
Using quantum computers in control: interval matrix properties

Jan Schneider, Julian Berberich

Abstract— Quantum computing provides a powerful frame-
work for tackling computational problems that are classically
intractable. The goal of this paper is to explore the use of
quantum computers for solving relevant problems in systems
and control theory. In the recent literature, different quantum
algorithms have been developed to tackle binary optimization,
which plays an important role in various control-theoretic prob-
lems. As a prototypical example, we consider the verification of
interval matrix properties such as non-singularity and stability
on a quantum computer. We present a quantum algorithm
solving these problems and we study its performance in simula-
tion. Our results demonstrate that quantum computers provide
a promising tool for control whose applicability to further
computationally complex problems remains to be explored.

I. INTRODUCTION

Quantum computing has gained increasing attention in
recent years due to its ability to solve certain computationally
challenging problems more efficiently than classically pos-
sible. This includes, for example, integer factorization [1],
unstructured search [2], or linear systems of equations [3],
but also the simulation of classical [4], [5] and quantum [6],
[7, Section 4.7] systems. However, these algorithms cannot
be implemented reliably for relevant problem sizes on current
noisy intermediate-scale quantum (NISQ) devices [8] due
to problems connected to noise and scalability. Variational
quantum algorithms (VQAs) are a promising class of quan-
tum algorithms which combine a quantum computer with a
classical optimization algorithm [9]. VQAs involve trainable
parameters which are optimized iteratively using, e.g., a
gradient descent scheme, and, therefore, they are well-suited
for NISQ devices due to their adaptation to small and noisy
hardware. The quantum approximate optimization algorithm
(QAOA) [10] is one of the most popular VQAs and it can be
used to solve a specific class of integer programs: quadratic
unconstrained binary optimization (QUBO) problems.

Problems with integer variables are relevant in various
domains of systems and control theory and, therefore,
QAOA is a promising candidate for achieving computational
speedups in control. Further quantum algorithms that can
tackle computational control problems are listed in [11].
Yet, the usage of quantum computers in control is largely
unexplored, except for results on, e.g., MPC with finite input
spaces [12] or decentralized control [13]. In this paper, we
propose an algorithm for the verification of interval matrix

The authors are with the Institute for Systems Theory and Auto-
matic Control, University of Stuttgart, 70569 Stuttgart, Germany. E-
mail: julian.berberich@ist.uni-stuttgart.de, contact for correspondence: J.
Berberich. Funded by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2075
- 390740016. We acknowledge the support by the Stuttgart Center for
Simulation Science (SimTech).

properties, which is known to be a computationally hard
problem, on a quantum computer.

In computational complexity theory, problems can be
classified according to the time required for their solution.
Problems which can be solved with a polynomial-time al-
gorithm belong to class P and those whose solution can be
verified in polynomial time belong to class NP. For NP-hard
problems, which are problems to which every problem in NP
can be reduced efficiently, there exist no known polynomial-
time algorithms on a classical computer. Various control-
theoretic problems have been shown to be NP-hard, including
static output feedback design or verifying interval matrix
properties [14], [15], [16].

In this paper, we introduce an approach for verifying
interval matrix properties on a quantum computer. We focus
on two main properties: robust non-singularity and robust
stability of interval matrices, meaning that all members of
the interval matrix are non-singular or stable, respectively.
Existing research by [14] shows that the verification of robust
non-singularity can be equivalently reformulated as a binary
optimization problem. Given that this binary optimization
problem is a QUBO problem, it can be tackled using QAOA.
The main contribution of this paper is a quantum algorithm
based on QAOA which can verify robust non-singularity
and robust stability of interval matrices. The applicability
is illustrated with numerical examples.

Notation

Let e =
[
1 . . . 1

]⊤
and define the n-dimensional

discrete cube Qn = {−1, 1}n. For each element z ∈ Qn,
the matrix Tz represents a diagonal matrix with the entries
of z on its diagonal. Further, for a matrix A ∈ Rn×n, we
define

ρ0(A) = max{|λ| |Ax = λx for some x ̸= 0, λ ∈ R}. (1)

The Hermitian conjugate of a matrix A ∈ Cn×m is denoted
by A†. Finally, In denotes an n× n identity matrix.

