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Abstract— This paper studies a manipulator co-design prob-
lem of motors and motions for multiple tasks. To reduce
computational burden and improve scalability as the number
of tasks grows, this paper introduces a distributed co-design
framework to handle the co-design process for all tasks in a
distributed fashion. Moreover, this paper presents a distributed
constrained optimization algorithm, which secures a unified set
of design parameters for all tasks ultimately such that the
total average of motor operation efficiency is optimized and
the design constraints are satisfied across all tasks and motors.
The distributed manner reduces the computational load by
allowing each agent to solve co-design optimization solely for
its designated task. A numerical simulation further verifies the
proposed algorithm.

I. INTRODUCTION

Off-the-shelf robotic manipulators typically have speci-
fied features to meet diverse user needs. These robots are
typically designed to cater to a wide range of tasks, which
implies optimality or sub-optimality for a particular perfor-
mance index. Such an application-oriented and optimization-
based robot design can lead to efficient solutions in terms of
energy usage, cost-effectiveness, and productivity. The robot
design is naturally multidisciplinary, involving structural and
geometric design [1]–[3], battery sizing [4], kinematics [5],
dynamics [2], [6], and control [7], [8]. The design objectives
are also multidisciplinary, including weight [1], [9], energy
consumption [10], task completion time [10], [11], etc.

The process of co-design, which addresses the inter-
dependence and conflicts between subsystems during the
design phase [12], has the potential to mitigate sub-optimal
outcomes that may arise from a design process focused on
individual disciplines. The concept of co-design is prevalent
in numerous applications, such as general robotic module
selection [12], robotic manipulators [1], [7], [13], legged
robots [14]–[16], medical robots [3], soft robots [17], etc. In
particular, [1]–[3] optimizes the structure, inertia, and shape
of a robot. [7] co-designs the drivetrain and joint trajectories
of a manipulator, where the drivetrain is parameterized by
motor shaft length and gearbox ratio. [8] performs co-
design of mechanical plant parameters and optimal feedback
control strategies. [9] optimizes the choice of gearbox, motor
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drive train, and parameters for the manipulator’s links. [10],
[18] perform simultaneous optimization for both trajectory
and controller design. [19] co-optimizes for motions, robot
physical parameters, and motor selection. [20] presents a bi-
level optimization framework to determine the optimal hard-
ware parameters for a legged robot and an energy-efficient
trajectory for a given task, operating at two distinct levels.
Moreover, there has been a growing interest in task-specific
robot co-design derived from high-level user specifications.
Existing work includes co-design of motion and physical
parameters for a single task [1], [2], [7]–[9], [19] and for
multiple tasks [10], [18].

A primary obstacle in robot co-design is the significant
computational load [14]. In practice, robot co-design needs
to consider the specifications of multiple customers at once,
due to the nature of manufacturing. Thus, co-design be-
comes more complicated when multiple objectives must
be considered. To tackle this issue, [10], [18] propose a
centralized bi-level stochastic programming framework for
the co-design under multiple tasks. This framework considers
task versatility by incorporating an overall expected cost
function that accounts for the probability distribution of
task occurrence rates. Specifically, at the outer level, the
robot design is optimized by minimizing the average cost
across all tasks. At the inner level, the robot’s motion is
optimized independently for each task. Such a centralized
framework aggregates information from all tasks and can
pose computational challenges as the number of tasks grows,
no matter whether the design parameters and the motion
are determined simultaneously [3] or sequentially [10], [18].
Different from the centralized bi-level framework above, [21]
proposes a consensus-based distributed bi-level optimization
framework, which cooperatively adjusts the motion from
each agent’s trajectory planner to further optimize an ad-
ditional performance index.

Motivated by the distributed bi-level framework mentioned
earlier, this paper aims to co-design the motions (joint
position and velocity trajectories) and motor design param-
eters for a robotic manipulator with n degree-of-freedom
(DOF) to handle multiple tasks in a distributed fashion. To
achieve this, each task is conceptualized as an agent within a
network. Given a task and arbitrary motor design parameters,
a trajectory of joints’ angular positions and velocities can be
computed by a local trajectory planner that aligns with the
task requirements. Subsequently, a local loss function is used
to measure the efficiency of each agent’s motors based on
their respective trajectory. Due to manufacturing limitations,
a unified set of design parameters is ultimately required to
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Fig. 1. The distributed co-design framework.

fulfill all tasks, thereby optimizing the global average of
each task’s local loss. This requirement of common design
parameters can be posed as a consensus across the network.

Therefore, as illustrated in Fig. 1, this paper introduces a
distributed co-design framework and proposes a distributed
optimization algorithm based on the combination of the
alternating direction method of multipliers (ADMM) and
the augmented Lagrangian method (ALM). The aim is to
compute optimal and unified design parameters, optimizing
the global average of local loss functions in a distributed
and iterative manner to effectively fulfill multiple tasks.
The distributed manner reduces the computational load by
allowing each agent to solve co-design optimization solely
for its designated task. This framework ensures the scalability
of the multiple-task co-design as the number of tasks grows.
The contributions of this paper are summarized as follows:

1) A distributed framework for manipulator co-design of
motors and motions with multiple tasks;

2) A distributed constrained optimization algorithm to
solve the distributed co-design problem.

