
 
 

 

 
 

Abstract— Electrified propulsion systems, such as fuel cells 
(FCs) and batteries, are a promising solution to decarbonize the 
shipping sector. In this paper, we have conducted a 
comprehensive analysis of two months' worth of real-world 
container ship power demand data. From this analysis, we 
propose a novel multi-time scale Energy Management System 
(EMS) approach for a hybrid FC/battery propulsion system. 
This approach enables the individual control of each FC stack 
while factoring in battery and FC degradation losses and fuel 
consumption costs. By exploring different time scales, we have 
assessed the trade-offs between time complexity and system 
optimality, which has led us to devise an efficient strategy for the 
energy management of FC/battery hybrid ships. 

I. INTRODUCTION 
A. Motivation and literature review  
Amidst escalating oil prices and environmental concerns, 

new energy vehicles and ships powered by batteries and fuel 
cells (FC) are garnering increased interest due to high 
efficiency, extended range (relative to battery electric ships), 
and reduced emissions [1]. For applications like city buses [2] 
and ocean vessels, multiple FC stacks are required for 
supplying extended operating times and high transient loads 
[3]. It is important to find the optimal power split between 
each FC stack and battery pack to reduce operational costs. 
These operational costs include battery and FC degradation 
and fuel consumption costs, especially in low power operation 
conditions [4]. However, designing an energy management 
system (EMS) to manage such hybrid systems with multiple 
FC stacks is a challenge because multiple control actions and 
costs need to be considered at the same time. Moreover, the 
governing physics is highly nonlinear. 

Various EMS control strategies aim to increase efficiency 
and minimize degradation, falling into optimization-based [5], 
rule-based, and learning-based categories [6]. Optimization-
based controls, like dynamic programming (DP) in Liu et al.'s 
study [7], frame the EMS issue as an optimization problem. 
The study showed reduced hydrogen consumption by 3.10% 
and improved FC and battery durability by 1.08% and 0.13%, 
respectively. While dynamic programming guarantees global 
optimality, the high computational time resulting from 
Bellman’s so-called “curse of dimensionality” hinders real-
time application. Rule-based controls employ preset rules for 
power distribution, often tied to battery State-of-Charge 
(SOC), load power demand, and other parameters. They are 
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relatively simple to interpret. Zhang et al. [8] presented a 
hysteresis control strategy for fuel cell plug-in hybrid vehicles, 
aiming to reduce FC stack switching frequency and active 
time. Such methods are straightforward, but generally 
underperform relative to optimization-based methods. 
Learning-based controls, like reinforcement learning (RL) 
exemplified by Wu et al. [9], expedite optimization-based 
methods by learning optimal actions through iterative 
interactions. However, RL methods require extensive training, 
potentially yielding only local or suboptimal solutions, and 
their reliability might waiver in untrained scenarios. 

Despite growing enthusiasm for hybrid EMS design, gaps 
persist, notably the absence of an efficient EMS control 
addressing efficiency, degradation, and modular control of 
multiple FC stacks. In our prior research [4], we introduced 
an optimization-based method to control each fuel cell stack 
independently using Mixed Integer Quadratic Programming 
(MIQP). However, scaling the method to consider more FC 
stacks and much longer time horizons is still challenging, due 
to the increased computational costs. A potential solution is 
to use the multi-timescale model predictive control (MPC) 
method to overcome computational challenges. For instance, 
Ulbig et al. [10] employed a cascaded MPC approach for 
broad-scale power system control, implementing frequency 
control at 20 millisecond intervals and adjusting power 
dispatch hourly, with transmission planning spanning months 
to years. This strategy, seen in various studies [11] [12] [13], 
lessens the time complexity of the problems while 
maintaining rapid frequency deviation responses. By 
analyzing the real container ship power profile discussed in 
Section II.B.1), we demonstrate that similar ideas can be 
adopted in the FC/battery hybrid propulsion system. 
Specifically, we assign a longer time step interval to FC 
actions and a shorter time step to battery actions, motivated 
by the power demand analysis. 

