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Abstract— Under the umbrella of non-cooperative game the-
ory, we formulate a transactive energy framework to model and
control energy communities comprised of heterogeneous agents
including (yet not limited to) prosumers, energy storage systems,
and energy retailers. The underlying control task is defined
as a generalized Nash equilibrium problem (GNEP), which
must be solved in a distributed fashion. To solve the GNEP,
we formulate a Gauss-Seidel-type alternating direction method
of multipliers algorithm, which is guaranteed to converge under
strongly monotone pseudo-gradient mappings. As such, we
provide sufficient conditions on the private cost and energy
pricing functions of the community members, so that the strong
monotonicity of the overall pseudo-gradient is ensured. Finally,
the proposed framework and the effectiveness of the solution
method are illustrated through a numerical simulation.

I. INTRODUCTION

As the advent of distributed energy resource technologies
has increased the independence of grid actors from central
power providers [1], the problem of efficiently controlling
the overall operational apparatus has not yet thoroughly been
solved [2]. Renewable energy sources, such as photovoltaic,
eolic, and hydropower, have opened up the path to dynamic
energy communities, whose members (nodes) are not merely
passive loads, but active agents capable of steering the
dynamics of the energy market, e.g., prosumers and energy
storage systems (ESSs) [3]. Given that market dynamics
often stimulate selfish behaviours, the community members
can be modelled as non-cooperative agents characterized
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by private objectives and operational constraints, which are
tightly coupled to the decisions of the remaining actors.
Therefore, non-cooperative game theory [4] is a powerful
tool to model, design, and analyze energy communities,
and the concept of generalized Nash equilibrium (GNE)
[5] yields a reasonable solution for the underlying multi-
agent decision-making task. Furthermore, the modern archi-
tecture of energy communities, whose members are often
geographically distant, calls for non-centralized algorithmic
approaches, able to take over the limitations of centralized
frameworks, such as low scalability and privacy weaknesses.

The problem of distributed GNE computation in multi-
agent systems has recently received significant attention
[6], [7], [8], [9], and its role in energy communities has
been studied both from the classical and evolutionary game
theoretical perspectives [10], [11], [12]. In fact, in our
previous work [13], we formulate the control task of the
energy community as a GNE problem (GNEP), where the
agents’ decisions correspond to energy transactions between
prosumers, ESSs, and a single energy retailer (ER). Nonethe-
less, the modelling in [13] only considers inter-agent cou-
plings through the constraints and not through the private
cost functions of the community members, and the allowed
energy transactions are ruled by a particular bipartite graph
topology.

Motivated by these previous works, in this paper, we
extend the framework in [13] to a more general energy mar-
ket setup, where the community members have private cost
functions coupled with each other through the monetary price
at which each member sells its energy. Besides, these energy
prices are allowed to be dependent on aggregate demands,
thus coupling the decisions of multiple community members.
Moreover, the inter-agent energy transactions and communi-
cation are ruled by an arbitrarily connected and undirected
graph, and we take in the (multiple) energy retailers as active
participants in the energy community, characterizing them
with their own objectives to pursue selfishly. To solve the
underlying GNEP in a distributed fashion, we leverage the
results in [9] to formulate a Gauss-Seidel-type alternating
direction method of multipliers (ADMM) distributed GNE
computation algorithm. Note that, although Gauss-Seidel-
type methods tend to converge faster than Jacobi-type ones
[9], [8], the former requires ordered sequential computations
which would not suitably scale for large energy communities.
To overcome such a drawback, we reformulate the underlying
GNEP in an equivalent form, and we solve it following a two-
block iterative process, i.e., energy transactions computation
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and energy prices update, where each block can be executed
in parallel over the energy community regardless of the
total number of members. ADMM-based decompositions
have found popularity in the game-theoretical context, as
they provide a solid baseline for developing decentralized
equilibrium seeking schemas [14]. Finally, as the main
technical contribution, we provide sufficient conditions on
the private cost and energy pricing functions to ensure the
strong monotonicity of the overall pseudo-gradient mapping,
which is in turn a sufficient condition to guarantee the
convergence of the considered ADMM-type algorithm. As
such, the provided sufficient conditions are useful in the
management of energy communities, as the cost and pricing
functions can be designed to ensure convergence to a GNE.

