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Abstract— Articulated vehicles are susceptible to instability
issues due to their distinct dynamic properties. Most existing
control strategies focus on constructing an integrated model,
yet an accurate parametric model for a complex nonlinear
system might be unavailable. To address this, a bilevel con-
trol structure is established, with the upper level generating
corrective yaw moments and the lower level focusing on
control allocation, then data-driven predictive control method
is introduced, which relies only on input/output measurements
to construct a non-parametric representation of the system, this
method is implemented in a receding-horizon manner similar to
MPC, incorporating constraints to achieve safe maneuvering.
The effectiveness of the proposed controller is presented by
simulation results, which further confirm its potential in vehicle
dynamics control.

I. INTRODUCTION

In recent years, articulated vehicles such as caravans and
trailers have become increasingly important for both com-
mercial and personal needs due to their efficiency and ver-
satility [1]. Unlike single unit vehicles, articulated vehicles
show different dynamic characteristics, making them prone
to suffer from instability issues like jack-knifing, snaking and
rollover.Advances in technology are driving the development
of next-generation trailer platforms with advanced driving
assistance systems, significantly improving the safety.

Extensive theoretical and validation research has been con-
ducted to enhance the safety of such vehicles. Some research
focuses on tractor control, Hac et al. [2] focuses on tractor
control, developing linear models to analyze lateral motions
and validate control methods like uniform braking and direct
yaw moment (DYM). Mattia et al. [3] formed a SISO control
scheme using a PI controller with torque vectoring(TV) to
track reference states. Some focus solely on trailer controls,
using trailer differential braking or active steering. Sharp
and Fernandez [4] propose an active braking system for
car-caravan systems, generating a braking torque on either
side of the trailer to damp the oscillation on the hitch.
Shamim et al. [5] examined different strategies for lateral
stability enhancement based on LQR controllers, showing
the efficiency of trailer active braking. Other studies prefer
integrated control of both units. Jalali et al. [6] studied MPC
of lateral stability of vehicles using coordinated active front
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steering and differential brakes. Abroshan et al. [7] presented
a MPC based controller for yaw stabilisation, demonstrating
the stabilizing potential of integrated differential braking.
Integrated control strategies require high-fidelity models for
optimal performance, while not all parameters are accessible.

In most of the previous literature, a precise formulation of
a vehicle’s dynamic model is indispensable for devising its
controller, which requires expert knowledge and experience.
While model-based methodologies like MPC are favored
for vehicle control due to its capability to optimize over
a prediction horizon [8], their performance relies heavily
on precise system modeling. Model mismatch and uncer-
tainties in state estimation may lead to degradation of the
controlling quality, while recent advancements in data driven
control theory provide an elegant approach to cope with
this issue. Rooted in behavioral system theory, Data-enabled
Predictive Control (DeePC) [9] is able to achieve optimal
control for unknown system, requiring only input and output
measurements from the system. Different from the sequential
system identification, rather than generating an approximate
model, DeePC relies on Willem’s fundamental lemma [10]
to directly predict future trajectory, making it suitable for ar-
ticulated vehicle control, where load variability complicates
system modeling.

Practical applications of DeePC have been seen in quad-
copter, power grids, cruise control, etc. [11], [12], [13] The
robustness of regularized DeePC for nonlinear system is
discussed in [14]. Inspired by the potential of leveraging
these accessible data with no need of system modelling,
this paper proposes a data-driven control method for a four-
wheel drive electric vehicle towing a trailer equipped with
differential braking. The main contributions are summarized
as follows: (i)Establishing a bilevel reconfigurable predictive
control scheme for lateral stability improvement of articu-
lated vehicles. (ii) Modify the DeePC algorithm to generate
corrective yaw moments. (iii) Providing simulation results
of different controller configurations to demonstrate its po-
tential. To our current knowledge, data-enabled predictive
control haven’t been previously utilized for vehicle dynamic
problems.