B. Contribution 
This paper develops an optimization-based EMS with 

reduced complexity using a multiple timescale MPC 
framework for FC/battery hybrid ships, inspired by our 
previous work in [4]. The architecture of the hybrid container 
ship propulsion system is presented in Fig. 1. The key 
contributions of this study are: 
• The two-month real container ship power demand dataset 

is analyzed to shed light on the distribution of power 
demand for container ships. Furthermore, the port-to-port 
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power profile is examined to reveal the time-frequency 
characteristics of container vessels. 

• A multi timescale EMS for FC/battery hybrid container 
ships is developed to significantly reduce the 
computational complexity of the algorithm to make it 
more suitable for real-time operation. 

• A comprehensive analysis of the selection of time scales 
and the tradeoff between time complexity and optimality 
is also carried out. 

 
Fig. 1. Architecture of the hybrid fuel cell / battery container 
ship propulsion system. 
 

C. Organization of the Paper 
The remainder of this paper is organized as follows. Section 

II discusses the battery and FC models used in the study. 
Section III performs a time-frequency analysis of a real-world 
container ship power profile. Section IV details the multi-
timescale MPC approach. Section V presents and analyzes the 
simulation results of the proposed system. Finally, Section VI 
summarizes the key conclusions drawn from this study. 

II. MODEL 
This section discusses the battery and FC models used for 

algorithm development and simulation of the test cases. 

A. Battery Model 
1) Battery Electrical Model 

In this research, the Rint model is utilized to simulate the 
electrical dynamics of a battery. The schematic representation 
of the Rint model is depicted in Fig. 2. The dynamics of a 
battery can be represented by the following equations, 

𝑉! = 𝑂𝐶𝑉 + 𝑅	𝐼 (1) 
 

𝑃"#$ = 𝑉!	𝐼 (2) 
 

𝐼 =
𝑂𝐶𝑉 − +𝑂𝐶𝑉% − 4𝑅	𝑃"#$

2𝑅  (3) 

 

𝑆𝑂𝐶(𝑖) = 𝑆𝑂𝐶(𝑖 − 1) +
∆𝑡	𝐼

3600	𝑄"#$
⋅ (100%) (4) 

 
where I is the current (in A), OCV denotes the open-circuit 
voltage, R represents the ohmic resistance (in ohm), 𝑉! is the 
terminal voltage (in V), 𝑃"#$ is the power, SOC is the State of 
Charge (in %), 𝛥𝑡	is the sampling time (in seconds), and 𝑄"#$ 
is the nominal capacity of the battery (in Ah). 
 

 
Fig. 2. Rint model of a battery. 

 
2) Battery Degradation Model 

The study utilizes a degradation model for the Li-ion 
battery as sourced from [14]. The equations are,  

𝑄&'(( = 𝑀(𝐶)#$*)	𝑒𝑥𝑝 @
−𝐸#
𝑅	𝑇 C

(𝐴ℎ)+ (5) 

 
𝐸𝑎 = 𝑎, + 𝑏- 	𝐶)#$* (6) 

 
where 𝑄&'((  represents the loss of battery capacity in 
percentage, 𝑇 is temperature, 𝐶)#$* denotes the C-rate, 𝐴ℎ is 
the ampere-hour throughput, 𝑅 is the ideal gas constant, and 
𝐸#  stands for the activation energy. The parameter z 
represents the power law factor and is set to 0.55. The two 
fitting parameters, 𝑎,  and 𝑏, , are set at 31700 and 370.3, 
respectively. The parameter 𝑀  represents a pre-exponent 
factor that varies according to the C-rate. 

When 𝑄&'(( exceeds 20%, the battery is considered to have 
reached its end-of-life (EOL) and requires replacement. 
Consequently, the financial losses stemming from the battery 
degradation can be determined using the following equations, 

𝐴*'. = H
20

𝑀(𝐶)#$*)	exp	 L
−𝐸#
𝑅	𝑇 M

N

/
+

 (7) 

 

𝑁*'& =
3600	𝐴*'.
𝑄"#$

 (8) 

 

𝐿"#$ =
	|𝐼|

2	𝑁*'&	𝑄"#$
∆𝑡	𝑄"#$	𝐶"#$ (9) 

 
In these equations, 𝐴*'.  denotes the Ah throughput of the 
battery until its EOL, 𝑁*'& represents the number of battery 
cycles until EOL, 𝐶"#$ is the price of the battery (in $/kWh), 
and 𝐿"#$ is the financial loss due to battery degradation within 
a sampling period. 