II. INTERVAL MATRICES

In this section, we introduce the concept of interval
matrices along with the key properties that are studied in
the present paper. An interval matrix is defined as

AI = [A,A] = {A ∈ Rn×m|A ≤ A ≤ A} ⊆ Rn×m, (2)

where A and A represent an upper and lower bound matrix
and the inequality is interpreted element-wise. Further, we
define the center of an interval matrix as

Am =
1

2
(A+A). (3)

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 3834

This allows to reformulate the lower and upper bound
matrices as A = Am + ∆d and A = Am − ∆d with
∆d = 1

2 (A−A).

A. Non-singularity of interval matrices

In this paper, we study non-singularity of interval matrices
based on the radius of non-singularity. The definition of a
non-singular interval matrix is given in the following.

Definition 1. An interval matrix AI is non-singular if all
matrices A ∈ AI are non-singular.

The radius of non-singularity measures the distance of a
matrix A to the closest singular matrix according to an a
priori fixed shifting matrix ∆ and is defined as

d(A,∆) = min
ε≥0

ε (4)

s.t. A− ε∆ ≤ A′ ≤ A+ ε∆

for some singularA′ ∈ Rn×n.

This problem minimizes ε such that the interval matrix [A−
ε∆, A+ε∆] is singular, i.e., contains a singular matrix A′ ∈
[A−ε∆, A+ε∆]. Given the optimal value ε∗ of problem (4),
a non-singular interval matrix can be defined accordingly as

[A− ε∆, A+ ε∆] (5)

for any ε < ε∗. The radius of non-singularity is relevant,
e.g., for sensor processing in the presence of noise [14] or
for sensitivity analysis of linear systems [17], and it has close
connections to various concepts including the structured
singular value which is a powerful tool in robust stability
analysis [18]. Further, as we show below, it can be used to
study robust stability properties of uncertain linear systems.

As an instructive example, let us consider the matrices

A =

[
1 −1
0 1

]
,∆ =

[
1 1
1 1

]
. (6)

The boundaries of the corresponding interval matrix consid-
ered in (4) are given by

A± ε∆ =

[
1± ε −1± ε
±ε 1± ε

]
. (7)

The optimal solution of (4) is given by ε∗ = 1
3 with the

associated singular matrix

A′ = A− 1

3
∆ =

[
2
3 − 4

3
− 1

3
2
3

]
. (8)

As shown in [14], the radius of non-singularity of a given,
non-singular matrix A and a matrix ∆, can be reformulated
as a combinatorial optimization problem:

d(A,∆) =
1

max{ρ0(A−1Ty∆Tz)|y, z ∈ Qn}
. (9)

The optimization problem appearing in the denominator is
the central problem considered in this paper. The proof of
NP-hardness is given in [14] and is sketched briefly in the

following. The maximization in (9) can be simplified for the
specific choice ∆ = ee⊤, which allows to reformulate (9) as

d(A) =
1

r(A−1)
(10)

with

r(M) = max{z⊤My|z, y ∈ Qn}. (11)

It is shown in [14] that the maximum-cut problem can
be reduced to the optimization problem (11). Since the
maximum-cut problem is NP-hard, it follows that computing
the radius of non-singularity is NP-hard as well.

In this work, we derive a combinatorial optimization prob-
lem similar to (10) but for a more general class of matrices
∆ than considered in [14]. To be precise, the condition
∆ = ee⊤ is relaxed to ∆ having rank 1, allowing for more
versatile and practically relevant problem considerations.

B. Stability of interval matrices

Beyond non-singularity, we also address the problem of
stability verification of interval matrices.

Definition 2. An interval matrix AI is stable if all matrices
A ∈ AI are stable, i.e., Re(λi(A)) < 0 for all eigenvalues
λi(A) of A.