The rest of the paper is organized as follows - Section
II describes the tractor-trailer dynamics system modeling
and a MPC-based controller setup. Section III introduces
the data-enabled predictive control approach and presents
its modification and detailed implementation for vehicle
stability control. Section V presents the experimental results
and conclusions are drawn in Section VI.
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Fig. 1. Single-track articulated vehicle model

II. PRELIMINARIES
In this section, we first introduce the parametric system

modeling of a tractor-trailer combination. Then, a Model
Predictive Controller (MPC) is designed to compute cor-
rective center-of-gravity (CG) yaw moments for each unit
respectively, minimizing the tracking errors between actual
states and the reference values, the desired yaw moments
are then converted to torques on each wheel using Torque
Vectoring (TV), the demand torques are generated by friction
brakes or electric motors.

A. System Modeling
A single-track planar articulated vehicle model severs as

the reference model, as depicted in Fig. 1. The system
comprises a two-axle tractor and a single-axle trailer. To
mitigate trailer sway effect, the reference model must take
lateral motion characteristics of both units into consider.
Based on prior research results [7], yaw stability analysis
can be simplified with certain assumptions: the longitudinal
speed of the vehicle is treated as positive and constant; yaw
angle, hitch angle and steering wheel angle are assumed to
be small. Pitch and roll movements are ignored. The hitch
exerts only horizontal force. For the tractor and trailer unit
respectively, it holds that:

m1(v̇1y + v1xγ1) = F1x sin δ + F1y cos δ + F2y + Fyh

Iz1γ̇1 = (F1x sin δ + F1y cos δ)a1 − F2ya2 − Fyha3 +Mz1

m2(v̇2y + v2xγ2) = F3y + Fxh sinψ − Fyh cosψ

Iz2γ̇2 = (Fxh sinψ − Fyh cosψ)b1 − F3yb2 +Mz2

(1)
where δ, ψ denote the steering angle and hitch angle.
F1, F2, F3 are the tire forces on each axle, and Fxh, Fyh the
forces on the hitch point. Mz1,Mz2 is the corrective yaw
moment on each unit.

The tractor and trailer’s connection at the hitch ensures
identical absolute positions and velocities at that point,
resulting in the following kinematic coupling:

v2x = v1x + (v1y − a3γ1) sinψ

v2y = v1y − v1x sinψ − (a3 + b1)γ1 + b1ψ̇

γ2 = γ1 − ψ̇

ψ̇ = −vx
l1
(
l1
l2

sinψ + (
a3 − a2
l2

cosψ + 1) tan δ)

(2)

For the tractor-trailer system, we have that, u(t) =
[Mz1,Mz2]

T ∈ R2 is the control input, x(t) =

[v1y, γ1, ψ̇, ψ]
T ∈ R4 is the state vector, y(t) = [γ1, ψ̇]

T ∈
R2 is the output of the system, and a measurable external
input d(t) = [δ] ∈ R, which means the steering angle of front
axle in this case. Considering the small angle approximation,
the linearized state-space representation is obtained.{

ẋ(t) = Ax(t) +Bu(t) +Hd(t)

y(t) = Cx(t)
(3)

B. Desired Vehicle Response

To mitigate the trailer instability under extreme circum-
stances, active control systems should track the desired
response from the reference model, prior studies [3] suggest
controller based on yaw rate of the tractor and hitch error
can ensure trailer safety. The desired tractor yaw rate is the
steady-state response can be expressed as:

γss1 =
vx

l1 + ktv2x
δ (4)

where kt is the combined understeer coefficient, which is
defined as below:

kt =
m1a2l2 +m2b2(a2 − a3)

l1l2Cα1
− m1a1l2 +m2b2(a1 + a3)

l1l2Cα2
(5)

where l1 = a1 + a2, l2 = b1 + b2.
The desired yaw rate should be bounded by driving

conditions, tire saturation on a low friction road may not
allow a high yaw rate demand, hence the desired yaw rate
is defined as below:

γd1 =

{
γss1 , if | γss1 |< µg/vx

sign(γss1 )µg/vx, if | γss1 |≥ µg/vx
(6)

Using the kinematic relationship of the two units, the target
hitch angular rate can be tracked. In a steady state, the hitch
rate should be zero.