B. Fuel Cell Model 
1) Power to Mass Flow Rate Curve  

The relationship between the mass flow rate and the power 
output of a fuel cell per unit of effective catalyst surface area 
is derived from the Advanced Vehicle Simulator (ADVISOR), 
specifically from a scaled version of FC_ANL50H2. [15]. 
This relationship is illustrated in Fig. 3. Due to the 
demonstrated accuracy of quadratic functions in replicating 
fuel cell hydrogen consumption, as referenced in [16], a 
quadratic function has been used to approximate the curve 
that represents hydrogen consumption in correlation with the 
power output of the fuel cell. This is mathematically 
expressed as, 

�̇� = 𝑎0	𝑃1,% + 𝑏0	𝑃1, + 𝑐0 (10) 
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where �̇� represents the mass flow rate, 𝑃1, denotes the output 
power of a fuel cell, and 𝑎0 , 𝑏0 , and 𝑐0  are fitting 
parameters. 

 
Fig. 3. [Top] Fuel cell efficiency curve. [Bottom] Fuel cell 
power to mass flow rate curve for a 2000 kW FC stack. 
 

2) Fuel Cell Degradation Model 
The degradation of a fuel cell is primarily influenced by 

four operational conditions: load changing, start-stop 
switching, idling, and high loading [17]. TABLE I presents 
the voltage degradation rates of the fuel cell under these four 
conditions. The rates of voltage drop for each condition are 
represented as ∆𝑉&'#23,4#56* , ∆𝑉'53'11 ,  ∆𝑉72&756,  and 
∆𝑉47643&'#2. A fuel cell is considered to have reached its end-
of-life when the cumulative voltage degradation surpasses 
10% of the rated voltage of a new cell. At this point, the fuel 
cell should be replaced due to the reduced power efficiency 
[18]. 

TABLE I 
VOLTAGE DEGRADATION RATES  

Operations: Symbols: Drop rate:  
High power load ∆𝑉47643&'#2 10μV/h [19] 
Idling ∆𝑉72&756 8.66μV/h 
Start/Stop ∆𝑉'53'11 0.98μV [20] 
Load change ∆𝑉&'#23,4#56* 1.79μV/kW 
 
The financial losses (in $) associated with FC system 

degradation under four operating conditions,	𝐿&'#23,4#56* , 
𝐿'53'11, 𝐿72&756, and 𝐿47643&'#2, can be calculated using the 
voltage degradation rates provided in TABLE I as follows, 

𝐿&'#23,4#56* =
|∆𝑃|	∆𝑉&'#23,4#56*	𝐶1,

𝑉2)'80#9  (11) 

 

𝐿'53'11 = V
∆𝑉'53'11	𝐶1,

𝑉2)'80#9 if	on/off	triggered

0 otherwise
 (12) 

 

𝐿72&756 = V
∆𝑡	∆𝑉72&756	𝐶1,
3600	𝑉2)'80#9 if	0 < 𝑃1, ≤ 𝑃1,&':

0 if	𝑃1, > 𝑃1,&':
 (13) 

 

𝐿47643&'#2 = f

∆𝑡	∆𝑉47643&'#2	𝐶1,
3600	𝑉2)'80#9 if	𝑃1, ≥ 𝑃1,

4764

0 if	𝑃1, < 𝑃1,
4764

 (14) 

 
In these equations, ∆𝑃 represents the power change of the fuel 
cell system over the sampling period, 𝐶1, signifies the total 
cost of the fuel cell stacks (in $/kW), and 𝑉2)'80#9  is the 
maximum permissible cumulative voltage drop due to 
degradation and is set to be 10% of the output voltage of a 
new fuel cell. The power thresholds, 𝑃1,&': and 𝑃1,

4764, are set 
at 20% and 80%, respectively, of the fuel cell system's 
maximum power supply capability [21]. 