Stability of an interval matrix AI implies robust stability
of the uncertain system

ẋ = Ax (12)

with A ∈ AI , which is an important problem in ro-
bust control [19]. In [20], it is shown that, just like non-
singularity, verifying stability of interval matrices is NP-hard
as well. In the following result, we exploit that stability and
non-singularity are closely related due to the continuity of
eigenvalues in the matrix entries. For simplicity, we focus
on symmetric interval matrices. Considering general interval
matrices is an interesting issue for future research.

Definition 3. For an interval matrix AI , the symmetric
interval matrix AI

sym is defined as

AI
sym = {A ∈ AI | A = A⊤}. (13)

Stability verification of a symmetric interval matrix is
relevant in scenarios, where not only uncertainty bounds
specified by AI are available but also additional structural
knowledge on symmetry of the dynamics. The following
result shows that stability of symmetric interval matrices can
be verified based on a non-singularity test.

Proposition 4. Suppose AI
sym is a non-singular symmetric

interval matrix and there exists a stable A ∈ AI
sym. Then,

AI
sym is stable.

Proof. If A ∈ AI
sym is stable, then all its eigenvalues

have real value less than 0. Note that all eigenvalues of
the matrices in AI

sym are real due to symmetry. Since
eigenvalues are continuous functions in the matrix entries,
the non-singularity of AI

sym implies that all A′ ∈ AI
sym are

stable.

3835

Motivated by Proposition 4, we focus on deriving a quan-
tum algorithm for verifying robust non-singularity, which
then also allows to verify robust stability of a symmetric
interval matrix by testing stability of one of its elements.
Note that the eigenvalues of a single matrix can be com-
puted efficiently on a classical computer, which is the only
additional step for the stability check.

III. QUANTUM ALGORITHM

In this section, we propose the quantum algorithm for
verifying the interval matrix properties introduced above.
First, in Section III-A, we present basic elements of quan-
tum computing that are required to state and implement
our algorithm. Next, in Section III-B, the key underlying
algorithm QAOA is explained in more detail followed by
the construction of the problem Hamiltonian in Section III-
C. Finally, the overall algorithm is stated in Section III-D.

A. Quantum Basics

In the following, we present required basics of quantum
computing. For further details, we refer to the tutorial [11],
which introduces quantum computing from the perspective
of control, as well as to the textbook [7]. Qubits (short
for “quantum bits”) are the basic components of a quantum
computer, comparable to bits in classical computing. Math-
ematically, a qubit is written as

|ψ⟩ =
[
z0
z1

]
(14)

for some z0, z1 ∈ C with |z0|2 + |z1|2 = 1. We use the
standard Dirac notation |ψ⟩ for denoting quantum states and
⟨ψ| = |ψ⟩† for their Hermitian conjugate. The precise value
of |ψ⟩ is not accessible. Instead, a measurement can only
reveal that the system is in one of the two basis states

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
, (15)

where the probabilities for either outcome are |z0|2 and |z1|2,
respectively. A quantum state consisting of n qubits lives in
C2n .

The second fundamental component of a quantum com-
puter are quantum gates. These are used to manipulate the
qubits and they are represented by unitary matrices U , i.e.,
they satisfy U†U = I . The application of a quantum gate U
to an input state |ψin⟩ is defined by multiplication, i.e., the
output state is

|ψout⟩ = U |ψin⟩ . (16)

The Pauli gates X , Y , and Z are popular examples of
quantum gates and they are defined as

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (17)

For example, applying the X gate to a qubit swaps the
amplitudes of |0⟩ and |1⟩ as can be seen by

X |0⟩ =
[
0 1
1 0

] [
1
0

]
= |1⟩ (18)

|0⟩ X

Fig. 1. Quantum circuit implementing the operation (18) followed by a
measurement.

and similarly X |1⟩ = |0⟩. The final part of a quantum
algorithm is the measurement. In Figure 1, a simple example
of a quantum circuit is given which implements the operation
(18) with subsequent measurement of the qubit.