ψ̇d = 0 (7)

C. Upper Level Controller

The block diagram of the proposed control scheme is
shown in Fig. 2. The driver’s steering command is passed to
the vehicle as a feedforward input. yd is the desired vehicle
state and x the state measurements. Desired corrective yaw
moments for the tractor and trailer are derived in the upper
layer, and then converted into driving or braking torques on
each wheel in the lower level controller.

MPC is chosen as the upper level controller in this setup,
as a comparison with DeePC, it optimizes over a finite time
horizon based on the prediction, minimizing the objective
function using a specified system model. To facilitate the
computation of MPC, the response of the system model is ap-
proximated by discretization, the input signal is reconstructed
by Zero Order Hold (ZOH) with the time step Ts.

The problem statement of constrained finite-horizon op-
timal control can formulated. Given the current time t ∈
Z≥0, time horizon Tf ∈ Z≥0, constraint sets for input
and output U ⊆ Rm,Y ⊆ Rp, the objective is to find
a sequence of feasible control inputs that when applied
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Fig. 2. Block diagram of the proposed control scheme

to system (3), minimizes cumulative stage costs without
violating the constraints:

minimize
u,y

t+N−1∑
k=t

∥yk − rk∥2Q + ∥uk∥2R

s.t. x(k + 1) = Adx(k) +Bdu(k) +Hdd(k)

y(k) = Cdx(k),∀k ∈ {t, . . . , t+N − 1}
u(k) ∈ U , y(k) ∈ Y,∀k ∈ {t, . . . , t+N − 1}
x(t) = x̂(t)

(8)
The problem should be solved in a receding-horizon

manner at each step, where N ∈ Z>0 is the time horizon,
the coefficient matrices Q ⪰ 0, R ≻ 0 are positive or semi-
positive, and marks the cost on deviation from the reference
value, the norm ∥uk∥R denotes the quadratic form uTkRuk,
rk = col(γ1r, ψ̇r) denotes the reference output of the system.
x̂ means the estimate of state at time t, we assume the that
the entire state is measured.

D. Lower Level Controller

In the lower level, the corrective yaw moments derived
from the upper level controller are executed by applying
proper torque on the wheels of the tractor and trailer, thus
the yaw moment is realized because of the longitudinal force
difference on each axle. Apart from differential braking,
other control scheme like active steering is also compatible
with this scheme. The dynamics equations of the tractor unit
can be obtained from a double-track model as:{

Fxfl + Fxfr + Fxrl + Fxrr − Fxh = max

(Fxfl − Fxfr)d/2 + (Fxrl − Fxrr)d/2 =Mz

(9)

where d is the track width of the front and rear axles. Since
the longitudinal force of each wheel is constrained by the
road friction coefficient, the following condition should be
met:

|Fxi| ≤ min(
√
(µmaxFzi)2 − F 2

yi, Tmi/r) (10)

The torques are distributed according to the vertical force
on each wheel, generated by in-wheel motors or differential
braking, considering the capacity of the actuators.

III. DATA-ENABLED PREDICTIVE CONTROL

In this section, we briefly introduce Data-enabled Pre-
dictive Control [9] methodology, then present the problem
formulation and detailed implementation of DeePC for the
lateral stability improvement of articulated vehicles.

A. DeePC for LTI Systems

Data-enabled Predictive Control is non-parametric ap-
proach for identification and control of dynamic systems.
It utilizes input and output data to form a Hankel matrix
as a system model. DeePC excels in handling constraints
and non-linearity Due to its effectiveness and simplicity of
implementation, so it’s adopted in this article.

Consider the system defined in (3), according to Willem’s
fundamental lemma [10], when the system is a deterministic
LTI minimal realization, its controllability and observability
can be guaranteed. For a data sequence of control inputs
u = {u(i)}Ti=1 ⊂ Rm, T is the total step of pre-collected
data used to construct the Hankel matrix, the matrix has L
block rows. Let L, T ∈ Z>0 , such that T ≥ L. The signal u
is called persistently exciting of order L if the Hankel matrix
HL(u) has full row rank.

HL(u) :=


u(1) u(2) . . . u(T − L+ 1)
u(2) u(3) . . . u(T − L+ 2)

...
...