III. REAL CONTAINER SHIP POWER DATA ANALYSIS 
An analysis of the power profile of container ships in this 

section aims to showcase the time-frequency properties and 
how they impact the EMS design to balance performance and 
computational effort. 

A. Power distribution 
Fig. 4 illustrates the power distribution for the container 

ship Sealand Balboa over a two-month period from March 11 
to May 20, 2023. Note that in 12.4% of instances, the power 
dips below 4000 kW. Considering the ship has a maximum 
power capacity of 21660 kW, power levels below 4332 kW 
(which is 20% of the maximum) fall into the low power range. 
Operating within this range can risk fuel cell inefficiency and 
lead to idling degradation. This can, in turn, shorten the fuel 
cell's lifespan and reduce its performance over time. This data 
underscores the importance of using individual FC stack 
control methods for systems with multiple FC stacks, 
enhancing the overall efficiency of the EMS. 

 
Fig. 4. The power distribution graph for the container ship 
Sealand Balboa over a two-month period. 
 

B. Power profile consistency insights 
In this section, we examine the frequency distribution of the 

power profile, to determine the appropriate time-step for the 
EMS. As we shall see, the analysis motivates a multi-
timescale approach. Upon closer examining the container ship 
port-to-port power demand profile, we note that the power 
consumption of the container ship is dominated by low 
frequency content, and specifically constant power levels. 
Fast Fourier Transform (FFT) is used to analyze the frequency 
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content of the port-to-port power profile. In Fig. 5, we can see 
that the large peak near the left side indicates a dominant low-
frequency component in the power profile. The vast majority 
of frequency content is slower than 10-3 Hz. 

 
Fig. 5. The container ship port-to-port power demand profile 
frequency content is primarily less than 10-3 Hz. 
 

To validate this observation, the power demand is analyzed 
using moving averages over varied durations, from brief 10-
second intervals to more expansive 1000-second periods. The 
comparisons between the original power demand profile and 
average powers with different window durations are 
illustrated in Fig. 6. The Mean Absolute differences and Max 
Absolute differences for each window duration are detailed in 
TABLE II.  

TABLE II 
POWER DEVIATIONS FOR VARIOUS WINDOW DURATIONS 

Window 
Durations 

Mean absolute 
Difference (kW) 

Max 
Absolute 

Difference 
(kW) 

10 s 81.95 1649.54 
20 s 99.33 1787.20 
60 s 111.68 2293.13 
100 s 117.92 2338.85 
200 s 126.40 2532.38 
1000 s 165.49 4567.93 

 
For instance, even when considering the broadest window 

duration of approximately 17 minutes (1000 s), the average 
power deviation from the original profile is modest, with a 
mean absolute difference of around 165.49 kW, less than 1% 
of the ship’s power capacity. This observation affirms that 
power demands remain relatively consistent over extended 
periods. Therefore, it could be beneficial to use longer time 
intervals for the output power selection of FC stacks in the 
optimization process to reduce computational costs. However, 
it is important to consider the maximum absolute difference 
as well. If the time interval for the FC power update is too 
long, the FC’s response speed will be more restricted, and the 
battery might struggle to bridge the gaps between the power 
supplied by the FC and the fluctuating power demand. From 
the analysis, we also derive insights for sizing hybrid energy 
storage systems. For instance, with the given power profile, if 
we allocate the average power over a 200s window duration 
to the FC stacks, we must ensure that the battery pack can 

provide at least 2532.38 kW to address the maximum absolute 
difference between the power supplied by the FC stacks and 
the actual power demand. This motivates a multi-timescale 
approach for this application. 

 
Fig. 6. Power demand profile vs. moving average outputs with 
different window durations (WD). 

IV. METHODOLOGY 
The inherent physical dynamics of fuel cell power are more 

gradual compared to that of battery power. Battery voltage 
response is based on electrochemical kinetics, whereas fuel 
cells are comprised of compressors, pumps, and more. These 
characteristics suggest that fuel cells are well-suited to 
providing consistent power levels for extended periods during 
the optimization process. Doing so can lead to significant 
reductions in the computational cost. To facilitate this, we 
introduce the scale value, denoted as 𝜆. This value effectively 
scales up the time intervals for fuel cell control actions.  