As mentioned above, qubits cannot be measured directly,
but a measurement can only return one of a finite number of
possible outcomes, where the corresponding probabilities are
determined by the probability amplitudes z0, z1 of the qubit,
cf. (14). To be more precise, measurements are always taken
w.r.t. an observable M = M†. Repeated measurements of
a state |ψ⟩ w.r.t. the observable M allow to retrieve the
expectation value

⟨ψ|M|ψ⟩ = ψ†Mψ. (19)

For many quantum algorithms, in particular VQAs, this
expectation value is the actual output of the algorithm.

B. Quantum approximate optimization algorithm

VQAs are a class of quantum algorithms combining
an optimization procedure on a classical computer with a
quantum algorithm [9]. This allows the algorithm to adapt
to noise on the quantum computer and, thereby, provide
possibly more reliable results. QAOA [10] is an important
example of VQAs. It is tailored to solving combinatorial
optimization problems and involves alternating between a
classical optimization routine to determine parameters of
quantum gates and a quantum evolution via the resulting
parametrized circuit.

In the following, we provide a brief introduction to QAOA.
QAOA can be used to solve problems of the form

max
x∈{0,1}n

C(x) (20)

for a cost function C : {0, 1}n → R. The algorithm
consists of repeated applications of parametrized unitaries
to an initial quantum state |ψ0⟩ =

[
1 . . . 1

]⊤
. The

two unitaries applied to this state are the mixing unitary
UB(βj) = e−iβjHB with mixing Hamiltonian HB = H†

B

and the problem unitary UP(γj) = e−iγjHP with problem
Hamiltonian HP = H†

P. The parameter vectors β, γ ∈ Rp

are optimization variables for the p layers of the quantum
circuit. These two unitaries are applied to the initial state
|ψ0⟩ in an alternating fashion

U(βp, γp) · · ·U(β1, γ1) (21)

with U(βj , γj) = UB(βj)UP(γj). The number of alterna-
tions p in (21) is problem-specific but typically chosen small
to enable implementations on current quantum hardware.
Figure 2 shows the 2-qubit quantum circuit consisting of
a measurement of the state

U(β2, γ2)U(β1, γ1) |ψ0⟩ . (22)

3836

|0⟩ H

U(β1, γ1) U(β2, γ2)

|0⟩ H

Fig. 2. Circuit representation of QAOA for n = 2 qubits and p = 2 layers.

Here, H denotes the Hadamard gate defined as

H =
1√
2

[
1 1
1 −1

]
, (23)

which generates the input state due to

|ψ0⟩ = (H ⊗H)(|0⟩ ⊗ |0⟩) (24)

with the Kronecker product ⊗.
Let us now discuss how the mixing and problem Hamil-

tonians HB and HP are chosen. The problem Hamiltonian
encodes the cost function C(x) into the quantum algorithm,
see Section III-C for the construction procedure. On the
other hand, the mixing Hamiltonian is used for entangling
the solution amplitudes and expanding the solution space
to create a diverse set of candidate solutions. The mixing
Hamiltonian is commonly chosen independently of the cost
function C(x) as

HB =

n∑
j=1

Xj , (25)

where we use the standard notation

Xj = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
j−1 times

⊗X ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j times

. (26)

Finally, the expectation value

⟨ψ(β, γ)|HP|ψ(β, γ)⟩ = ψ(β, γ)†HPψ(β, γ) (27)

of the parametrized state |ψ(β, γ)⟩ is determined based on
repeated measurements, compare (19). Based on this value,
a classical computer determines a new set of parameters γ
and β maximizing (27) using some optimization scheme,
e.g., gradient descent. This procedure is then repeated until
convergence. Figure 3 summarizes the basic scheme of
QAOA as an iteration between classical optimization and
execution of the quantum algorithm (27).

After converging to a set of parameters β∗, γ∗, the can-
didate solution for (20) is obtained by performing repeated
measurements of the resulting quantum state

|ψ(β∗, γ∗)⟩ (28)
=a1 |0 . . . 00⟩+ a2 |0 . . . 01⟩+ · · ·+ a2n |1 . . . 11⟩ ,

where we use the standard notation for computational basis
states, e.g.,

|0...011⟩ = |0⟩ ⊗ · · · ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩ . (29)

A measurement of |ψ(β∗, γ∗)⟩ returns the j-th computational
basis state with probability |aj |2. The computational basis
state with the highest probability (determined empirically

Parameter Update
on Classical Computer

Evaluating Cost Function
on Quantum Computer

β, γψ(β, γ)†HPψ(β, γ)

Fig. 3. Basic scheme of QAOA as an iterative optimization containing clas-
sical parameter updates and executions of parametrized quantum circuits.

by counting occurrences in repeated measurements) is then
employed as candidate solution for the original binary opti-
mization problem (20).