Notations. The non-negative integer set is denoted by Z+.
For x,y ∈ Rn, x ≤ y indicates element-wise inequality.
Let col{v1, · · · ,va} denote a column stack of elements
v1, · · · ,va, which may be scalars, vectors or matrices, i.e.
col{v1, · · · ,va} ≜

[
v1

⊤ · · · va
⊤]⊤. Let ⊗ denote the

Kronecker product. Let 0n,1n ∈ Rn denote a zero and an
one vector. Let In ∈ Rn×n denote an identity matrix.

II. SYSTEM MODELING

This section introduces the modeling of an arbitrary
surface permanent magnet synchronous motor’s (SPMSM)
dynamics and an arbitrary n-DOF open-chain manipulator
dynamics with n SPMSMs.

A. SPMSM Modeling and Design Parametrization

This subsection presents the dynamical modeling of
SPMSM with several motor design variables. The motor
design variables are summarized in Table I. Fig. 2 further
illustrates the physical meaning of the design variables,
where the axial length l is not shown. Denote an arbitrary
motor’s design variables as

β ≜ col{l, rro, rso, hm, hsy, wtooth, b0} ∈ R7.

TABLE I
SPMSM DESIGN PARAMETERS

Parameter Description Parameter Description
l Axial length of core hsy Stator yoke

rro Outer radius of rotor wtooth Width of tooth
rso Outer radius of stator b0 Slot opening
hm Height of magnet

Units of all design parameters are mm

Fig. 2. The cross-section of an SPMSM design with parameterization.

Given the motor design parameters for one motor, the
magnetic equivalent circuit (MEC) modeling technique is
used to compute the necessary parameters for the motor
dynamics analytically. The derivation details are summarized
in Appendix A. The dynamic model of an arbitrary SPMSM
can be written as follows [22]:

did
dt

= − R
Ld

id + pωiq +
ud

Ld
, (1a)

diq
dt

= − R
Lq

iq − pω(id + Φm

Lq
) +

uq

Lq
, (1b)

where id and iq are the currents in the d- and q-axis,
respectively; ud and uq are the voltages in the d- and q-axis,
respectively; ω is the motor’s angular velocity. p is referred
to Appendix A. R,Ld, Lq,Φm are calculated by (22), (23)
and (26) in Appendix A with β. The motor design variables
are subject to the following constraints:

l ∈ [20, 100], rro ∈ [10, 100], (2a)
rso ∈ [10, 100], hm ∈ [1, 5], hsy ∈ [5, 10], (2b)
wtooth ∈ [5, 20], b0 ∈ [1, 10], (2c)
hss > 0 mm, Dwire ≥ 0.6 mm, kC > 0, (2d)

0 < arcsin( wtooth

2(rro+δ) ) + arcsin( b0
2(rro+δ) ) ≤

π
Q , (2e)

0 kg < mstator +mrotor ≤ 3 kg, mstator > 0 kg, (2f)

0 T <
kpΦ1

wtoothl
≤ 1.5 T, 0 T <

kpΦ1√
3hsyl

≤ 1.5 T, (2g)

where (2d) describe the minimal slot height, motor’s minimal
wire diameter, and minimal Carter’s coefficient; (2e) and (2f)
describe the tooth width bound and the motor weight bound,
respectively; (2g) describes the magnetic flux bounds in the
tooth and the stator yoke. δ and hss,j , Dwire,j , mstator,j ,
mrotor,j , Φ1, kp, kC can be obtained and calculated by (16) -
(21) and (24) - (27) of Appendix A. The motor is additionally
subject to some operational constraints for all t:

− 3 A ≤ id ≤ 0 A, −3 A ≤ iq ≤ 3 A, (3a)
− 100 V ≤ ud ≤ 100 V,−100 V ≤ uq ≤ 100 V. (3b)
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B. n-DOF Open-Chain Manipulator Dynamics

Assume that the flexibility and the backlashes of the gears
can be ignored, and the (j + 1)-th motor of a manipulator
is rigidly attached to the j-th link, i.e., its stator is rigidly
attached to the j-th link and its rotor is coupled with the j+1-
th link. Following the standard modeling approach in [23,
Chapter 8], a general dynamic model for an arbitrary n-DOF
open-chain manipulator can be written as

M(θ,β)θ̈ + C(θ, θ̇,β)θ̇ +G(θ,β) = τ , (4)

where θ, θ̇, θ̈ ∈ Rn are the angular positions [rad], velocities
[rad/s2], and accelerations [rad/s2] of n joints, respectively;
M(θ,β), C(θ, θ̇,β) ∈ Rn×n and G(θ,β) ∈ Rn are the
inertia-related matrix, Coriolis matrix, and gravitational force
with the parameterization of SPMSM under β, respectively;
τ ∈ Rn are torques applied on n joints, where its j-
th element is the torque applied on the j-th joint and is
determined by (32), Appendix B.

