT (t)− TSm̂

s(t)

x̂s
m(t+ Ts) = x̂s

m−1(t), m = 1, ...,M

φs(t) =
(
1 ...

(
(x̂s

1,0(t))
Ix1

... (x̂s
n,0(t))

Ixnu
Iu1
1 (t) ...

(
u
(nK)
K (t)

)I
u
(nK )
K

))T

x̂s
0(t+ Ts)

=




x̂s
1,0(t)

...
x̂s
n−1,0(t)
x̂s
n,0(t)

+ αTS


x̂s
2,0(t)

...
x̂s
n,0(t)

(φs(t))T θ̂sS(t)




sat

x̂s(t+ TS − TSm̂
s(t)− T̂ s

f (t))

=

(
1−

T̂ s
f (t)

TS

)
x̂s
m̂s(t)(t+ TS)

+
T̂ s
f (t)

TS
x̂s
m̂s(t)+1(t+ TS)

ŷs(t+ TS) = Cx̂s(t+ TS − TSm̂
s(t)− T̂ s

f (t))

Ψs
S,m(t+ Ts) = Ψs

S,m−1(t), m = 1, ...,M

∂φs(t)

∂x̂s
i,0

=
(
0T ... 2x̂s

i,0(t)u
(nK)
K (t) ...

)T
,

∂φs(t)

∂x̂s
0

=
(

∂φs(t)
∂x̂s

1,0
... ∂φs(t)

∂x̂s
i,0

... ∂φs(t)
∂x̂s

n,0

)
,

Ψs
S,0(t+ TS) =




∂x̂s

1,0(t)

∂θs
S

...
∂x̂s

n−1,0(t)

∂θs
S

∂x̂s
n,0(t)

∂θs
S



+αTS


∂x̂s

2,0(t)

∂θs
S

...
∂x̂s

n,0(t)

∂θs
S

(φs(t))T + (θ̂sS(t))
T
(

∂φs(t)
∂x̂s

0

)
∂x̂s

0(t)
∂θs

S




sat

Ψs
S(t+ TS − TSm̂

s(t)− T̂ s
f (t))

=

(
1−

T̂ s
f (t)

TS

)
Ψs

S,m̂s(t)(t+ TS)
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+
T̂ s
f (t)

TS
Ψs

S,m̂s(t)+1(t+ TS)

ψs
S(t+ TS − TSm̂

s(t)− T̂ s
f (t))

= CΨs
S(t+ TS − TSm̂(t)− T̂f (t))

ψs
T,m(t+ Ts) = ψ

s
T,m−1(t), m = 1, ...,M

ψs
T,0(t+ TS) = −C


x̂s
2,0(t)

...
x̂s
n,0(t)

(φs(t))T θ̂sS(t)


ψT (t+ TS − TSm̂

s(t)− T̂ s
f (t))

=

(
1−

T̂ s
f (t)

TS

)
ψs

T,m̂s(t)(t+ TS)

+
T̂ s
f (t)

TS
ψs

T,m̂s(t)+1(t+ TS)

ψs(t+ TS) =

(
ψs

T (t+ TS − TSm̂(t)− T̂f (t))

ψs
S(t+ TS − TSm̂(t)− T̂f (t))

)
. (31)

In (31), µ(t)/t denotes the gain sequence, µ0 and µ1 are
constants for tuning, Rs(t) denotes the Hessian and ⌊·⌋ is
the floor operator. The variables µ̄(t), Λs(t), Rs(t), θ̂sT (t),
θ̂sS(t), x̂s

0,m(t), Ψs
S,m(t) and ψs

T,m(t) need initialization,
which is discussed in [4], [19], [22], [23], and [24]. A
saturation, marked by sat, has been added above to ensure
boundedness in the convergence analysis. The saturation can
be arbitrarily large and does not affect (31) in practice.

IV. CONVERGENCE

It is first noted that due to the shared dynamic model, parts
of the analysis are similar to that of [4], [19] and [25].

A. Convergence analysis with associated ODEs

The convergence of (31) is analysed with averaging the-
ory, using the method with associated ODEs developed by
Ljung, [12], [13]. The technical report [12] defines a general
recursive algorithm for identification of nonlinear dynamics,
and provides conditions needed for the existence of a (vector)
ODE associated with the algorithm, with the right hand side
representing the average updating direction of the algorithm
for a fixed parameter vector. It is then proved that global
convergence of the general algorithm follows if the ODE
is globally Lyapunov stable, while local convergence cannot
hold in case the linearized associated ODE is not stable.