C. Formulating the problem Hamiltonian

In the following, we show how the problem Hamiltonian
HP can be chosen in order to compute the radius of non-
singularity via QAOA. Recall the combinatorial optimization
problem introduced in (9), i.e.,

max C̄(y, z) = max{ρ0(A−1Ty∆Tz)|y, z ∈ Qn}. (30)

In order to apply QAOA, we now transform (30) into a binary
optimization problem via a variable transformation from ±1
to 0/1. More precisely, we introduce the binary variable x ∈
{0, 1}n according to xi = 1−zi

2 and xi+n = 1−yi

2 , resulting
in

(−1)xi = zi, (−1)xi+n = yi. (31)

In order to construct a suitable HP, the relation

C(x) |x⟩ = HP |x⟩ (32)

needs to hold for any x ∈ {0, 1}n. Here, C(x) is the cost in
the new parametrization such that C(x) = C̄(y, z) for all x ∈
{0, 1}n and y, z satisfying (31). Indeed, multiplying (32) by
⟨x| from the left-hand side and using unit norm of |x⟩ yields
C(x) = ⟨x|HP|x⟩, which is why QAOA aims at maximizing
⟨x|HP|x⟩, compare (27).

The following result provides a possible choice of HP

satisfying (32).

Theorem 5. Suppose rank(∆) = 1 and define the problem
Hamiltonian

HP =

n∑
i,j=1

viãijδjZiZn+j

with (ãij) = A−1, Zi as in (26) for X = Z, and δ, v ∈ Rn

such that ∆ = δv⊤. Then, (32) holds.

Proof. First, (30) is reformulated using that ∆ = δv⊤, i.e.,
rank(∆) = 1. To this end, if λ is a non-zero, real eigenvalue
of A−1Ty∆Tz , it holds that

A−1Ty∆Tzw = A−1Tyδv
⊤Tzw = λw. (33)

Since λ ̸= 0, it follows that v⊤Tzw ̸= 0. Together with (33),
this implies

A−1Tyδ = λw(v⊤Tzw)
−1. (34)

3837

Left-multiplying by v⊤Tz yields

v⊤TzA
−1Tyδ = λ. (35)

Subsequently, this results in

max C̄(y, z) = max{|v⊤TzA−1Tyδ| |y, z ∈ Qn} (36)

= max{v⊤TzA−1Tyδ|y, z ∈ Qn}.

The absolute value can be neglected due to the (bi-)linear
cost function and the symmetry of Qn. Substituting (31) into
C̄(y, z), we obtain

C(x) = v⊤TxzA
−1Tyzδ (37)

=

xz,1v1...
xz,nvn

⊤

A−1

xy,1δ1...
xy,nδn

=

n∑
i,j=1

viãijδj(−1)xi(−1)xn+j

with

xz =
[
(−1)x1 . . . (−1)xn

]⊤
(38)

xy =
[
(−1)xn+1 . . . (−1)x2n

]⊤
.

Note that the Pauli-Z gate satisfies

Z |x⟩ = (−1)x |x⟩ , x ∈ {0, 1}. (39)

Applied to (37), this results in

C(x) |x⟩ =
n∑

i,j=1

viãijδjZiZn+j |x0, . . . , x2n−1⟩ (40)

= HP |x⟩ .

The proof of Theorem 5 consists of two parts: 1) reformu-
lation of the optimization problem (30) as a QUBO and 2)
reformulation of the QUBO as a VQA by choosing a suitable
problem Hamiltonian HP. The step 1) is inspired by [14]
but faces the additional technical challenge of considering a
general rank-1 matrix ∆ rather than ∆ = ee⊤. Further, the
step 2) follows the derivation in [21], adapted to the specific
binary optimization problem considered in the present paper.