The articulated-body algorithm (ABA) [24, Chapter 7.3]
is used to compute the manipulator’s forward dynamics with
zero tip force and a constant gravitational acceleration g =
9.81 m/s2. Details are summarized in [25, Algorithm 1]. The
constraints on θ and θ̇ are given by:

θ ≤ θ ≤ θ, θ̇ ≤ θ̇ ≤ θ̇, (5)

where θ,θ, θ̇, θ̇ ∈ Rn denotes the position lower and upper
bound, velocity lower and upper bound, respectively.

Remark 1. Each task may require a different payload on
the end-of-effector, which can be treated as a rigid body
attached to the final link n. Given the mass, center of mass
and rotational inertia of a payload, one can compute its
spatial rigid-body inertia matrix and then add it to the spatial
inertia matrix of link n. The manipulator’s forward dynamics
can still be computed by ABA [24, Chapter 7.3].

C. Complete Manipulator Dynamics

Denote id,j and ud,j as the current and voltage
in the d-axis for the j-th motor of an arbitrary
manipulator. Denote the state of all the motors by
xm ≜ col{id,1, · · · , id,n, iq,1, · · · , iq,n, } ∈ R2n; sim-
ilarly denote the control of all motors by um ≜
col{ud,1, · · · , ud,n, uq,1, · · · , uq,n, } ∈ R2n. Combining the
n-DOF manipulator dynamics (4) with n motor’s dynam-
ics (1) and the connection among motor states, controls,
velocities, and torques (28)-(32) of Appendix B, the complete
dynamics for an arbitrary manipulator are written as

ẋ = f(x(t),u(t),β), (6)

where x ≜ col{θ, θ̇,xm} ∈ R4n and u ≜ um ∈ R2n.

D. SPMSM Design Optimization Formulation

This subsection formulates the SPMSM design as an
optimization problem, which aims to optimize operation

efficiency given a specific task and the respective motor
trajectory. Given the task and the complete dynamics (6), a
trajectory planner, which will be defined in (9), can generate
a trajectory of optimal open-loop states x∗(t) and controls
u∗(t). Then the desired trajectory of joint angular positions
θdes(t) and velocities θ̇des(t) for all motors can be directly
obtained from x∗(t) and u∗(t). From the description below
(32) of Appendix B, a trajectory of each motor’s velocity
ω(t) and motor torque τm(t) can be directly obtained.
Consequently, each motor’s maximum (magnitude) velocity
ωmax and torque τmax are determined.

Then for each motor, given the operational data ξ ≜
{x∗(t),u∗(t), ∀t}, one can measure the probability of each
grid (τm, ω) within the map range A ≜ [0, τmax]× [0, ωmax]
by a two-dimensional probability density function (PDF)
q(τm, ω;β). The details to generate a PDF are summarized in
Algorithm 1, where Nτ , Nω ∈ Z+ are the grid numbers for
the discretization of motor torque and velocity, respectively.
Line 9 of Algorithm 1 converts a single operational data
point {x∗(t),u∗(t)} at a time instance t to a grid (τm, ω),
i.e. (28)-(32) of Appendix B.

Next, the efficiency η(τm, ω;β) at each grid (τm, ω)
can be calculated by (33), Appendix B. Thus the design
optimization for one motor is written as:

min
β

x

A
q(τm, ω;β)(1− η(τm, ω;β))dωdτm

s.t. hd(β) ≤ 0,

ho(β, τm, ω) ≤ 0, ∀(τm, ω) ∈ A,

(7)

where
s

A
denotes the double integration

r τmax

0

r ωmax

0
among

A ≜ [0, τmax]× [0, ωmax]; τmax and ωmax are determined by
ξ; the motor design constraints hd(β) are summarized as (2);
the motor operational constraints ho(ξ,β) are summarized as
(3), where id, iq, ud, uq are determined by (35) given each
(τm, ω) within A. Note that evaluating the efficiency of a
motor operation PDF is more robust and numerically stable
than of a specific trajectory.

III. DISTRIBUTED CO-DESIGN FORMULATION

This section introduces the formulation of a distributed
consensus-based co-design problem. Consider a network of
Na agents labeled as V = {1, · · · , Na}, where each agent
i determines the design of manipulator i based on a given
task i. Agent i can receive information from its neighbor
set Ni. G = {V, E} denotes an undirected graph such that
an undirected edge (i, r) ∈ E if and only if i and r are
neighbors. L ∈ RNa×Na denotes the Laplacian matrix of G.
L̄ ≜ L ⊗ I7n. Denote the total number of edges within G
as m. Define the oriented incidence matrix of G denoted by
H ∈ Rm×Na such that its entry at the k-th row and the r-th
column is 1 if edge k is an incoming edge to node r; -1 if
edge k is an outgoing edge to node r; and 0 elsewhere. Note
that for undirected graphs, the direction for each edge could
be arbitrary. Denote H̄ ≜ H ⊗ I7n.
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Algorithm 1: 2D Speed-Torque PDF Generation
Input: Nτ , Nω , ξ, Ns = 0, ωmax, τmax