Notations: Let R, R≥0, R>0 denote the sets of real, non-
negative real, and positive real numbers, respectively. Let
Z≥a be the set of integers not less than a ∈ Z≥1, and we let
B = {0, 1}. Given a set S = {1, 2, . . . , N}, col(·)i∈S and
diag(·)i∈S denote the column stack and the (block) diagonal
stack operations ordered by the set S, respectively, where
the natural ordering of the elements in S is preserved in the
concatenations. On the other hand, ϕŜ : Ŝ → {1, 2, . . . , |Ŝ|}
yields the relative natural ordering of the elements of Ŝ.
Namely, if S = {1, 2, 3, 4, 5} and Ŝ = {2, 4, 5}, then
ϕŜ(2) = 1, ϕŜ(4) = 2, and ϕŜ(5) = 3. Given a symmetric
matrix S, we let λmax (S) denote the maximum eigenvalue
of S, and S ⪰ 0 denotes that S is positive semi-definite.
Throughout the paper, ∥ · ∥ and ∥ · ∥∞ denote the Euclidean
and infinity norms, respectively, and | · | yields the cardi-
nality when applied to a set. Operators ∇ and D yield the
gradient and Jacobian matrix when applied to differentiable
scalar-valued and vector-valued functions, respectively (we
view gradients as column vectors by default). Besides, a
subindex is included to ∇ and D when specifying partial
differentiation. Given a scalar-valued function f : D → R
and some θ ∈ R>0, we say that f(·) is θ-strongly convex
if it holds that g(z) = f(z)− (θ/2)z⊤z is convex for every
z ∈ D. Given a vector-valued function h : D → Rm with
domain D ⊆ Rm, we say that h(·) is L-Lipschitz continuous
if there exists some L ∈ R>0 such that ∥h(z)− h (z̃)∥ ≤
L ∥z− z̃∥, for all z, z̃ ∈ D; we say that h(·) is monotone
if (h(z)− h (z̃))

⊤
(z− z̃) ≥ 0, for all z, z̃ ∈ D; and

we say that h(·) is µ-strongly monotone if there exists a
µ ∈ R>0 such that (h(z)− h (z̃))

⊤
(z− z̃) ≥ µ ∥z− z̃∥2,

for all z, z̃ ∈ D. If h(·) is continuously differentiable, then a
sufficient and necessary condition for µ-strong monotonicity
is that Dh(z) + Dh(z)⊤ − 2µIm ⪰ 0, for all z ∈ D.
Throughout the paper, In is the n × n identity matrix, 1n

(0n) is the column vector with n ones (zeros), 0n×m is
the n × m matrix of zeros, and ⊗ denotes the Kronecker
product. Finally, U [a, b] is the uniform random distribution
over [a, b] ⊂ R.

II. PROBLEM STATEMENT

Consider an energy community with N ∈ Z≥2 agents
indexed by the set A = {1, 2, . . . , N}. The interaction
and communication among agents is characterized by the

connected1 and undirected graph G = (A, E), where the
agents correspond to the nodes, and E ⊂ A × A is the
set of edges (by convention we assume that there are no
self-loops, i.e., (i, i) /∈ E , for all i ∈ A). If (i, j) ∈ E ,
then we say that agents i, j ∈ A are neighbors and thus
can interact and communicate with each other, and since G
is undirected, (i, j) ∈ E ⇔ (j, i) ∈ E . Hence, we denote
Ai = {j ∈ A : (i, j) ∈ E} as the set of neighbors of agent i,
and we let Ni = |Ai| (Ni ≥ 1 due to the connectivity of G).

In the considered energy community, every agent i ∈ A
is allowed to trade energy with its neighbors over T ∈ Z≥1

ordered time slots t1 < t2 < · · · < tT , where tk represents a
generic time slot and k ∈ T = {1, 2, . . . , T}. As such, for all
(i, j, t) ∈ A×Ai×T , let x̂ijt ∈ R≥0 denote the energy that
agent i buys from agent j at time t, let x̌ijt ∈ R≥0 denote
the energy that agent i sells to agent j at time t, and let
pijt ∈ R≥0 denote the monetary price at which agent i sells
its energy to agent j at time t. Clearly, for an energy trade to
be attainable, it is necessary that x̂ijt = x̌jit and x̌ijt = x̂jit,
i.e., agents must agree on their energy exchanges. Let z be
a placeholder notation for either x̂, x̌, or p, and define the
vectorization given by

zij = col (zijt)t∈T
zi = col (zij)j∈Ai

z = col (zi)i∈A
z−i = col (zji)j∈Ai

(1)

where ni = TNi and n =
∑

i∈A ni. That is, the vectors
x̂ij , x̌ij , pij , x̂i, x̌i, pi, x̂, x̌, p, x̂−i, x̌−i, and p−i, are
all constructed following the ordering in (1). Namely, x̂i