D. The Quantum Algorithm

Algorithm 6 summarizes the overall quantum algorithm
verifying robust non-singularity of a given interval matrix
AI . It can also be used to verify stability of a symmetric
interval matrix by using Proposition 4.

IV. IMPLEMENTATION

In order to examine the performance of the
proposed algorithm, we simulate the algorithm
using the Pennylane toolbox [22] for Python. The
source code for the implementation is publicly
accessible on https://github.com/JanKyb/
Radius-Of-NonSingularity-using-QAOA.

To verify the performance, we consider two examples.
For the first example, the matrices of (6) are reconsidered.

Algorithm 6. Verifying non-singularity of an interval
matrix
Input: AI = [Am − ε∆, Am + ε∆] and ∆ = (δij) with
δij ≥ 0 and rank(∆) = 1.

1) Compute A−1
m

2) Construct problem Hamiltonian HP (cf. Theorem (5))
3) Run QAOA to compute d(Am,∆) (cf. Section III-B

and [10] for details)
4) If d(Am,∆) > ε, then AI is non-singular

Fig. 4. Counts per string for the output of the proposed algorithm when
applied to the first example.

Calculating the radius of non-singularity with the proposed
quantum algorithm leads to the results in Figure 4. The
counts shown in the figure represent an approximation of the
probabilities |aj |2 corresponding to the quantum state (28)
obtained via the proposed algorithm, followed by an addi-
tional conversion step according to (31).

It can be seen, that the first string 0000 yields the
solution with the (empirically) highest probability, i.e., the
maximum amount of counts. Transforming this string back
to the initial coordinates based on (31), the corresponding
candidate solution of (30) is given by z =

[
1 1

]⊤
and

y =
[
1 1

]⊤
. This yields the result d(A,∆) = 1

3 , which
is indeed the correct solution, compare Section II. Note that
also the solution string 1111 has a comparably large amount
of counts. Evaluating the cost function, 1111 also yields the
same optimal result as 0000, which is due to the symmetry
in the variable transformation (31) and the cost function
in (30). Moreover, several further strings corresponding to
a suboptimal solution also have a non-trivial amount of
counts. This characteristic is representative for QAOA being
a quantum algorithm with an inherently probabilistic output.

As a second and more realistic example, we study robust
stability of an RL circuit from [23], which is a prime example

3838

binary strings counts
000111 48
111000 33
111001 5
000110 2
010011 2

TABLE I
COUNTS PER STRING FOR THE OUTPUT OF THE PROPOSED ALGORITHM

WHEN APPLIED TO THE SECOND EXAMPLE

of a symmetric system. The corresponding system matrix is

A =

−2 2 0
2 −5 3
0 3 −7

 . (41)

To analyze robust stability of this system subject to additional
uncertainty, we are interested in finding a possibly large value
ε such that all symmetric matrices in [A− ε∆, A+ ε∆] are
stable, where we consider ∆ =

[
1 1 1

] [
1 1 1

]⊤
. In

the following, this analysis will be carried out by comput-
ing the radius of non-singularity d(A,∆) via the proposed
quantum algorithm.

An application of Algorithm 6 leads to a distribution
of counts analogous to Figure 4. Due to the increased
dimension, we do not depict all possible solutions but only
list the bit strings with the most counts in Table I.

The solution with the highest number of counts is 000111.
To verify that this is indeed an optimal solution, we use (31)
to transform the optimal string 000111 into the initial co-
ordinates as z =

[
1 1 1

]⊤
and y =

[
−1 −1 −1

]⊤
.

Plugging this candidate into the cost of (30) yields 4.0833.
Thus, we have d(A,∆) = 1

4.0833 and, indeed, A − 1
4.0833∆

is (approximately, i.e., modulo numerical inaccuracies) sin-
gular. Using that A is stable, Proposition 4 implies that all
symmetric matrices in [A−ε∆, A+ε∆] for any ε < 4.0833
are stable.