1 q ← zeros(Nτ , Nω) // Initialize the PDF
2 vω ← linspace(0, ωmax, Nω + 1)
3 vτ ← linspace(0, τmax, Nτ + 1)
4 for iω = 1 to Nω do
5 ω1 ← vω[iω], ω2 ← vω[iω + 1]
6 for iτ = 1 to Nτ do
7 τ1 ← vτ [iτ ], τ2 ← vτ [iτ + 1], c← 0
8 for each datapoint in ξ do
9 ω, τm ← parse(datapoint)

10 if τm ∈ [τ1, τ2) and ωm ∈ [ω1, ω2) then
11 c← c+ 1, Ns ← Ns + 1

12 if iτ == Nτ and τm ≥ τ2 and ωm ∈
[ω1, ω2) then c← c+ 1, Ns ← Ns + 1

13 q[iτ , iω]← c

Output: q ← q/Ns // Normalize the PDF

The SPMSM design variables for manipulator-i’s j-th
motor are denoted by li,j , rro,i,j , rso,i,j , hm,i,j , hsy,i,j ,
wtooth,i,j , b0,i,j . And further denote

βi,j ≜ col{li,j , rro,i,j , rso,i,j , hm,i,j , hsy,i,j , wtooth,i,j , b0,i,j},
βi ≜ col{βi,1, · · · ,βi,n} ∈ R7n,

where βi indicates all the motor design parameters of
manipulator i. Similar as (6), the complete dynamics for
manipulator i are written as

ẋi = fi(xi(t),ui(t),βi), (8)

where xi ≜ col{θi, θ̇i,xm,i} ∈ R4n and ui ≜ um,i ∈ R2n.

Given a task, a trajectory planning optimization can return
the optimal trajectories of states and controls that align with
the task requirements:

min
xi(t),ui(t), tf,i

Ji(xi(t),ui(t), tf,i) (9a)

s.t. ẋi = fi(xi(t),ui(t),βi), (9b)
∀t ∈ [0, tf,i] with given xi(0), (9c)
constraints (3), (5), ∀t, (9d)

θi(tf,i) = θdes,i, θ̇i(tf,i) = 0, (9e)

where tf,i > 0 denotes the final time for trajectory planning,
which could either be a decision variable or a fixed pre-
scribed parameter; θdes,i denotes a prescribed desired final
position. Note that (9) adopts the most general form, which
represents time-optimal trajectory planning, trajectory track-
ing, or energy-optimal trajectory planning. For the latter two
cases, tf,i is a fixed prescribed parameter. Given a particular
value of βi, the optimal states x∗

i (t), controls u∗
i (t), and

final time t∗f,i (if applicable) optimize the cost function Ji.
For notational simplicity, let ξi ≜ {x∗

i (t),u
∗
i (t),∀t, t∗f,i}

denote the optimal trajectory of manipulator i given the task.

Then similar to (7), the distributed manipulator co-design
problem can be rewritten as:

min
β1, ...,βNa

∑Na

i=1 ℓi(ξi,βi) (10a)

s.t. β1 = · · · = βNa
, (10b)

ξi obtained from (9) given βi, (10c)
hd,i(βi) ≤ 0, (10d)
ho,i(βi, τm,i,ωi) ≤ 0, (10e)
∀ (τm,i,ωi) ∈ Ai, ∀i ∈ V, (10f)

where ℓi(·) is a local loss function that measures the total
operational efficiency loss of manipulator-i’s n motors, i.e.

ℓi(ξi,βi) ≜
∑n

j=1

s
Aij

qi,j(τm,i,j , ωi,j ;βi,j)·
(1− η(τm,i,j , ωi,j ;βi,j))dωi,jdτm,i,j .

(11)

τmax,i,j , ωmax,i,j are determined by ξi. hd,i(·) denotes a
column stack of hd(βi,j) defined in (7), ∀j = 1, · · · , n.
ho,i(·) denotes a column stack of ho defined in (7) with
τm,i ≜ col{τm,i,1, · · · , τm,i,n}, ωi ≜ col{ωi,1, · · · , ωi,n},
Ai ≜ Ai,1 × · · ·Ai,n, and Ai,j ≜ [0, τmax,i,j ]× [0, ωmax,i,j ].
The consensus constraint (10b) ensures that there will be
only one set of design parameters in the solution.

IV. DISTRIBUTED CO-DESIGN ALGORITHM

Combining ADMM and ALM, this section proposes a
distributed constrained optimization algorithm to solve (10)
iteratively. Originally, the augmented Lagrangian of (10) is
not separable for each βi and hence the gradient descent
of this Lagrangian w.r.t. β cannot be distributed to each βi.
Thus, an equivalent augmented Lagrangian is presented such
that the update rule is distributed for βi. First, an assumption
and a theorem are introduced.