B. Regularity conditions

In addition to D1 and D2, the following regularity condi-
tions are needed for the forthcoming analysis:

M1: Ds
M is a compact subset of Rd+1+(d+1)2+ℓ2 ,

such that the extended parameter vector θse =(
(θs)T (vec(Rs))T (vec(Λs))T

)T ∈ Ds
M im-

plies that the state dynamics and the state gradient
dynamics of (31), as well as their derivatives with
respect to θs are exponentially stable and bounded.

M2: Ds
M is a compact subset of Rd+1+(d+1)2+ℓ2 , such

that the extended parameter vector θse ∈ Ds
M

implies that Rs(t) ≥ δRId+1, ∀t, some δR > 0.
M3: Ds

M is a compact subset of Rd+1+(d+1)2+ℓ2 , such
that the extended parameter vector θse ∈ Ds

M
implies that Λs(t) ≥ δΛIℓ, ∀t, some δΛ > 0.

M4: um(t) = (u1,0(t−mTS) ... uK,0(t−mTS))
T ,

m = 0, ..,M , k = 1, ...,K , i.e. no input signal
derivatives appear.

M5: u0(t) = C̄uxū,0(t), where xū,0(t) is generated
from the independent and identically distributed
(i.i.d) bounded vector of random variables {ū(t)},
by asymptotically stable linear filtering.

G1: limt→∞ µ(t) = µ > 0, and µ(t) is non-increasing.
A1: The data sequence {z(t)} = {(yT (t) uT

0 (t)} is
strictly stationary, and ∥z(t)∥ ≤ C < ∞, with
probability one (w.p.1), ∀t.

A2: The following limits exist for fixed θse ∈ Ds
M:

lim
t→∞

E[ψs(t,θs)(Λs)−1εs(t,θs)] = f(θs,Λs)

lim
t→∞

E[ψs(t,θs)(Λs)−1(ψs(t,θs))T ]

= G(θs,Λs)

lim
t→∞

E[εs(t,θs)(εs(t,θs))T ] = J(θs)

S1: For each t, s̄, t ≥ s̄, there exists a random vector
z0s̄(t) that belongs to the σ-algebra generated by zt

but independent of zs̄ (for s̄ = t take z0s̄(t) = 0),
such that E[∥z(t) − z0s̄(t)∥4] < Cλt−s̄, C < ∞,
|λ| < 1.

S2: The system can be described by y(t) = Cyxȳ(t−
Ty) + w(t), where xȳ(t) is generated by sam-
pling of the states of a continuously differentiable,
bounded ODE that meets D1 and D2, and where
the disturbance w(t) = Cw̄xw̄(t), where xw̄ is
generated from a sequence {w̄(t)} of bounded
i.i.d. random vectors, independent of {u0(t)}, by
asymptotically stable linear filtering.

The regularity conditions are numbered as in [14], and
vec(H) denotes a vector stacking the columns of the matrix
H. The conditions M1-M5 mean that the model is restricted
to be exponentially stable with signals generated by expo-
nentially stable filtering. In addition the system is assumed
to have these properties as stated by A1, S1 and S2. This
defines a stochastic framework that together with G1 and A2
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imply existence of the associated ODEs and their relation to
(31). The analysis holds for a correlated w(t) by S2.

C. Tools for global convergence analysis

The following result for (31) now holds:

Theorem 1: Assume that D1, D2, M1-M5, G1, A1, A2, S1
and S2 hold for (31). Also assume that there exists a twice
differentiable positive function V (θs,Rs,Λs) such that

d

dτ
V (θsD(τ),Rs

D(τ),Λs
D(τ)) ≤ 0,

(
(θsD)T (vec(Rs

D))
T

(vec(Λs
D))

T
)T

∈ Ds
M \ ∂Ds

M,

when evaluated along solutions of the associated ODEs
d
dτ θ

s
D(τ) = µ(Rs

D(τ))−1f(θsD(τ),Λs
D(τ))

d
dτR

s
D(τ) = µ (G(θsD(τ),Λs

D(τ))−Rs
D(τ))

d
dτΛ

s
D(τ) = µ (J(θsD(τ))−Λs

D(τ))
.

Let

Ds
C =

{(
(θsD)T (vec(Rs

D))
T

(vec(Λs
D))
)T

∈ Ds
M \ ∂Ds

M| d
dτ

V (θsD(τ),Rs
D(τ),Λs

D(τ)) = 0

}
.