(x̌i) yields the energy that agent i buys from (sells to) its
neighbors, x̂−i (x̌−i) yields the energy that the neighbors of
agent i buy from (sell to) agent i, and p−i yields the energy
selling prices that the neighbors of agent i offer to agent
i. Under the considered framework, every agent i ∈ A is
thus responsible for computing its own decision (x̂i, x̌i,pi)
subject to the constraints given by

(x̂i, x̌i) ∈ Xi (2a)
x̂i = x̌−i (2b)
x̌i = x̂−i (2c)
pi ∈ Rni

≥0. (2d)

Here, Xi ⊆ R2ni

≥0 defines the local energy-related constraint
set of agent i, and the constraints in (2b)-(2c) impose
an agreement between neighbouring agents regarding their
energy trades. Therefore, the decision of agent i is feasible
only if (x̂i, x̌i,pi) ∈ Ωi (x̂−i, x̌−i)× Rni

≥0, with

Ωi (x̂−i, x̌−i) =

{
(x̂i, x̌i) ∈ Xi :

x̂i = x̌−i

x̌i = x̂−i

}
.

Consequently, the set of feasible collective decisions for the
entire energy community is given by Ω × Rn

≥0, where Ω ={
(x̂, x̌) ∈

∏
i∈A Xi : x̂ = Bx̌

}
. Here, B = col (Bi)i∈A ∈

Bn×n, and Bi ∈ Bni×n is the (unique) matrix that satisfies
z−i = Biz, for any placeholder z ∈ {x̂, x̌, p} and all i ∈ A.

1If the graph were disconnected, then each connected component could
be treated as a separate energy community.
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More precisely, Bi has the block structure given by Bi =[
Bi1 Bi2 · · · BiN

]
, where

Bij =

{
0ni×nj

, if j /∈ Ai

Wij ⊗ IT , if j ∈ Ai,

and Wij ∈ BNi×Nj is the matrix that has a 1 at the (row =
ϕAi

(j), column = ϕAj
(i)) position and a 0 elsewhere, i.e.,

Wij = eϕAi
(j)e

⊤
ϕAj

(i), where ek is k-th column of In.
Based on the considered framework, every agent i ∈ A

computes its own decision (x̂i, x̌i,pi) to simultaneously
solve the optimization problems (OPs) given by

min
x̂i,x̌i

fi (x̂i, x̌i,pi,p−i) s.t. (x̂i, x̌i) ∈ Ωi (x̂−i, x̌−i) (3a)

min
pi

ρi
2
∥pi − gi (x̂−i)∥2 s.t. pi ∈ Rni . (3b)

Here, fi : R4ni

≥0 → R is the local cost function of agent i,
ρi ∈ R>0 is a weighting parameter, and gi : Rni

≥0 → Rni

≥0 is
the (non-negative) local pricing function of agent i. Note that
the unique solution of the OP in (3b) is pi = gi (x̂−i) and the
constraint pi ∈ Rni

≥0 is enforced by the co-domain of gi(·)
(we define such a computation as an OP for convenience).
Hence, solving the OP in (3a) yields the energy transactions
that agent i should execute to minimize its operational costs
fi(·, ·, ·, ·), whilst solving the OP in (3b) yields the energy-
selling prices of agent i. Besides, notice that for a single
agent i the OP in (3a) is coupled to the OP in (3b) through pi,
while for multiple agents the OPs in (3) are coupled to each
other through x̂−i, x̌−i, and p−i. As such, simultaneously
solving the OPs in (3) for every agent i ∈ A is equivalent
to solving the GNEP stated in Definition 1.

Definition 1: The GNEP for the energy community is to
compute a collective decision (x̂∗, x̌∗,p∗) ∈ Ω× Rn

≥0 such
that

fi
(
x̂∗
i , x̌

∗
i ,p

∗
i ,p

∗
−i

)
≤ fi

(
x̂i, x̌i,p

∗
i ,p

∗
−i

)∥∥p∗
i − gi

(
x̂∗
−i

)∥∥2 ≤ ∥∥pi − gi

(
x̂∗
−i

)∥∥2 ,
for all (x̂i, x̌i) ∈ Ωi

(
x̂∗
−i, x̌

∗
−i

)
, all pi ∈ Rni

≥0, and all i ∈ A.
Such a collective decision (x̂∗, x̌∗,p∗) is termed as a GNE
for the energy community.