Assumption 1. The undirected graph G is connected.

Theorem 1. Let Assumption 1 hold. Denote β̂ ≜
col{β1, · · · ,βNa

} ∈ R7nNa . The consensus constraint (10b)
is equivalent to L̄β̂ = 0 and further H̄β̂ = 0.

Proof. By Assumption 1, the graph G is connected. Then
the consensus constraint β1 = · · · = βNa holds if and
only if L̄β̂ = 0. Given L = H⊤H , L̄ ≡ H⊤H ⊗
I7n ≡ (H⊤ ⊗ I7n)(H ⊗ I7n) ≡ H̄⊤H̄ . Then the consensus
constraint holds if and only if H̄⊤H̄β̂ = 0. Apparently
H̄β̂ = 0 ⇒ H̄⊤H̄β̂ = 0. Since G is connected, from [26,
Theorem 8.3.1], there is one connected component of G, and
hence ker H = 1. Thus, ker H⊤ = 0 and ker H̄⊤ = 0.
By the kernel’s definition, H̄⊤H̄β̂ = 0 ⇒ H̄β̂ = 0.
Thus, H̄⊤H̄β̂ = 0 ⇔ H̄β̂ = 0. Therefore, the consensus
constraint holds ⇔ L̄β̂ = 0⇔ H̄β̂ = 0. ■

Define gi(βi, τm,i,ωi) ≜ max(ho,i(βi, τm,i,ωi), 0)
2,

where max(·) and square are applied element-wise. Then
the inequality constraint (10e) can be converted to an
equality constraint, i.e. gi(βi, τm,i,ωi) = 0. Together with
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Theorem 1, (10) is equivalent to an equality-constrained
optimization:

min
β̂ ∈ B ⊂ R7nNa

∑Na

i=1 ℓi(ξi,βi) (12a)

s.t. L̄β̂ = 0, (12b)
gi(βi, τm,i,ωi) = 0, (12c)

where B ≜ B1 × · · · × BNa
represents the feasible set

among all agents, and Bi ⊂ R7n represents agent-i’s feasible
set constrained by hd,i(βi) ≤ 0 in (10d). Introduce the
Lagrangian multipliers λL and λi associated with (12b) and
(12c), respectively. λL ≜ col{λL,1, · · · ,λL,Na

} ∈ R7nNa ,
where λL,i ∈ R7n; with the same dimension, denote λ ≜
col{λ1, · · · ,λNa}. Similar to [27], with L̄β̂ = 0⇔ H̄β̂ =
0 from Theorem 1, the augmented Lagrangian associated
with (12) is equivalent to

L(β̂,λL,λ) ≜ λ⊤
L L̄β̂ + ρ1

2 ||H̄β̂||2 +
∑Na

i=1

(ℓi(ξi,βi) + λ⊤
i gi(·) +

ρ2

2 ||gi(·)||
2),

(13)

where ρ1, ρ2 > 0 are arbitrary constants. Denote k ∈ Z+ as
the iteration index. To compute the optimal β̂, the gradient
descent in β̂ and gradient ascent in λL and λ can be applied
in an ALM fashion [28]. Thus, with the fact that L̄⊤ = L̄,
the iterative update rule is given by

β̂(k + 1) = β̂(k)− α(L̄λL(k) + ρ1L̄β̂(k) + (∗)), (14a)

λL(k + 1) = λL(k) + αL̄β̂(k + 1), (14b)
λi(k + 1) = λi(k) + αgi(βi(k + 1), ·), (14c)

where (∗) indicates the partial derivative of the summation
term in (13) w.r.t. β̂; α > 0 is a step size. Then the update
(14) is naturally distributed and can be decomposed as:

β̃i(k + 1) = βi(k)− α
∑

r∈Ni
(λL,i(k)− λL,r(k) (15a)

+ ρ1βi(k)− ρ1βr(k))− α∂ℓi(ξi,βi)
∂βi

⊤

− α∂gi(·)
∂βi

⊤
λi − αρ2

∂gi(·)
∂βi

⊤
gi(·),

βi(k + 1) = arg min
x∈Bi

||β̃i(k + 1)− x||2, (15b)

λL,i(k + 1) = λL,i(k) + α
∑

r∈Ni
(βi(k + 1), (15c)

− βr(k + 1)),

λi(k + 1) = λi(k) + αgi(βi(k + 1), ·), (15d)

where ∂ℓi(ξi,βi)
∂βi

and ∂gi(·)
∂βi

are given by the definition in (11),
(10) and (7). Based on the update rule (15), the distributed
co-design algorithm is summarized in Algorithm 2, where the
content within parfor is executed by each agent distributedly.

Remark 2. The motor design constraints (10d) are enforced
as a projection instead of inequality constraints because the
projection ensures the feasibility of trajectory planning given
updated parameters βi(k + 1) for every iteration k.