Finally, note that the candidate 111000 only has (compared
to the other candidates) slightly less counts than the best
solution 000111 since both candidates are, in fact, equiva-
lent. This follows again from the symmetry in the variable
transformation (31) and the cost function in (30).

V. CONCLUSION

Quantum computing is a rapidly advancing technology
that promises to solve certain computational problems faster
than classically possible. In this paper, we presented a quan-
tum algorithm for verifying non-singularity and stability of
interval matrices, which are relevant problems, e.g., in robust
stability analysis. The proposed algorithm relies on QAOA
which is a popular recent quantum algorithm addressing
combinatorial optimization. Extending our results to stability
analysis of general (not symmetric) interval matrices as
well as the implementation on a real quantum computer
are interesting issues for future research. Moreover, given
the high relevance of combinatorial optimization problems
in various domains of control, applying QAOA to solve

computationally complex problems in control poses another
promising future research direction. Beyond combinatorial
optimization, further computational problems appearing in
control may as well be amenable to quantum computing,
see [11] for an overview.

REFERENCES

[1] P. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Review, vol. 41,
no. 2, pp. 303–332, 1999.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th ACM Symposium on the Theory of Computing,
1996, pp. 212–219.

[3] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for
linear systems of equations,” Physical Review Letters, vol. 103, no. 15,
p. 150502, 2009.

[4] D. Giannakis, A. Ourmazd, P. Pfeffer, J. Schumacher, and J. Slawinska,
“Embedding classical dynamics in a quantum computer,” Physical
Review A, vol. 105, p. 052404, 2022.

[5] M. A. Schalkers and M. Möllers, “Efficient and fail-safe collisionless
quantum Boltzmann method,” arXiv:2211.14269, 2022.

[6] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor.
Phys., vol. 21, p. 467, 1982.

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition, 10th ed. Cambridge Univer-
sity Press, New York, NY, USA, 2011.

[8] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, 2018.

[9] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles,
“Variational quantum algorithms,” Nature Reviews Physics, vol. 3, pp.
625–644, 2021.

[10] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv:1411.4028, 2014.

[11] J. Berberich and D. Fink, “Quantum computing through the lens of
control: a tutorial introduction,” arXiv:2310.12571, 2023.

[12] D. Inoue and H. Yoshida, “Model predictive control for finite input
systems using the D-wave quantum annealer,” arXiv:2001.01400,
2020.

[13] S. A. Deshpande and A. A. Kulkarni, “The quantum advantage in
decentralized control,” arXiv:2207.12075, 2022.

[14] S. Poljak and J. Rohn, “Checking robust nonsingularity is NP-hard,”
Mathematics of Control, Signals, and Systems, vol. 6, pp. 1–9, 1993.

[15] A. Nemirovskii, “Several NP-hard problems arising in robust stability
analysis,” Math. Control Signals Systems, vol. 6, pp. 99–105, 1993.

[16] V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control
design problems,” SIAM J. Control Optim., vol. 35, no. 6, pp. 2118–
2127, 1997.

[17] A. Deif, Sensitivity analysis in linear systems. Springer-Verlag,
Berlin, 1986.

[18] J. C. Doyle, “Analysis of feedback systems with structured uncertain-
ties,” in Proc. IEEE, 1982, pp. 242–250.

[19] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1996.

[20] J. Rohn, “Checking positive definiteness or stability of symmetric
interval matrices is NP-hard,” Comment. Math. Univ. Carolin., vol. 35,
no. 4, pp. 795–797, 1994.

[21] S. Hadfield, “On the representation of boolean and real functions as
hamiltonians for quantum computing,” ACM Transactions on Quantum
Computing, vol. 2, no. 4, p. 18, 2021.

[22] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, et al.,
“Pennylane: Automatic differentiation of hybrid quantum-classical
computations,” arXiv:1811.04968, 2018.

[23] M. Meisami-Azad, J. Mohammadpour, and K. M. Grigoriadis, “Dissi-
pative analysis and control of state-space symmetric systems,” in Proc.
American Control Conf. (ACC), 2008, pp. 413–418.

3839