Namely, the GNEP is the task of computing a GNE, which
is a collective (feasible) decision (x̂∗, x̌∗,p∗) where no agent
can further decrease its local costs by unilaterally deviating
from the GNE. In that sense, a GNE is a self-enforceable
agreement among the energy community. In this paper, we
focus on the so-called variational GNE (vGNE), which is a
particular type of GNE that can be linked to the solution of
an underlying variational inequality [15].

Definition 2: A collective decision (x̂∗, x̌∗,p∗) is a
vGNE if (x̂∗, x̌∗,p∗) ∈ SOL

(
Ω× Rn

≥0,q(·, ·, ·)
)
, where

SOL
(
Ω× Rn

≥0,q(·, ·, ·)
)

denotes the set of solutions of the
variational inequality VI

(
Ω× Rn

≥0,q(·, ·, ·)
)

defined as: find
(x̂∗, x̌∗,p∗) ∈ Ω× Rn

≥0 such thatx̂− x̂∗

x̌− x̌∗

p− p∗

⊤

q (x̂∗, x̌∗,p∗) ≥ 0, ∀ (x̂, x̌,p) ∈ Ω× Rn
≥0.

Standing Assumption 1: For all i ∈ A, the func-
tions fi(·, ·, ·, ·) and gi(·) are continuously differen-
tiable, fi(·, ·,pi,p−i) is (jointly) convex for every fixed
(pi,p−i), and ∇x̂i

fi (x̂i, x̌i, ·, ·) and ∇x̌i
fi (x̂i, x̌i, ·, ·) are

L̂i-Lipschitz continuous and Ľi-Lipschitz continuous for
every fixed (x̂i, x̌i), respectively. Moreover, the pseudo-
gradient

q (x̂, x̌,p) =

 col (∇x̂i
fi (x̂i, x̌i,pi,p−i))i∈A

col (∇x̌i
fi (x̂i, x̌i,pi,p−i))i∈A

col (ρi (pi − gi(x̂−i)))i∈A

 ∈ R3n

is µ-strongly monotone. Finally, Ω is a closed convex set
with a non-empty relative interior.

Under Standing Assumption 1, it follows that there exists
a unique vGNE for the considered energy community [15,
Theorem 2.3.3]. Besides, from [5, Theorem 3.9] it holds that
every vGNE is also a GNE (yet the converse is not true in
general). Consequently, computing a vGNE is sufficient to
solve the GNEP of Definition 1.

Furthermore, in Proposition 1 we provide sufficient con-
ditions on the functions fi(·, ·, ·, ·) and gi(·) to guarantee the
µ-strong monotonicity of the pseudo-gradient q(·, ·, ·).

Proposition 1: Suppose that every agent i ∈ A has
functions fi(·, ·, ·, ·) and gi(·) of the form

fi (x̂i, x̌i,pi,p−i) = ψi (x̂i, x̌i) + p⊤
−ix̂i − p⊤

i x̌i

gi (x̂−i) = Qix̂−i + ri,
(4)

where ψi : R2ni

≥0 → R is twice continuously differentiable
and θi-strongly convex in all its arguments, Qi ∈ Rni×ni

≥0 ,
and ri ∈ Rni

≥0. Moreover, denote θ = mini∈A θi and λ =

maxi∈A λmax

(
Q⊤

i Qi

)
, and let ρi = ρ ∈ R>0, for all i ∈ A.

If there exists a µ ∈ (0, ρ) such that

θ − µ ≥
max

{
2, ρ2λ̄

}
ρ− µ

, (5)

then the pseudo-gradient q(·, ·, ·) is µ-strongly monotone2.
We remark that (4) encompasses objectives and pricing

schemas as in [11], where the former collects the local op-
erational costs, while the latter includes aggregative pricing
functions as illustrated in Section IV. Besides, (5) can be
verified by solving a quadratic inequality.

We now proceed to describe the three types of agents
we consider in the energy community: ERs, prosumers, and
ESSs. Nonetheless, we highlight that other types of agents
might also fit the considered framework, e.g., plug-in electric
vehicles, and energy hubs. The number of agents of each
type and the topology of the graph G are arbitrary as long as
the non-emptiness of the feasible set Ω×Rn

≥0 is guaranteed
according to Standing Assumption 1.