. . .
...

u(L) u(L+ 1) . . . u(T )


where u(i) = col(u1, u2, . . . , um). Persistently exciting re-
quires the sequence to be long and rich enough, specifically,
the length T must satisfy T ≥ (m+ 1)L− 1.

Theorem 1 Td, L ∈ Z>0, (ud, yd) = {ud(i), yd(i)}Td
i=1

is a sequence of signals including input and output data
points of length Td, assume the input signal is persistently
exciting of order L+n, then (ud, yd) = {ud(i), yd(i)}Li=1 is
a trajectory only if their exists a g ∈ RTd−L+1 that satisfies:[

HL(ud)
HL(yd)

]
g =

[
u
y

]
Thus, a non-parametric model for (3) is constructed from

raw data. This theorem allows us to perform an implicit state
estimation and prediction based on data. Let Td ∈ Z>0 be
the time horizon of data collection and Tini ∈ Z>0 be the
horizon for initial state estimation. (ud, yd) is a sequence of
input/output data collected offline, suppose the input (ud) =
{ud(i)}Td

i=1 is persistently exciting of order Tini+Tf +n, we
can map the data points into two Hankel matrices:[

Up

Uf

]
:= HTini+Tf

(ud),

[
Yp
Yf

]
:= HTini+Tf

(yd) (11)

the Hankel matrices are partitioned into past and future
trajectories, where Up consists of the first Tini block rows
of HTini+Tf

(ud), and Uf the last Tf block rows, the same
is for Yp, Yf . Now let (uini, yini) = {uini(t + i), yini(t +
i)}−1

i=−Tini
be the Tini most recently collected input/output

measurements of the system. By Theorem 1, (u, y) = {u(t+
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i), y(t+i)}Tf−1
i=0 would be a possible future trajectory if their

exists g ∈ RTd−Tini−Tf+1 satisfying:
Up

Yp
Uf

Yf

 g =


uini
yini
u
y

 (12)

For the reconstructed Hankel matrix on the left side, every
column of it corresponds to a pre-collected trajectory of
length Tini + Tf , and the predictive trajectory on the right
side can be synthesized by a linear combination of these
trajectories. The first two blocks implicitly fixed the initial
condition, if Tini > L, where L is the lag of the system,
the future trajectory can be uniquely determined by solving
the first three blocks in (12), and the output can be given by
u = Ufg.

The scheme above performs state estimation and pre-
diction at the same time, an optimization control problem
can be formulated like (8),and (12) serves as the equality
constraints. This optimization problem was proved to be
equivalent to the MPC form. The problem is solved in a
receding horizon manner, the optimization variable g, which
is a vector indicating the weight of each trajectory, is solved
for every step, and the first input in the vector u is applied
to the system.

B. DeePC Formulation for trailer stability control

In practical DeePC applications, the assumption of LTI
system does not fully apply, as the vehicle model used in
MPC has undergone several linearization and approximation,
and the data measured may be corrupted by noise. Regular-
ization is introduced to address this issue. An auxiliary slack
variable is added to help set the initial condition, a 2-norm
penalty of the deviation between estimated and measured
initial state is added into the objective function, in order to
ensure feasibility and improve the prediction precision.

The cost also includes penalty on g to avoid overfitting,
causing the corresponding trajectory to lose its accuracy in
describing the behavior of the system. For lateral stability
control, steering angle is an uncontrollable but predomi-
nant factor that must be taken into account. To incorporate
this external input signal into the trajectories, we construct
another Hankel matrix of external input in the same way
as HL(u), provided the pre-collected external input signal
(dd, yd) = {dd(i)}Td

i=1, the matrix is separated into p and f
parts: [

Dp

Df

]
:= HTini+Tf

(dd) (13)

where Dp, Df represent rows in the same way as (12).
To estimate the initial state of external input, the past Tini
steps of d(t) is measured and updated online in dini. The
flexibility of DeePC framework enabled easy modifications
to the original algorithm, any parameters can be easily
taken into consider by adding its signal into the input/output
measurements, requiring no extra costly system remodeling

work. The final form of optimization problem is defined as:

minimize
u,y,g

t+Tf−1∑
k=t

∥yk − rk∥2Q + ∥uk∥2R

+ λg∥g∥2 + λy∥σy∥2

s.t.