Then either(
θ̂s(t) (vec (Rs(t)))

T
(vec(Λs(t)))

T
)T

→ Ds
C

w.p.1 as t → ∞,
or(
θ̂s(t) (vec (Rs(t)))

T
(vec(Λs(t)))

T
)T

→ ∂Ds
M. �

Proof: Appears in the Appendix. �
D. Global convergence to a true parameter vector

The positive criterion function (29) is now selected as the
Lyapunov function of Theorem 1, as in [14]. Insertion of
θsD(τ), Rs

D(τ) and Λs
D(τ) in (29), followed by differentia-

tion along the lines of [14] Section 4.4, leads to

d

dτ
V (θsD(τ),Rs

D(τ),Λs
D(τ))

= −µfT (θsD(τ),Λs
D(τ))(Rs

D(τ))−1f(θsD(τ),Λs
D(τ))

−1

2
tr
(
(Λs

D(τ))−
1
2 (µ (J(θsD(τ))−Λs

D(τ))) (Λs
D(τ))−1

× (µ (J(θsD(τ))−Λs
D(τ))) (Λs

D(τ))−
1
2

)
≤ 0, (32)

with equality only if

f(θsD,Λs
D) = 0, (33)

J(θsD)−Λs
D = 0, (34)

where the positive definiteness stated by M2 and M3 are
required to obtain (32). The equations (33) and (34) define
the set of stationary points of the ODEs of Theorem 1.

To proceed and study the case where the system is in
the model set, the following assumption relating to the true
parameter vector θs,⋆e is required

S3: There is a parameter vector θs,⋆e =
(
(θs,⋆)

T

(vec (Rs,⋆))
T
(vec (Λs,⋆))

T
)T

∈ Ds
M \∂Ds

M,

with θs,⋆ =
(
θs,⋆T

(
θs,⋆S

)T)T
, such that the data

sequence {z(t)} fulfils y(t) = ŷs(t− θs,⋆T ,θs,⋆S ) +
εs(t,θs,⋆), where εs(t,θs,⋆) is independent of
u0(t), with zero mean and covariance Σ > 0.

The system is thus formally defined in the scaled discrete
time domain, with the state and output defined by inter-
polation between multiple models. The main reason is that
a definition in continuous time would introduce modeling
errors invalidating S3, since there is no exact transformation
between continuous and discrete time. A similar assumptions
would be needed for any other model structure.

To analyse if the true parameter vector is a stationary point
of the ODEs of Theorem 1, (33) and (34) are investigated for
θs,⋆e . First it can be observed that S3 implies that εs(t,θs,⋆)
and ψ(t,θs,⋆) are independent , since ψ(t,θs,⋆) is generated
only from u0(t). Assumptions A2 and S3 therefore give

f(θs,⋆,Λs,⋆) = lim
t→∞

E
[
ψs(t,θs,⋆)(Λs,⋆)−1εs(t,θs,⋆)

]
|θs,⋆

e

= lim
t→∞

E [ψs(t,θs,⋆)]|θs,⋆
e

(Λs,⋆)−1 lim
t→∞

E [εs(t,θs,⋆)]|θs,⋆
e

= lim
t→∞

E [ψs(t,θs,⋆)]|θs,⋆
e

(Λs,⋆)−10 = 0. (35)

J(θs,⋆) = lim
t→∞

E[εs(t,θs,⋆)(εs(t,θs,⋆))T ] = Σ. (36)

This implies

Theorem 2: Assume that D1, D2, M1-M5, G1, A1, A2,
S1, S2 and S3 hold. Then the true parameter vector θs,⋆e =(
θs,⋆T

(
θs,⋆S

)T
(vec (Rs,⋆))

T
(vec (Σ))

T
)T

∈ Ds
C . �

The convergence to Ds
C or ∂Ds

M is global by Theorem 1.
Note however that Ds

C may contain more points than θs,⋆e .

E. No proof of local convergence

Perhaps surprising, no way to prove local convergence has
been found. This can be explained as follows.

For RPEMs local convergence to the true parameter
vector in the sense of [12], [13] can be proved by first
establishing positive definiteness and thereby invertibility of
G (θs,⋆,Λs,⋆). For RPEMs it also holds that the linearized
right hand side f (θs,⋆,Λs,⋆) of A2 equals −G (θs,⋆,Λs,⋆).
Therefore the linearized right hand side of the first associated
ODE of Theorem 1 becomes a scaled negative identity
matrix and θs,⋆e is asymptotically stable which implies local
convergence, cf. [12], [13], [25].

The fact that (11) represents a gradient approximation
prevents the above proof, since G

(
θs,⋆,Λs,⋆

S

)
will no longer

equal the negative linearized right hand side. It is also unclear
how the needed differentiation of (9) should be carried out.
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Fig. 1. Scaled parameters of (31). The blue curve represents θ̂sT (t).