Energy Retailers

ERs constitute the traditional power providers in cen-
tralized distribution networks, being mainly characterized
by thermal-based production plants, and thus able to serve

2For the sake of brevity, the proof of Proposition 1 is available at https:
//fastupload.io/8ZPeUai6kdMyliE/file
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medium-to-large districts. Their presence is still relevant in
the modern energy community since they can provide almost-
steady power throughput, and hence compensate for the in-
termittent generation by renewable-based sources. Therefore,
ERs are active grid agents, collected in the set R ⊂ A,
so that each ER i ∈ R is characterized by an outward
energy availability ǎit ∈ R≥0, i.e., the maximum aggregate
energy that can be sold to the agents in Ai at time t ∈ T ,
and a maximum inward energy availability âit ∈ R≥0, i.e.,
the maximum aggregate energy that can be absorbed from
neighbouring agents in Ai at time t ∈ T . As such, each ER’s
local constraints set is given by

Xi =

(x̂i, x̌i) ∈ R2ni

≥0 :
I2 ⊗ 1⊤

Ni
⊗ IT

[
x̌i

x̂i

]
≤
[
ǎi
âi

]
x̂ijt ≤ x̂ijt, x̌ijt ≤ x̌ijt
∀j ∈ Ai, t ∈ T

 ,

(6)
for all i ∈ R, where x̂ijt and x̌ijt represent local energy-
transmission limits for the i-th ESS, âi := col(âit)t∈T and
ǎi := col(ǎit)t∈T . Namely, the constraints set in (6) ensure
that the aggregate energy inflow and outflow of an ER do
not exceed its respective availability.

Prosumers

The backbone of the modern energy community is com-
posed of prosumers, which are grid agents equipped with
their own means of generation in addition to their local
energy demand. Often, those private sources are renewable,
e.g., eolic, photovoltaic, or hydroelectric, with a gross power
production capable of fulfilling domestic energy require-
ments for industrial appliances. Hence, let us indicate the
prosumer set with P ⊂ A, with each i ∈ P being charac-
terized by the difference between its local energy generation
and demand δit ∈ [δi, δi] ⊂ R. Namely, for δit = 0, the i-
th prosumer is capable of exact self-sustenance, while for
δit > 0 and δit < 0, the i-th prosumer has an energy
deficit and surplus, respectively. Therefore, δi and δi indicate
the maximum demand and generation that prosumer i can
attain, respectively. For every prosumer, its interactions with
its neighbours aim at ensuring its overall energy balance.
Therefore, the i-th prosumer’s local constraints set is defined
as

Xi =

(x̂i, x̌i) ∈ R2ni

≥0 :
1⊤
Ni
⊗ IT (x̌i − x̂i) = δi

x̂ijt ≤ x̂ijt, x̌ijt ≤ x̌ijt
∀j ∈ Ai, t ∈ T

 ,

with δi := col(δit)t∈T , and x̂ijt, x̌ijt ∈ R>0, for all i ∈ P .
Here, x̂ijt and x̌ijt represent local energy-transmission limits
for prosumer i.

Energy Storage Systems

To take advantage of peak-generation periods, it is con-
venient to equip the grid with ESSs. The task of ESSs is
to provide energy reserves during low-generation time win-
dows, e.g., at night when referring to photovoltaic systems.

Thus, let us define S ⊂ A as the set of ESSs, with each
i ∈ S characterized by a first-order dynamics of the form3

si(t+1) = αisit +
∑
j∈Ai

(
η̂ix̂ijt −

1

η̌i
x̌ijt

)
, (7)

where sit ∈ R≥0 is the total stored energy in the i-th ESS at
time t, and αi, η̂i, η̌i ∈ (0, 1) are the leakage coefficient, the
charging efficiency, and the discharging efficiency, respec-
tively. Equivalently, given an initial stored energy si0 ∈ R≥0,
and defining x̂ij0 = x̌ij0 = 0, it follows that

sit (x̂i, x̌i) = αt
isi0 +

t∑
τ=1

αt−τ
i

∑
j∈Ai

(
η̂ix̂ijτ −

1

η̌i
x̌ijτ

)
.

In fact, for all times t ∈ T , it is required that 0 ≤
sit (x̂i, x̌i) ≤ si, where si ∈ R>0 is the maximum storage
capacity of the i-th ESS. Therefore, the local constraints set
of the i-th ESS is