Up

Dp

Yp
Uf

Df

Yf

 g =


uini
dini
yini
u
d
y

+


0
0
σy
0
0
0


u(k) ∈ UTf , y(k) ∈ YTf ,

∀k ∈ {t, . . . , t+ Tf − 1}

(14)

where λg, λy > 0 are the regularization term and slack
variable penalty term coefficient. Note that the arrangement
of the partitioned Hankel matrices does not necessarily be
fixed, but the p matrices must be used for initial state
estimation and f matrices for prediction. The optimization
problem is solved for each iteration in a receding horizon
manner, detailed algorithm of this extended DeePC scheme
is shown in Algorithm 1.

Algorithm 1 Regularized and Extended DeePC
Input: constraint sets U , Y , reference trajectory r ∈ RpTf ,

cost matrix Q, R, regularization terms coefficient λg, λy ,
pre-collected data sequence {(ud(i), dd(i), yd(i))}Td

i=1, the
most Tini recent past measurements (uini, dini, yini).

1) Construct Hankel matrices using the pre-collected data;
2) Initialize recent data measurements before time t0;
while True do

3) Solve optimization problem (14) and set g∗ equal
to its solution;

4) Calculate optimal input sequence u∗ = Ufg
∗;

5) Apply the first input in u∗ to the system;
6) Set t to t + 1 and update most recent input/output

measurements (uini, dini, yini).
end while

We can now formulate the non-parametric representation
of the articulated vehicles, incorporating DeePC for optimal
upper-layer control, which calculates two corrective yaw mo-
ments for both units. To include steering wheel angle as an
uncontrolled external input, we extended the standard DeePC
algorithm. The optimization problem is formulated as (14),
where u(t) = [Mz1,Mz2]

T ∈ R2, y(t) = [γ1, ψ̇]
T ∈ R2,

d(t) = [δ] ∈ R. Note that future prediction of steering angle
cannot be acquired in advance, it is reasonable to assume it
to be zero, i.e. d = 0Tf

, reflecting the driver’s inclination
towards maintaining straight driving after maneuvering.

In the offline data collection phase, obtaining extensive,
rich data is essential. Although measurement noise and
unpredictable driver behavior often yield full-rank data, being
persistently exciting alone may not suffice for accurate model
approximation. As suggested by [11], random inputslike
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white noise or PRBS signals are preferred for system ex-
citation, but manual inputs are also suffice. However, using
completely random signals is typically impractical or unsafe
for high-speed vehicles, causing discomfort, loss of control,
and load shifts, especially on low-traction surfaces.

In our setup, we collect data by applying uniformly-
distributed input signals within a safe range to ensure excita-
tion without causing tire saturation. Different sampling inter-
vals are adopted for steering and yaw moment inputs due to
differences in actuator response times. Considering vehicles
as low-pass filters, we extend input signal over multiple steps
to capture response adequately. This procedure facilitates the
derivation of data sequences for Hankel matrices contruction
in (14).

IV. SIMULATION RESULTS
This section showcases the test results of the introduced

method. Data-enabled Predictive Control based method is
compared with linear MPC to show its effectiveness for artic-
ulated vehicle stability control. The simulation is conducted
on a Windows system personal computer equipped with
Intel(R)i5-10400F CPU operating at 2.90GHz. The controller
is implemented in Simulink, and a co-simulation is executed
using the high-fidelity, physics-based simulator, Carsim.

A. Experimental Setup
We consider an articulated vehicle assembly which con-

sists of a large European van and an one-axle rental trailer,
the two units are jointed at the pintle hitch. This setup serves
as the basis for data collection and test scenarios, all of the
simulations are conducted at a longitudinal speed of 80 km/h,
the adhesion of the simulation roads is 0.75, the simulation
time step is set to 0.5 ms.