 
Fig. 7. Schematic representation of the multi-time scale 
structure, where 𝒕, 𝒊, and 𝒌 respectively index the time steps 
for power demand, battery power, and FC power. 
 

As illustrated in Fig. 7, this allows for the adjustment of the 
fuel cell power update frequency to be 𝜆 times slower than its 
battery counterpart. Within this framework, the variable 
𝑖	denotes the current time step for battery operations, aligning 
with the power demand sampling interval. Concurrently, 𝑘 is 
defined as 𝑘 = ⌊𝑖/𝜆⌋ , representing the corresponding step 
number for the FC operations. 

The goal is to reduce degradation losses in the fuel cell 
stacks and battery pack, alongside minimizing hydrogen 
consumption costs. The objective is formulated as follows, 
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𝐽 =p𝑙"#$(𝑖)
;

7</

+pp(�̇�(𝑘, 𝑗)	𝜆	∆𝑡	𝐶=!

>

?</

;
@

A</
+ 𝑙1,(𝑘, 𝑗)) 

(15) 

 
where, 𝑁  represents the total time horizon. The variable 𝑗 
specifies a fuel cell stack, with 𝑀 being the total number of 
FC stacks. The cost associated with hydrogen consumption 
considers the mass fuel rate �̇�(𝑘, 𝑗) for a particular fuel cell 
stack 𝑗 at step 𝑘, time interval ∆𝑡 (seconds), and the cost of 
hydrogen 𝐶=!  ($/𝑘𝑔 ). The term 𝑙1,(𝑘, 𝑗)  accounts for the 
aggregate degradation losses of the fuel cell stack 𝑗 at time 
step 𝑘 . Meanwhile, 𝑙"#$(𝑖) , referencing (9), captures the 
combined battery degradation losses. 

The objective function operates within various constraints, 
such as power limitations, battery dynamics, and FC 
operational dynamics. At each time step 𝑖, with 𝑘 = ⌊𝑖/𝜆⌋, the 
total power from all FC stacks and the battery pack must equal 
the power demand, 

𝑃2(𝑖) = 𝑃"#$(𝑖) +p𝑃1,(𝑘, 𝑗)
>

?</

 (16) 

 
where, 𝑃2  signifies the power demand, 𝑃"#$  represents the 
battery power output, and 𝑃1,  denotes the power from a 
particular FC stack. 

Using linearization methods, as detailed in [4], the battery 
dynamics and degradation constraints for every time step 𝑖 
can be approximated, 

𝐼"#$(𝑖) = 𝑎B	𝑃"#$(𝑖) (17) 
 

𝐼"#$075 ≤ 𝐼"#$(𝑖) ≤ 𝐼"#$0#9 (18) 
 

𝐼"#$C (𝑖) ≥ 	−𝐼"#$(𝑖) (19) 
 

𝐼"#$C (𝑖) ≥ 𝐼"#$(𝑖) (20) 
 

𝑙"#$(𝑖) = u𝑎2
𝐼"#$C (𝑖)%

	𝑄"#$

+ 𝑏2	𝐼"#$C (𝑖)v
∆𝑡
7200	𝑄"#$	𝐶"#$ 

(21) 

 

𝑆𝑂𝐶"#$(𝑖 + 1) = 𝑆𝑂𝐶"#$(𝑖) +
(100%)	∆𝑡	𝐼"#$(𝑖)

3600	𝑄"#$
 (22) 

 
𝑆𝑂𝐶"#$075 ≤ 𝑆𝑂𝐶"#$(𝑖) ≤ 𝑆𝑂𝐶"#$0#9 (23) 

 
where 𝐼"#$075 and 𝐼"#$0#9 denote the lower and upper boundaries 
for the battery current. Additionally, 𝑆𝑂𝐶"#$0#9  and 𝑆𝑂𝐶"#$075 
refer to the maximum and minimum battery SOC. The term 
𝐼"#$C (𝑖) indicates the absolute value of the battery current. The 
parameters, 𝑎B, 𝑎2 and 𝑏2, are fitting parameters employed to 
model the nonlinear relationships between power, current, 
and battery degradation. 