Xi =

(x̂i, x̌i) ∈ R2ni

≥0 :
0 ≤ sit(x̂i, x̌i) ≤ si
x̂ijt ≤ x̂ijt, x̌ijt ≤ x̌ijt
∀j ∈ Ai, t ∈ T

 ,

III. THE PROPOSED APPROACH

To state our proposed approach to solve the GNEP in
Definition 1, we reformulate the OPs in (3) in an equivalent
yet more convenient form. For all (i, j, t) ∈ A × Ai × T ,
let yijt ∈ R be an auxiliary variable to be computed by
agent i, and define yij , yi, y, and y−i according to (1).
By introducing constraint x̌ijt = yijt, constraints (2b)-(2c)
can be equivalently stated as the four constraints: x̂i = y−i,
x̌−i = y−i, x̌i = yi, and x̂−i = yi. As such, the decision
of each agent i ∈ A now regards the tuple (x̂i, x̌i,yi,pi) ∈
Ω̃i (y−i)× Φi (x̌i)× Rni

≥0, with

Ω̃i (y−i) = {(x̂i, x̌i) ∈ Xi : x̂i = y−i}
Φi (x̌i) = {yi ∈ Rni : yi = x̌i} .

On the other hand, the feasible set regarding such augmented
decisions for the entire energy community is given by Ψ ×
Rn

≥0, where

Ψ =

{
(x̂, x̌,y) ∈

∏
i∈A
Xi × Rn :

x̂ = By
x̌ = y

}
,

and by Standing Assumption 1 it holds that Ψ is a closed
convex set with non-empty relative interior.

For every i ∈ A, the OPs in (3) can then be equivalently
redefined as

min
x̂i,x̌i

fi (x̂i, x̌i,pi,p−i) s.t. (x̂i, x̌i) ∈ Ω̃i (y−i) (8a)

min
yi,pi

ρi
2
∥pi − gi (x̂−i)∥2 s.t. (yi,pi) ∈ Φi (x̌i)× Rni .

(8b)

Here, recall that the constraint pi ∈ Rni

≥0 is enforced by
the co-domain of gi(·). Note that in contrast to the OP in

3Note that higher-order dynamics for sit might be used, as long as the
resulting Xi is closed and convex.
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(3a), for a given agent i, the OP in (8a) is decoupled from
the decisions x̂−i and x̌−i of other agents, i.e., the inter-
agent coupling in (8a) is only due to variables p−i and y−i.
Therefore, simultaneously solving (8a) for all i and under a
fixed pair (y′,p′) is equivalent to solving the OP given by

min
x̂,x̌

∑
i∈A

fi
(
x̂i, x̌i,p

′
i,p

′
−i

)
s.t. (x̂, x̌) ∈

∏
i∈A

Ω̃i

(
y′
−i

)
,

(9)
which is separable over A. Similarly, the inter-agent cou-
pling in (8b) is only obtained through variable x̂−i. Thus,
simultaneously solving (8b) for all i and under a fixed pair
(x̂′, x̌′) is equivalent to solving the OP given by

min
y,p

∑
i∈A

ρi
2

∥∥pi − gi

(
x̂′
−i

)∥∥2 s.t. (y,p) ∈
∏
i∈A

Φi (x̌
′
i)×Rni ,

(10)
which is separable over A as well. Based on these obser-
vations, we remark that Gauss-Seidel ADMM-type GNEP
solving methods [9] can be applied to the OPs in (8)
following a three-block iterative scheme rather than iterating
over the total number of agents. Consequently, in this paper,
we adapt [9, Algorithm 4.1] to our framework. Note that [9,
Algorithm 4.1] enjoys the simple structure of the celebrated
ADMM algorithm, and as a Gauss-Seidel-type method it
tends to converge faster than its Jacobi-type counterpart [8].

For every agent i ∈ A, let ûi ∈ Rni and ǔi ∈ Rni be the
Lagrange multipliers associated to the coupling constraints
x̂i = y−i and x̌i = yi, respectively. Besides, define û, ǔ ∈
Rn using the ordering in (1). Let k ∈ Z≥0 denote the
iteration index, and let x̂k, x̌k, yk, pk, ûk, and ǔk, denote
the values of the corresponding optimization variables at
iteration k. Applying [9, Algorithm 4.1] to (9)-(10) yields
the (sequential) updates given by

(
x̂k+1, x̌k+1

)
= argmin

(x̂,x̌)∈X

{∑
i∈A

fi
(
x̂i, x̌i,p

k
i ,p

k
−i

)
+

[
ûk

ǔk

]⊤ [
x̂
x̌

]
+
γ1
2

∥∥∥∥[x̂− x̂k

x̌− x̌k

]∥∥∥∥2 + β

2

∥∥∥∥[x̂−Byk

x̌− yk

]∥∥∥∥2
}
(11a)