Algorithm 2: Distributed Co-Design Algorithm
Input: ρ1, ρ2, Nτ , Nω , Nk ∈ Z+, α > 0

1 k ← 0; λL,i(k) = λi(k) = 0, Initialize βi(k), ∀i
2 Each agent i initializes ξi(k) by (9) given βi(k)
3 Each agent i obtains βr(k) from neighbors r ∈ Ni

4 while k < Nk do
5 parfor agent i = 1 to Na do
6 Obtain qi,j(·),∀j = 1, · · · , n by Algorithm 1
7 Obtain λL,r(k) from neighbors r ∈ Ni

8 βi(k + 1)← update by (15a), (15b)
9 ξi(k + 1)← solve (9) given βi(k + 1)

10 Obtain βr(k + 1) from neighbors r ∈ Ni

11 λL,i(k + 1),λi(k + 1)← update by (15)

12 k ← k + 1

V. NUMERICAL RESULTS

This section presents a numerical simulation of the dis-
tributed co-design of 6-DOF manipulators. Suppose there is
a complete graph with 8 agents, where each agent includes
a trajectory planner (9) with its task specification. For agent-
i, the cost function Ji of (9a) represents the copper loss
of all n motors and is given by Ji ≜

r tf,i
0

∑n
j=1(id,j(t)

2 +

iq,j(t)
2)dt, where tf,i varies from 2.0 to 3.5 s. For simplicity,

each agent’s task is to move a solid iron ball to a desired
final position. Each agent’s dynamics (9b) can be computed
by Remark 1 with the ball mass varying from 0.5 to 1.2
kg. The initial state xi(0) in (9c) is given by col{θ0,03n}
with θ0 = col{−0.74, 1.06, 0.96, 2.02, 0.84,−2.19} rad.
The desired final position θdes,i in (9e) is given by
col{−3.14, 0.59, 1.79, 0,−0.81, 0} rad. The joint constraints
(5) are given by θ := col{2π, 0.6π, 0.6π, 2π, 0.6π, 2π} =

−θ and θ̇ := 100π · 1n = −θ̇, for all agents and joints.
The trajectory planning problem (9) is solved by the direct
collocation method and referred to [25, Section III.B] for
details. Let ρ1 = 0.75, ρ2 = 10, α = 0.08, Nτ = Nω = 20.

The distributed co-design algorithm, i.e. Algorithm 2, is
utilized to update βi, where the initial design βi(0) is
obtained empirically given each task. The global average of
motor loss, i.e.

∑Na

i=1 ℓi(βi(k))/(Nan)·100%, over iterations
is shown in Fig. 3. It shows that the average motor loss
decreases by 4% after 60 iterations. Fig. 3 also shows the
consensus error, i.e.

∑
(i,j)∈E ||βi(k) − βj(k)||2, converges

to zero. It converges three times within 60 iterations because
there exist multiple consensual βi that satisfy all the con-
straints. The gradient of

∑Na

i=1 ℓi(·) and of the constraints
drive βi to another consensual point with a lower loss.
The global average of loss does not monotonically decrease
because of the non-convexity of (12). And there might
not be a global optimum that is also optimal for every
individual loss function. Hence, the global average increases
when the consensus error decreases. Ultimately, the proposed
algorithm drives βi to a local and consensual optimum. Fig.
4 further validates that the distributed co-design improves
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Fig. 3. The global average loss and consensus error over iterations

the motor operation efficiency. The black circles represent
the motor operation points from the optimal trajectory given
a particular design, where the circle radius indicates the
probability of this operation point. The numerical results
altogether verify the effectiveness of the proposed distributed
co-design algorithm.

VI. CONCLUSION

This paper investigates a motion and motor co-design
problem for robotic manipulators given multiple tasks. Exist-
ing co-design methodologies typically solve trajectory plan-
ning given each task individually and then optimize motor
efficiency given these trajectories. With the number of tasks
increasing, the computational burden grows significantly. To
reduce computational burden and improve scalability as the
number of tasks grows, this paper introduces a distributed
co-design framework to handle the co-design process for all
tasks in a distributed fashion. This paper further presents
a consensus-based distributed optimization algorithm, which
secures a unified set of design parameters for all tasks
ultimately such that the total average of motor operation
efficiency is optimized and the design constraints are satisfied
across all tasks and motors. The distributed manner reduces
the computational load by allowing each agent to solve
co-design optimization solely for its designated task. A
numerical simulation further verifies the proposed algorithm.