Additionally, the constraints of FC for every step 𝑘 and for 
each stack	𝑗 are described below, 

Power limitation constraints for FC: 
𝑃1,075 ≤ 𝑃1,(𝑘, 𝑗) ≤ 𝑃1,0#9 (24) 

 
FC Mass Fuel Rate Constraints: 

𝑜1,(𝑘, 𝑗)	𝑃1,075 ≤ 𝑃1,(𝑘, 𝑗) (25) 
 

𝑃1,(𝑘, 𝑗) ≤ 𝑜1,(𝑘, 𝑗)	𝑃1,0#9 (26) 
 

�̇�(𝑖, 𝑗) 	= 𝑎1,	𝑃1,(𝑘, 𝑗)% + 𝑏1,	𝑃1,(𝑘, 𝑗)
+ 𝑐1,	𝑜1,(𝑘, 𝑗) 

(27) 

 
FC Power Change Constraints: 

∆𝑃1,C (𝑘, 𝑗) 	≥ 𝑃1,(𝑘 − 1, 𝑗) − 𝑃1,(𝑘, 𝑗) (28) 
 

∆𝑃1,C (𝑘, 𝑗) 	≥ 𝑃1,(𝑘, 𝑗) − 𝑃1,(𝑘 − 1, 𝑗) (29) 
 

FC degradation constraints: 
𝑙1,(𝑘, 𝑗) = 𝑙'53'11(𝑘, 𝑗) + 𝑙&'#23,4#56*(𝑘, 𝑗)

+ 𝑙47643&'#2(𝑘, 𝑗) + 𝑙72&756(𝑘, 𝑗) 
(30) 

 

𝑙&'#23,4#56*(𝑘, 𝑗) = 	
∆𝑉&'#23,4#56*	𝐶1,

𝑉2)'80#9 ∆𝑃1,C (𝑘, 𝑗)	 (31) 

 

𝑙'53'11(𝑘, 𝑗) =
∆𝑉'53'11	𝐶1,

𝑉2)'80#9 𝑠1,(𝑘, 𝑗) (32) 

 
𝑃1,(𝑘, 𝑗) − 𝑃1,

4764

𝑃1,0#9 − 𝑃1,
4764 ≤ ℎ1,(𝑘, 𝑗) (33) 

 

ℎ1,(𝑘, 𝑗) ≤
𝑃1,(𝑘, 𝑗) − 𝑃1,075

𝑃1,
4764 − 𝑃1,075

 (34) 

 
𝑃1,&': − 𝑃1,(𝑘, 𝑗)
𝑃1,&': − 𝑃1,075

≤ 𝑖1,(𝑘, 𝑗) (35) 

 

𝑖1,(𝑘, 𝑗) ≤
𝑃1,0#9 − 𝑃1,(𝑘, 𝑗)
𝑃1,0#9 − 𝑃1,&':

 (36) 

 
𝑙72&756(𝑘, 𝑗)

=
𝜆	∆𝑡	∆𝑉72&756	𝐶1,	(𝑖1,(𝑘, 𝑗) + 𝑜1,(𝑘, 𝑗) − 1)

3600	𝑉2)'80#9  (37) 

 

𝑙47643&'#2(𝑘, 𝑗) =
𝜆	∆𝑡	∆𝑉47643&'#2	𝐶1,	ℎ1,(𝑘, 𝑗)

3600	𝑉2)'80#9  (38) 

 
where (27), (31), (32), (37), and (38) correspond to (10), (11), 
(12), (13), and (14), respectively. The lower and upper power 
thresholds for each a FC stack are denoted by 𝑃1,075 and 𝑃1,0#9. 
The power thresholds for idling and high-load conditions are 
represented by 𝑃1,

4764 and 𝑃1,&':. The absolute value of power 
change is denoted by ∆𝑃1,C (𝑘, 𝑗) . Four binary variables, 
𝑜1,(𝑘, 𝑗) , 𝑠1,(𝑘, 𝑗) , ℎ1,(𝑘, 𝑗) , and 𝑖1,(𝑘, 𝑗) , encode the FC 
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operational states such as "on", "on-off switching", "high 
load", and "idling" conditions, respectively. 