(
yk+1,pk+1

)
= argmin

(y,p)∈R2n

{∑
i∈A

ρi
2

∥∥pi − gi

(
x̂k+1
−i

)∥∥2−
[
ûk

ǔk

]⊤ [
By
y

]
+
γ2
2

∥∥∥∥[y − yk

p− pk

]∥∥∥∥2 + β

2

∥∥∥∥[x̂k+1 −By
x̌k+1 − y

]∥∥∥∥2
}

(11b)[
ûk+1

ǔk+1

]
=

[
ûk

ǔk

]
+ β

[
x̂k+1 −Byk+1

x̌k+1 − yk+1

]
, (11c)

where X =
∏

i∈A Xi, and γ1, γ2, β ∈ R>0 are constant
parameters of the algorithm. Now, note that (11b) has the
closed-form solution given by

yk+1 =
1

γ2 + 2β

(
βBx̂k+1 + βx̌k+1 + γ2y

k +Bûk + ǔk
)

pk+1 = (P+ γ2In)
−1

(
col

(
ρigi

(
x̂k+1
−i

))
i∈A + γ2p

k
)
,

Algorithm 1: ADMM Distributed GNE computation

1 Set parameters γ1, γ2, β ∈ R>0.
2 Initialize x̂0

i , x̌
0
i ,y

0
i ,p

0
i , û

0
i , ǔ

0
i ∈ Rni

≥0, ∀i ∈ A.
3 Every agent i ∈ A receives yk

−i, p
k
−i, and computes:(

x̂k+1
i , x̌k+1

i

)
= argmin

(x̂i,x̌i)∈Xi

{
hi

(
x̂i, x̌i,v

k
i

)}
4 Every agent i ∈ A receives x̂k+1

−i , x̌k+1
−i , ûk

−i, ǔ
k
−i,

and computes:

yk+1
i =

βx̂k+1
−i + βx̌k+1

i + γ2y
k
i + ûk

−i + ǔk
i

γ2 + 2β

pk+1
i =

ρigi

(
x̂k+1
−i

)
+ γ2p

k
i

ρi + γ2

ûk+1
i = ûk

i + β
(
x̂k+1
i − ωi

)
ǔk+1
i = ǔk

i + β
(
x̌k+1
i − yk+1

i

)
,

with ωi =
βx̂k+1

i +βx̌k+1
−i +γ2y

k
−i+ûk

i +ǔk
−i

γ2+2β .
5 If the termination criterion is met, then stop.

Otherwise, update k ← k+1 and go back to Step 3.

with P = diag (ρiIni
)i∈A ∈ Rn×n

≥0 . Thus, using the facts
that Bz = col (z−i)i∈A, B = B⊤, and B⊤B = In, the
updates in (11) yield our proposed Algorithm 1, where we
have defined vk

i :=
(
x̂k
i , x̌

k
i ,y

k
i ,y

k
−i,p

k
i ,p

k
−i, û

k
i , ǔ

k
i

)
and

hi
(
x̂i, x̌i,v

k
i

)
= fi

(
x̂i, x̌i,p

k
i ,p

k
−i

)
+

[
ûk
i

ǔk
i

]⊤ [
x̂i

x̌i

]
+

γ1
2

∥∥∥∥[ x̂i − x̂k
i

x̌i − x̌k
i

]∥∥∥∥2 + β

2

∥∥∥∥[ x̂i − yk
−i

x̌i − yk
i

]∥∥∥∥2 .
The effectiveness of Algorithm 1 is certified by Corollary

1, which provides sufficient conditions to guarantee its
asymptotic convergence to a GNE of the energy community.

Corollary 1: If γ1, γ2, β ∈ R>0 and γ2 satifies that
γ2 > (1/µ)

(
4β2 +

∑
i∈A

(
L̂2
i + Ľ2

i

))
, then the iterations

of Algorithm 1 converge strongly to the unique vGNE of
the GNEP of Definition 1. That is, as k →∞, it holds that(
x̂k, x̌k,pk

)
→ (x̂∗, x̌∗,p∗), where (x̂∗, x̌∗,p∗) is a GNE4.