V. NUMERICAL ILLUSTRATION OF LOCAL CONVERGENCE

To illustrate Theorem 2, and to address local convergence,
(31) was applied to a nonlinear automotive cruise control
system subject to delay attack [27]. The commanded force
mu1(t) is counteracted by air resistance −mk0x

2
1(t), [16].

Here m is the mass, u1(t) is the accelerator control signal,
x1(t) is the velocity and k0 is the air resistance coefficient.
When a delay attack occurs before the driver closes the loop,
Newton’s second law motivates the discrete time model

x̂s
1(t+ TS) = x̂s

1(t)

+αTS

(
θ̂S,00(t)1 + θ̂S,01(t)u1(t) + θ̂S,20(x̂

s
1(t))

2
)
,

ŷs1(t) = x̂s
1(t− θ̂sT ), (37)

with x̂s
1(t− θ̂sT ) obtained from (9). The true parameters were

θs,⋆ = (0.65000 0.00000 1.00000 − 0.00120)
T
, (38)

i.e. the delay attack used 0.65 s. Data was generated with
a sampling period of 0.10 s using (37), (38), adding output
measurement noise with standard deviation 0.1 m/s. The
control signal u1(t) ∈ [−0.7, 1.5] m/s2 switching to a new
uniformly distributed random value every 10 s, resulting
in x1(t) ∈ [1, 30] m/s. The implementation [24] of (31)
was then applied with κ = 0.9995, µ̄(0) = 1, µ1 = 300,
µ0 = 0.9995, x̂(0) = 10.0 , Λs(0) = 0.1, Rs(0) =
blockdiag(0.1, I3), and θ̂s(0) = (0.10000 0.00000 0.10000
−0.05000)T . Re-scaling by Theorem 2 of [22] then gave

θ̂(104) = (0.65050 0.00017 0.99979 − 0.00120)
T
,

(39)
at the end of run. Fig.1 and (39) then validate Theorem 2.

VI. CONCLUSIONS

In case there is a true parameter vector, i.e. a system in
the model set, then the true parameter vector was proved to
be in the set of global convergence points of (31). It was
also explained why a proof of local convergence remains
challenging. A numerical example was therefore used to
assess the local convergence. A local stability analysis of
(31), and refined algorithms remain open for future research.
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[14] L. Ljung and T. Söderström, Theory and Practice of Recursive
Identification. Cambridge, MA: MIT Press, 1983.

[15] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control
Systems. New York, NY: Springer, 1990.

[16] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle,
N. Ozay, H. Peng and P. Tabuada, “Correct-by-construction adaptive
cruise control: two approaches”, IEEE Trans. Contr. Systems Tech.,
vol. 24, no. 4, pp. 1294-1307, 2016.
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APPENDIX

A. Outline of the proof of Theorem 1

To prove Theorem 1, it is first needed to re-write (31) as
the general algorithm of [12], by mapping all variables of
(31) to those of [12]. Thereafter the conditions D1, D2, M1-
M5, G1, A1, A2, S1 and S2 need to be proved to imply those
of the theorems of [12]. This proves Theorem 1. Towards this
end, the detailed proof of convergence of the related open
access paper [25] is used as a freely downloadable reference,
to obtain a proof within the 8 page limitation of this paper.

B. Proof of Theorem 1

Appendix A of [25] reviews the general algorithm and
the results proved for it in [12]. The parts that are relevant
here appear in Appendix B of [25]. Variables of the general
algorithm of [12] are denoted with a ,̌ exactly as in [25].

1) Algorithm mapping: The projection algorithm is first
included in the general algorithm with an indicator function,
as in equation (B1) of [25]. The dimension of the indicator
function is extended here to include the delay range of (24).

The mapping of variables between (31) and the general
algorithm of [12] are x̌(t) = θse(t), φ̌(t) = η

s(t), γ(t) = 1
t ,

and ě(t+ 1) = z̄(t+ Ts) = (ūT (t+ TS) w̄T (t+ TS)), as
in Lemma 4 and (B5) of [25].