For the offline data collection phase of DeePC, the in-
put/output data is accessed through MATLAB-Carsim co-
simulations. We use the following parameters for excitation
signal, as shown in Fig. 3. The length of the collected
data points used to construct the Hankel matrices in (14)
is Td = 176, deriving 159 trajectories in total. A uniform
distribution sampling from range [−0.03, 0.03] is added on
the front wheel steering angle, the sampling interval is 0.64
s. The yaw moment input on the tractor and trailer is sampled
in a similar way, the range is [−2000, 2000] and [−750, 750]
respectively with a sampling interval of 0.32 s. A rate limiter
is set on the steering input, corresponding to a max steering
wheel angle rate of 180 deg/s, thus enabling manual input
in real world.

During online predictive control, the optimization prob-
lems in (8) and (14) are solved iteratively at a frequency of
25 Hz, for DeePC, the time horizons for past and future tra-
jectories are set to Tini = 6, Tf = 12. In the object function,
the weight coefficients are set as Q = diag(2×106, 1×107),
R = diag(3× 10−7, 6× 10−7), the regularization terms are
set as λg = 4× 10−6, λy = 1× 103.

B. Double Lane Change Test
Double lane change (DLC) maneuver is a common test

involving rapidly changing lanes twice in succession within
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Fig. 3. Excitation signals for data collection

2 3 4 5 6 7 8 9 10 11 12
-20

-10

0

10

20

H
it
c
h
 A

n
g
le

 [
d
e
g
] Passive

MPC

DeePC

2 3 4 5 6 7 8 9 10 11 12

Time [s]

-50

0

50

T
ra

ile
r 

y
a
w

 r
a
te

 [
d
e
g
/s

]

Passive

MPC

DeePC

Fig. 4. Tractor-trailer responses to the DLC test

a short distance. Driver preview time in this scenario is
0.7 s. The dynamic responses of the articulated vehicles
are presented in Fig. 4, the figure indicates that the hitch
angle reaches the peak during the second lane change at
t ≈ 7.5 s. For the case with DeePC, the maximum hitch
angle is reduced to lower than 9 deg, but for the uncontrolled
vehicle the value goes up to over 20 degree, decreasing the
peak angle by 72.8%. Compared to the passive case, DeePC
and MPC both improve the stability of the tractor-trailer
combination, but DeePC shows better tracking performance,
lateral motion of the trailer and the hitch variation are mit-
igated, relevant variables are kept at a minimum throughout
the entire experiment, and the oscillation damps out earliest
under the DeePC controller, suggesting quicker dynamic
response time.

C. On-Center Steer Test

The vehicle is vulnerable may suffer from instability in
snaking conditions, we initiate this instability by conducting
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an on-center steer test. Driver preview time in this test is
0.85 s. From the results shown in Fig. 5 we can conclude
that DeePC apparently mitigates yaw movement for the
trailer. In the passive case the trailer shows large amplitude
oscillations, the peak hitch angles are decreased by 26.5%
and 50.8% respectively in other cases, similar results apply
for the lateral motion of the trailer. Both MPC and DeePC has
contributed to improvement on stability but DeePC clearly
has more capacity to track desired values. To sum up, the
results indicate that the trailer controlled by DeePC has better
lateral stability than MPC, which means lower peak values
and shorter responsing time.

We also recorded the computation time for each step
during the simulation, which is shown in Fig. 6. MPC and
DeePC have the same prediction horizon and control horizon
in this setup, and the average computation time for DeePC is
0.1116 s, which is 52.3% lower than that of MPC, 0.2339 s.
The computation time of MPC nearly doubled in the worst
case. Both optmization problems are solved by fmincon,
while DeePC shows low computational complexity through-
out the run. The efficiency and effectiveness of DeePC is
well demonstrated in this scenario, making it possible for a
real-world implementation.

V. CONCLUSIONS

This study presents a data-driven predictive control
method for sway mitigation in tractor-trailer assemblies,
utilizing vehicle control input and output data instead of
parametric models. Simulation results show that the DeePC
algorithm outperforms MPC in tracking accuracy and so-
lution speed for real-time control. DeePC is particularly
beneficial in cases lacking precise first-principles models or
key parameters.

Future directions include developing efficient data collec-
tion scenarios, optimizing the selection of vehicle trajec-
tories, and enhancing the robustness and interpretability of
data-driven methods through real-vehicle testing. Investigat-
ing adaptive Hankel matrices for varying driving conditions
is also an interesting direction.
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