IV. AN ILLUSTRATIVE NUMERICAL SIMULATION

In this section, we illustrate the proposed framework
through a numerical simulation over a 24 hours period, i.e.,
T = 24. As such, consider an energy community comprised
of 2 ERs, 9 prosumers, and 3 ESSs, i.e., N = 14. Without
loss of generality, we set

fi (x̂i, x̌i,pi,p−i) = χi ∥x̂i + x̌i∥2 + p⊤
−ix̂i − p⊤

i x̌i

gi (x̂−i) =
νi
Ni

1Ni ⊗ col

∑
j∈Ai

x̂jit


t∈T

,

4For the sake of brevity, the proof of Corollary 1 is available at https:
//fastupload.io/8ZPeUai6kdMyliE/file
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Fig. 1. Evolution of the selected performance metrics over 103 iterations
of Algorithm 1. Without loss of generality, the initial condition is taken as
x̂0
i , x̌

0
i ,y

0
i ,p

0
i , û

0
i , ǔ

0
i = 0ni , for all i ∈ A.

for all i ∈ A. Here, χi, νi ∈ R>0 are constant parameters.
Note that fi(·, ·, ·, ·) regards quadratic energy-transmission-
related costs, weighted by χi, while the considered pricing
function gi(·) corresponds to a linear map on the aver-
aged aggregate energy request of the neighbors of agent i,
weighted by νi. In fact, such a pricing function can be rewrit-
ten as gi(x̂−i) = Qix̂−i, with Qi = (νi/Ni)

(
1Ni1

⊤
Ni

)
⊗IT .

Thus, Q⊤
i Qi = νiQi, and λmax

(
Q⊤

i Qi

)
= ν2i . Hence,

the considered functions fit the setup of Proposition 1 with
θ = 2mini∈A χi and λ = maxi∈A ν

2
i . For simplicity, for

our numerical experiments we set ρi = 1, and we randomly
sample χi ∼ U [1.5, 2] and νi ∼ U [0.5, 1], for all i ∈ A.
Therefore, (5) simplifies to θ ≥ µ+(2/(1− µ)). Since θ ≥ 3,
it follows that (5) is satisfied with µ = 0.26. Finally, note that
for the considered functions, it follows that L̂i = Ľi = 1.

Regarding the graph G, we consider a random undirected
topology plus a star graph with an ER as the central node.
For the agents’ parameters, we sample x̂ijt, x̌ijt ∼ U [4, 6]
kWh, âit, ǎit ∼ U [50, 80] kWh, δit = Git − Dit where
G ∼ N [T/2, σi] kWh represents the energy generation
(with σi ∼ U [0, 2]), and D ∼ U [0, 2] kWh represents the
demand, si ∼ U [20, 30] kWh, sij0 ∼ U [0, si/Ni] kWh, and
αi, η̂i, η̌i ∼ U [0.95, 0.98], for all the corresponding i ∈ A,
j ∈ Ai, and t ∈ T . Nonetheless, we numerically check that
Ω is non-empty so that Standing Assumption 1 holds. More-
over, although the simulation data is synthetic, Git follows
the typical bell-shaped curve of photovoltaic generation so
that the obtained results follow plausible trends.

Finally, regarding the parameters of Algorithm 1, we let
γ1 = β = 0.5, and we set γ2 = 112. Thus, the sufficient
condition of Corollary 1 is satisfied and the convergence of
Algorithm 1 to the unique GNE of the energy community is
guaranteed. In fact, Fig. 1 depicts the evolution of the per-
formance metrics m1[k] =

∥∥x̂k −Bx̌k
∥∥
∞ /

∥∥x̂1 −Bx̌1
∥∥
∞,

m2[k] = ∥ck − c∗∥∞/∥c1 − c∗∥∞, where c = col(x̂, x̌,p)
and c∗ = col(x̂∗, x̌∗,p∗) is the unique GNE of the energy
community. Namely, metric m1[k] measures the satisfaction
of the agreement constraints in (2b)-(2c), for all i ∈ A, while
m2[k] yields the infinity-norm distance to the GNE (both
metrics are normalized over the first iteration’s results). That
is, if m1[k] = 0, then the computed energy transactions at

iteration k are attainable over the energy community and
if m2[k] = 0, then the computed solution at iteration k is
a GNE for the energy community. As shown, in Fig. 1,
the selected metrics indeed converge asymptotically to 0,
verifying the effectiveness of Algorithm 1.

V. CONCLUDING REMARKS

In this paper, we have formulated an energy transactive
framework to model energy communities comprised of (but
not limited to) prosumers, energy storage systems, and
energy retailers. The underlying control task is formulated
as a so-called generalized Nash equilibrium problem, and
a distributed Gauss-Seidel-type alternating direction method
of multipliers algorithm is devised to solve it. Furthermore,
sufficient conditions on the local cost and energy pricing
functions are provided, so that the convergence of the algo-
rithm is guaranteed. Future work should seek to extend the
framework to even more general energy communities, with
additional optimization variables and subject to uncertainties.
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