The combined state vector ηs(t) of (31) is constructed
next. Due to the shifting of (27), the state x̂s

0(t) is first
included in the vector ηs(t), thereby also including the
scaling that is not in [23], [25]. Referring to D2, the shifted
states x̂s

m(t), m = 1, ...,M are then included in ηs(t)
by application of multiple delay lines in the general state
model in [12], [25]. This procedure is repeated for the matrix
gradients Ψs

S,m(t) after vectorization of the matrix states.
Using M4, M5 and S2 of the present paper, ηs(t) is then
augmented with the input state, noise state, output state,
input signal and noise signal, to define the counterpart to
(B4) of [25], which includes (x̂s

m(t))T , (vec(ΨS,m(t)))T ,
m = 0, ...,M , xT

ȳ (t), x
T
ū (t), x

T
w̄(t), ū

T (t), and w̄T (t).
The remaining parts of the construction of the right hand

sides of Q(t, x̌(t − 1), φ̌(t − 1)) and g(t; φ̌(t − 1), x̌(t −
1), ě(t)) of the general algorithm are, except for the delay
lines, analogous to the one of the proof of Lemma 4 of [25].
This follows since the output, states and gradients of (31) are
generated by polynomial functions, both here and in [25], cf.
(11), (12), (15), (16), (17), (21), (22) and (23).

This proves that Lemma 4 of [25] holds for (31).
2) Verification of regularity conditions: The regularity

conditions R1-R11 of [25] on the general algorithm can now
be verified for (31).

R1 follows from the saturation in the scaled state and state
gradient recursions of (31), and since D1, M4, M5, S1 and
S2 imply boundedness of the remaining states of η(t), [25].

R2 follows by the same arguments as in [25], since the
states and gradients of the present paper and in [25] are

both generated by polynomials, therefore the differentiability
properties are identical. Since ηs(t) of the present paper
is extended as compared to [25], the difference in the
verification is that there is a need for M+1 state bounds and
M +1 state gradient bounds in the present paper, where the
steps of each bounding computation is the same as in [25].
The multiple bounding leads to the results

∥∥∥∂Q
∂x̌

∥∥∥ ≤ C < ∞

and
∥∥∥∂Q

∂φ̌

∥∥∥ ≤ C < ∞, that verify R2.
R3 follows by the same arguments as in [25], since the

states and gradients of the present paper and in [25] are both
generated by polynomials, and since all signals are bounded
in Ds

M \ ∂Ds
M, by M1, M4, M5 and A2.

R4 is verified by repeated application of the mean value
theorem. As in [25], it is first proved that g(t; φ̌(t−1), x̌(t−
1), ě(t)) is continuously differentiable with respect to φ̌(t−
1) and x̌(t − 1). It is first noted that ηs(t) is formed only
from the state components listed in Appendix B.1 and not the
predicted or system outputs, as seen by comparison with the
right hand side of g(t; φ̌(t−1), x̌(t−1), ě(t)) of Lemma 4 of
[25]. Continuous differentiability therefore follows since the
right hand sides of the state and matrix ODEs are polynomial,
and since the remaining states are formed by asymptotically
stable linear filtering, referring to M4, M5 and S2. As in [25]
the corners of the saturation can be disregarded. The state
equation of the general algorithm is then iterated formally
for a fixed ¯̌x exploiting the mean value theorem, to obtain
a closed form expression as in (B33) of [25]. This result is
bounded, using the projection algorithm, M1 and M5, exactly
as in (B34)-(B36) of [25]. This proves R4.

R5 is proved by again noting that ηs(t) is generated by
iteration using the right hand side of g(t; φ̌(t − 1), x̌(t −
1), ě(t)) of Lemma 4 of [25]. R5 therefore follows as in
Appendix 4A of [14], cf. [25].

R6 treats the existence and details of the average updating
directions, exploiting the fact that the dependence of the
projection algorithm disappears for interior points of Ds

M.
This follows since the saturation, G1, M1, M2 and M3 imply
an updating rate of (31) that tends to 0 when t → ∞. For
fixed θse ∈ Ds

M \ ∂Ds
M the indicator function will then

always equal 1, t > t0, t0 < ∞ and R6 follows, see [25].
R7 follows as in [25] since also here {ū(t) w̄(t)} is a

set of i.i.d. random variables.
R8-R11 follow by G1 and evaluation of γ(t) = 1/t.
This proves that Lemma 5 of [25] holds for (31).
3) The boundedness condition: The boundedness condi-

tion is proved exactly as in [25] since all components of
ηs(t) are bounded also in the present paper, cf. R1 above.

4) Concluding the proof of Theorem 1: The validity of
Lemma 4 of [25] proved in Appendix B.1 for (31), shows
that (31) can be written as the general algorithm of [12].
Lemma 5 of [25] proved in Appendix B.2 for (31) proves
that D1, D2, M1-M5, G1, A1, A2, S1 and S2 imply that
Lemma 2 of [25] holds for (31). As proved in Appendix B.3
the boundedness condition of Lemma 2 of [25] is fulfilled
for (31). A comparison of the general algorithm of [12], [25]
and R6, with (31) and A2 proves Theorem 1. �
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