As a result, the optimization problem is formulated as a 
MIQP problem. The primary decision variables are the power 
of each FC stack at a given time. The total number of the 
primary decision variables are reduced by utilizing the 
multiple time scale optimization structure. This adaptation 
allows for efficient problem-solving and enables real-time 
optimization capabilities.  

The proposed energy management system operates as an 
MPC controller, wherein it actively utilizes both the predicted 
future power demand and the present states of the battery and 
FC as inputs. The prediction horizon is set to 1 hour, and the 
system reruns at the interval corresponding to the FC action 
time interval (𝜆	Δ𝑡). During each interval, we use Gurobi [22] 
to solve the MIQP problem through a branch-and-bound 
approach.  Given its MPC structure and the implementation 
of a multiple time scale approach (characterized by an 
extended FC action time interval), our system inherently 
mitigates the effects of zero mean predicted power demand 
errors and has robustness properties with respect to 
measurement noise and external disturbances.  

V. RESULTS AND DISCUSSION 

A. System Setup 
We tested the proposed system using a real power profile of 

a container ship spanning 3600 seconds with a 1-second 
sampling interval, depicted in Fig. 8. It represents a segment 
of the port-to-port power profile captured from the container 
ship Sealand Balboa on March 22, 2023. The chosen profile 
is particularly apt for testing due to its coverage of both the 
low load and high-power range, exhibiting a significant power 
difference of 13156 kW between its minimum and maximum 
values. 

 
Fig. 8. The power demand profile for testing. 

 
Sealand Balboa has an internal combustion propulsion 

system with a peak engine power output of 21660 kW. 
Accordingly, we consider a hybrid ship powertrain with 10 
FC stacks and 1 battery pack. Here, each FC stack is capable 
of 2000 kW of power. Additionally, the battery pack has an 
energy capacity of 2500 kWh. To compute operational costs, 
hydrogen is priced at $4/kg. The costs for the fuel cell and 
battery are set at $960/kW and $178.41/kWh, respectively, 
according to sources [23] and [24]. The initial SOC for the 

battery is set at 50%. A terminal constraint is established to 
ensure the battery maintains a maximal reachable set for 
subsequent operations. Namely, the battery SOC must be 
greater than or equal to 50% at the end of the optimization 
timeframe. 

B. Comparative Analysis of Control Methods 
We use the DP approach as a benchmark for evaluating our 

proposed algorithm's performance. Given the hybrid energy 
system under study, with its multiple fuel cell stacks, 
employing DP comes with the significant challenge of 
increasing computational costs, also known as the "curse of 
dimensionality". As the number of state variables grows, 
computational complexity surges. To mitigate this, the DP 
method treats all FC stacks as a unified entity under the 
"Collective Stack Control (CSC)" method, where they all 
receive identical control instructions. The DP method's grid 
sizes for SOC and fuel cell output power are defined at 1% 
and 200 kW. Besides, the DP time step is 1 second, which 
matches the time interval of the power profile. In contrast, our 
proposed MIQP method allows for individual control of each 
fuel cell stack, termed the "Individual Stack Control (ISC)" 
method. In the test case, we set a value of λ to 100, 
corresponding to a 100-second interval for FC action 
selection. 

 
Fig. 9. Comparative power analysis between DP with the 
Collective Stack Control control method and the proposed 
MIQP method with the Individual Stack Control method. 
 

 
Fig. 10. Power distribution across different FC stacks using 
the proposed MIQP method. 
 