Future improvements include a thorough theoretical anal-
ysis of the proposed algorithm and developing a more
efficient gradient descent algorithm, such as momentum-
based gradient descent, etc. In addition, this paper focuses
on optimizing motor efficiency based on open-loop optimal
trajectories from trajectory planners. In practice, one also
needs to design a closed-loop tracking controller to track
the optimal trajectory for each task. Thus, how to co-design
the motors, motions, and closed-loop controller of robotic
manipulators given multiple tasks is a valuable direction.
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APPENDIX

A. Magnetic Equivalent Circuit Modeling for SPMSM

The magnetic equivalent circuit (MEC) modeling for an
arbitrary SPMSM [29] is presented in this subsection for
completeness. The SPMSM design variables are summarized
in Table I. This appendix omits the index i. The index j
indicates the j-th motor of an arbitrary manipulator. gcd(a, b)
denotes the greatest common divisor of two positive integers
a and b. The constant parameters for an SPMSM are:

• Number of slots Q = 12
• Number of slots per phase q1 = Q/3
• Number of pole pairs p = 4
• Number of slots per pole per phase qpm = q1

gcd(q1,2p)
• Number of winding turns per tooth ns = 50
• Number of coils connected in parallel Cp = 1
• Gear ratio at the j-th joint Zj = 50 ∀j
• Height of tooth tip htip = 2 mm
• Width of air gap δ = 0.5 mm
• Magnet width in electric angle αm = π
• Remanent flux density of the magnet Br = 1.38 T
• Maximum limitation for flux density Bmax = 1.5 T
• Mass density of iron ρiron = 7.8 · 10−6 kg/mm3

• Mass density of copper ρcu = 8.93 · 10−6 kg/mm3

• Electric resistivity of copper winding ρe = 1.8 ·
10−5 Ω·mm

• Permeability of air µ0 = 4π · 10−7 N/A2

• Relative recoil permeability of the magnet µr = 1.05
• Filling factor ff = 0.55

1) Geometric Parameters: According to Fig. 2, the ex-
pression for the slot height is

hss,j = rso,j − hsy,j − rro,j − δ − htip. (16)

For a rectangular tooth cross-section, one can compute the
slot width as bss,j = Aslot,j/hss,j , where Aslot,j is the slot
area, i.e.

Aslot,j =
π((rso,j−hsy,j)

2−(rro,j+δ+htip,j)
2)

Q − wtooth,jhss,j .
(17)

The cross-section area of the stator core is given by

Aso,j = πr2so,j − π(rro,j + δ)2 −Q(Aslot,j + b0htip). (18)

Thus the volume of the stator core is given by

Vj = Aso,j lj . (19)

The copper area is given by Acu,j = Aslot,jff . For con-
centrated windings and assuming one winding is a complete
turn around a tooth, the area of a single coil is given by
Acoil,j = Acu,j/(2ns). The minimal wire diameter is

Dwire,j =
√

4Acoil,j/π. (20)

The arc span per slot can be determined by τs,j = 2π(rro,j+
δ)/Q. The average length of the coil end-winding lend,av,j
and the total coil length lcoil,j are given by

lend,av,j = (wtooth,j(2− π/2) + πτs,j/2)/2,

lcoil,j = 2lj + 2lend,av,j .

Then the weight of the stator and rotor are given by:

mrotor,j = ρironπr
2
ro,j lj ,

mstator,j = ρironπr
2
so,j lj − ρironπ(rro,j + δ)2lj

− ρironAslot,j ljQ+ ρcuAcoil,j lcoil,jnsQ.

(21)

Without loss of generality, define the x-axis as the central
axis of each rotor or stator, i.e. x-axis coincides with the axial
length of core lj ; consequently, define the y-axis and z-axis
by following the right-hand rule and the two axes indicate
the central radius. All three axes originate at the centroid of
the rotor or stator, i.e. the center of the axial length lj . Since
each rotor is a solid cylinder, the moment of inertia about
three principal axes of each rotor is given by:

Ixx,j =
1
2ρironπr

4
ro,j lj =

1
2mrotor,jr

2
ro,j ,

Iyy,j = Izz,j =
1
12ρironπr

2
ro,j lj(3r

2
ro,j + l2j ).

To simplify the inertia calculation for stators, each stator is
simplified as a hollow cylinder with outer radius rso,j and
inner radius rro,j+δ. Then the moment of inertia about three
principal axes of each stator is given by:

Ixx,j =
1
2mstator,j(r

2
so,j + (rro,j + δ)2),

Iyy,j = Izz,j =
1
12mstator,j(3(r

2
so,j + (rro,j + δ)2) + l2j ).
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2) Resistance: The resistance per tooth is given by R1,j =
(n2

sρelcoil,j)/(Aslot,jff ). Using this, the phase resistance can
be calculated as

Rj = q1R1,j/C
2
p. (22)

3) Permeance: The permeance of the magnetic path
across the air gap and the slot opening, denoted by pg,j and
pso,j , are given by:

pg,j =
2πrro,jµ0l/Q
δ+hm,j/µr

, pso,j =
µ0htiplj

b0,j
.

The permeance of the magnetic path that curves from tip to
tip is given by ptt,j =

µ0(δ+hm,j)lj
π(δ+hm,j)/2+b0,j

.

4) Inductance: For an SPMSM, its d-axis and q-axis
inductance are equivalent to each other and given by

Ld,j = Lq,j = q1n
2
sL1,j/C

2
p, (23)

where L1,j is the inductance per turn and per tooth, given
by L1,j = pg,j + 3pso,j + 3ptt,j .

5) Flux: To proceed with the calculation, it is necessary
to determine Carter’s coefficient denoted by kC,j , given by

kC,j =
tpitch,j

tpitch,j−γjδ
, γj =

(b0,j/δ)
2

5+b0,j/δ
, tpitch,j =

2πrro,j
Q . (24)

Then, the magnetic flux density across the gap is given by
Bg,j = Br

hm,j/µr

hm,j/µr+δkC,j
. The flux density corresponding to

the first harmonics can be calculated as Bg,1,j = 4Bg,j/π.
Consequently, the flux per tooth per single turn is given by

Φ1,j = Bg,1,j lj2πrro,j/Q. (25)

In the absence of skewness, the flux linkage is given by

Φm,j = kwnsΦ1,jq1/Cp, (26)

where kw = kpkd denotes the winding factor, and

kp = sin(πp/Q), kd = sin(π/6)
qpmsin(π/(6qpm)) . (27)

B. SPMSM Torque & Efficiency Modeling

This subsection introduces the modeling of SPMSM
torque, maximum torque, and efficiency. The constant pa-
rameters used here are:

• Operating temperature Top = 80 ◦C
• Ambient temperature Tamb = 20 ◦C
• Motor’s q-axis voltage upper bound uq,j = 100 V
• Motor’s q-axis current upper bound iq,j = 3 A
• Maximum motor power Pmax,j = 600 W

1) Torque: First, the Hysteresis loss and eddy current loss
are given by Steinmetz’s equation, i.e.

Physt,j = khyst
∣∣pωj

2π

∣∣Bj
1.6Vj , (28a)

Peddy,j = keddy
(pωj

2π

)2
Bj

2Vj , (28b)

where khyst = 130 WsT−1.6m−3 and keddy = 1.1
Ws2T−2m−3 are the coefficients, estimated by finite element
analysis (FEA) simulation of a base design motor. Vj is the

volume of motor-j’s stator core and defined in (19); Bj is
the average flux density at the tooth, calculated as follows:

Bj =
Φj

ns(q1/Cp)wtooth,j lj
, (29a)

Φj ≜
√
(Φm,j + Ld,jid,j)2 + (Lq,jiq,j)2, (29b)

where Φj indicates the total flux generated by both perma-
nent magnets and coils. The loss torque is given by

τhyst,j = Physt,j/|ωj |, τeddy,j = Peddy,j/|ωj |. (30)

Then the motor torque τm,j of motor j is given by

τ̂m,j ≜ 1.5pΦm,jiq,j + (Ld,j − Lq,j)id,jiq,j , (31a)
τm,j = τ̂m,j − sign(τ̂m,j)(τhyst,j + τeddy,j), (31b)

where sign(·) denotes the signum function. Then the joint
torque τj at joint j is given by

ωj := θ̇jZj , τj = τm,jZj , (32)

where θ̇j is the angular velocity of joint j.

Given an arbitrary optimal trajectory of joint-j’s position
and velocity and motor-j’s current and voltage from a
trajectory planner (9), the motor torque and velocity at each
time instance can be calculated by (31) and (32), respectively.
Then the maximum (magnitude) motor torque τmax,j and the
maximum (magnitude) motor velocity ωmax,j of motor j can
be obtained directly from the trajectory of motor-j’s torque
and velocity.

2) Efficiency: The efficiency ηj(τm,j , ωj ,βj) is deter-
mined by motor-j’s torque τm,j and motor’s velocity ωj

under the motor design parameter βj ∈ R7. The efficiency
ηj(τm,j , ωj ,βj) is given by:

ηj = (Pin,j − Pcu,j − P̂hyst,j − P̂eddy,j)/Pin,j , (33)

where Pin,j , Pcu,j are the input power and copper losses
power of motor j, respectively. Pin,j , Pcu,j are given by

Pin,j = ud,jid,j + uq,jiq,j , Pcu,j = RT,j(i
2
d,j + i2q,j),

(34a)
RT,j = RjT/Tamb, T = TopPin,j/Pmax,j + Tamb, (34b)

where Rj is defined in (22); T is the scaled operating
temperature; (34b) calculates the copper resistance given
scaled temperature by linear extrapolation. P̂hyst,j , P̂eddy,j ,
currents and voltages are calculated as follows:

Φmax,j ≜ (uq,j −Rj
Top

Tamb
iq,j)/(p|ωj |), (35a)

Φ̂j ≜ min(Φmax,j ,Φm,j), (35b)

id,j = (Φ̂j − Φm,j)/Ld,j , (35c)
iq,j = (|τm,j |+ τ̂hyst,j + τ̂eddy,j)/(1.5pΦm,j), (35d)
ud,j = Rjid,j − p|ωj |iq,jLd,j , (35e)

uq,j = Rjiq,j + p|ωj |Φ̂j , (35f)

where Φmax,j is the maximum flux given motor velocity and
maximum voltage and current; (35b) ensures flux weakening;
P̂hyst,j , P̂eddy,j , τ̂hyst,j , τ̂eddy,j are calculated by following
(28), (29a), and (30), where Φj in (29a) is replaced by Φ̂j

in (35b).
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