As shown in Fig. 9, the power splitting between the FC and 
the battery is different when employing the proposed MIQP 
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and DP methods. The net FC power delineated in the figure 
represents the total power contributions from all FC stacks. 
While the power profiles of both methods are similar in high-
power load regions, differences become obvious in the low-
power load zones. This difference arises from our proposed 
method's capability to independently control each FC stack. 
This individual control permits the shutdown of redundant FC 
stacks, avoiding FC idling degradation losses and ensuring 
optimal fuel efficiency, thus minimizing FC degradation and 
fuel consumption costs. The powers across individual FC 
stacks are shown in Fig. 10. Notice the power levels are non-
uniform at low demand periods.  

Comparative findings between DP and our proposed 
method for λ=100 are summarized in TABLE III. Notably, 
despite activating stacks 1-5 and 7, which leads to additional 
on-off switch loss, our method achieves a total cost that is 
12.72% less than DP. This outcome highlights the advantages 
of adopting an ISC approach over the CSC approach. 
Additionally important, the computational speed of our 
proposed algorithm is 136x times faster than the DP method, 
even with individual FC stack control. 

 
TABLE III 

COMPARISON METRICS BETWEEN DP AND PROPOSED 
METHOD 

 DP 
Proposed 
Method 

(𝜆 = 100) 
Battery degradation loss ($) 102.5907 32.3721 
H2 consumption cost ($) 1635.2 1599.2 
FC idling loss ($) 242.9 0 
FC high load loss ($) 0 0 
FC load change loss ($) 48.6 26.6 
FC on/off switch loss ($) 0 112.9 
Total cost ($) 2029.3 1771.1 
Total computational time (s) 9492.7 69.7 

 
C. Investigation of the scale size 
We conducted tests on our proposed system using different 

(time) scale values to observe their impacts on total cost and 
computational time. Our findings are presented in Fig. 11, 
which shows that there is a correlation between scale value 
and total cost. As the scale value 𝜆  increases, there is a 
gradual increase in total cost. However, we also observed that 
there is a significant decrease in computational time with 
increasing scale value. Due to the consistency of the container 
ship's power profile, the increase in total cost is not as 
significant as the reduction in computational time. For 
example, by changing the scale value from λ = 10 to λ = 100, 
we saw only a slight 0.24% increase in total cost. However, 
the computational time reduced to one-tenth of its original 
duration. These results demonstrate the benefits of using a 
multi-timescale EMS approach, which improves 
computational efficiency and enables real-time operation 
while remaining close to optimal outcomes. 

 
Fig. 11. Scale value vs. Total cost and Total computational 
time. 
 

It is important to note, however, that increasing the scale 
value arbitrarily is not feasible. If the scale value is set too 
high, it may cause an FC stack to remain unchanged for an 
extended period, leading to an infeasible optimization result 
in the presence of sudden and large changes in demand. This 
is because the battery may not be able to handle the power 
difference due to its SOC and current constraints. This 
motivates adjusting the scale value dynamically during 
operation. For instance, a smaller scale value should be used 
during sailing and berthing when sudden and significant 
power changes may occur. This can ensure optimization 
feasibility and achieve low total cost. Conversely, higher 
scales can be used when power remains relatively consistent 
to save computational resources. 

VI. CONCLUSION 
Through detailed analysis of a real container ship power 

demand dataset, our study found that 12.4% of operations fall 
into the low power demand category. Additionally, we 
discerned a pronounced consistency in the power 
consumption time signal for container ships. This 
characteristic of the power demand profile provided the 
foundation for our multi-time scale optimization algorithm. 
Leveraging this consistency, our method assigns longer step 
intervals to FC actions, thereby reducing computational 
complexity while ensuring the system's efficiency. Compared 
to the DP method employing the Collective Stack Control 
approach, our proposed system, which uses the Individual 
Stack Control approach with λ=100, achieved a 12.72% cost 
reduction and operated at a computational speed that was 
136x faster. 

Given its efficiency and adaptability, we find the multi-
time scale EMS approach is promising for overcoming the 
tradeoff between performance and computational complexity, 
with potential applications in other large-scale transportation 
modes. A practical challenge of applying this approach in 
real-world scenarios is the requirement for prior knowledge 
of the power demand profile. Therefore, future research could 
investigate methods for predicting power demand or aim to 
design a system that optimizes sailing speed, thereby directly 
offering an optimized future power demand profile. 
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