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Abstract— In this paper, we address the problem of detecting
anomalies in the reaction wheel assemblies (RWAs) of a satellite.
These anomalies can alert of an impending failure in a RWA,
and effective detection would allow to take preventive action.
To this end, we propose a novel algorithm that detects and
categorizes anomalies in the friction profile of an RWA, where
the profile relates spin rate to measured friction torque. The
algorithm, developed in a probabilistic framework, runs in real-
time and has a tunable false positive rate as a parameter. The
performance of the proposed method is thoroughly tested in a
number of numerical experiments, with different anomalies of
varying severity.

Index Terms— anomaly detection, satellite, reaction wheel
assembly, log-likelihood ratio

I. INTRODUCTION

In the last decades, the number of satellites deployed in
space has increased rapidly [1], owing to the technological
advances that have considerably decreased the cost of an
orbital launch. However, repairing satellites in Earth orbit is
still quite challenging, as it usually requires a dedicated space
mission for the purpose [2]. Hence, satellites are expected
to operate reliably throughout their lifetime. Some of the
most critical components of a satellite are its reaction wheel
assemblies (RWAs), consisting of a rotating disk that can
exchange angular momentum with the main body of the
satellite to control its rotation [3]. RWAs spend most of
their lifetimes in motion and thus are especially prone to
failures that could disable the satellite, as documented during
the missions of Cassini [4], [5], Kepler [6], Dawn [7], and
XMM-Newton [8].

To avoid costly repairs, it is desirable to prevent RWAs
failures altogether [9]. While the causes of such failures
remain uncertain, some anomalous patterns preceding a
failure have been observed in the aforementioned missions
[10], [11]. Designing robust and trustworthy algorithms to
detect such anomalous patterns would enable alerting of
ground control to any imminent failure, and allow the ground
control to take mitigative measures, such as switching to an
alternative attitude control [10], [12], [13]. To this end, we
focus on detecting anomalies in RWAs through their friction
profile, which relates spin rate to the measured friction
torque. The friction torque takes into account the contribution
of both dry and viscous friction, and pinpointing in which
component an anomaly has occurred is of interest.
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a) Literature review: The nature of the anomaly detec-
tion problem can be approached from two different angles:
as a space system, or as a rotary machine.

The literature on fault detection for satellite systems,
although extensive, relies almost exclusively on data-driven
approaches. This can be attributed to the complexity of these
systems and the uncertainty regarding the possible faults that
can occur. Approaches can be classified into two groups,
output-based and prediction-based.

The first group encompasses the approaches based on
training a model capable of determining the condition of
the satellite based on the telemetry. One possibility is to
use supervised training with nominal and faulty datasets,
so the model is capable of classifying the telemetry of the
satellite [14]. However, the lack of real faulty data from
satellites has encouraged the development of methods based
on outlier detection, such as Orca [15], [16] and Novelty [17],
which can be trained purely on nominal data. The second
group consists of the training of a model to generate the
expected telemetry of the satellite under nominal conditions.
The model is then run in parallel with the satellite and a
warning is triggered when there is a significant discrepancy
between real and simulated data. The model can be obtained
using autoregressive functions [18], neural networks [19] or
Markov chains [20], among other options.

Approaching the subject from the field of fault detec-
tion on rotary machines, the extensive knowledge of the
dynamics of these systems has allowed the use of model-
based approaches, such as [21]. Additionally, model-based
methods have been successfully used for fault prognosis
[22], [23]. Data-driven approaches are also popular for rotary
machines [24], with a variety of techniques including Support
Vector Machines [25], K-Nearest Neighbor [26] and deep
learning [27].

Despite the amount of knowledge collected on space
systems and rotary machines, research on fault detection for
satellite reaction wheels has not experienced considerable
development, with some model-based approaches tackling
fault prognosis [28] and fault detection [29]. More aligned
with the objectives of this work are data-driven approaches
for detecting anomalies in the friction of the reaction wheel,
either purely statistical [11] or learning-based [30]. These
papers also considered the anomalies to be an early warning
of an upcoming failure of the reaction wheel. However, both
methodologies were applied retroactively to the satellite case
study.

The approach presented here leverages methods in change-
point detection, concerned with the detection of sudden
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changes in trendlines. Literature on this topic can be classi-
fied into Bayesian and non-Bayesian approaches. Bayesian
approaches deal with the computation of the probability of
a changepoint having taken place. There have been some
works mostly on offline algorithms [31], [32], which need
the full data time series before starting computations. Online
algorithms have also been developed [33]. Although this
family of algorithms can keep track of several hypothetical
changepoints to obtain accurate estimates, they are usually
too complex when the objective is to obtain a simple binary
answer.

On non-Bayesian approaches, many popular and com-
putationally inexpensive algorithms have been produced in
the last decades, such as CUSUM [34] or the generalized
likelihood-ratio [35], [36]. These methods work in real-time,
and provide a good baseline to develop a method tuned to
the specific characteristics of reaction wheels. Therefore, the
proposed algorithm is developed within the non-Bayesian
framework.

b) Contributions: The paper has the following contri-
butions:

1) We design a novel anomaly detection algorithm for
satellites’ RWAs. The algorithm detects deviations of
the friction profile in real time and pinpoints whether
the deviations occur due to changes in either the
viscous or dry components.

2) The algorithm is developed in a rigorous framework,
making use of the log-likelihood ratio. This allows us
to select the tolerable false positive rate as a parameter.

3) The performance of the algorithm is thoroughly tested
on a number of different anomalies, both in viscous
and dry friction and of different severities.

II. PROBLEM FORMULATION & ALGORITHM DESIGN

We start this section by formalizing the anomaly detection
problem and then discuss our proposed detection algorithm.

A. Problem formulation

The focus of this work is on detecting anomalies for the
RWA of a satellite, of which an example cross-sectional
view can be seen in Figure 1. For the purposes of anomaly

Fig. 1. Cross-sectional view of the XMM-Newton Reaction Wheel
Assembly [8]. The main component is the disc, which rotates around the
shaft in order to store angular momentum. The disc is accelerated by means
of magnets, so the only point of contact between the rotating disc and
the body of the satellite is through the bearings between the inner part of
the disc and the shaft. This point of contact produces a small amount of
friction torque that can be estimated from telemetry. Along with the torque,
telemetry provides an accurate measurement of the disc’s angular speed.

detection, the behavior of the RWA will be characterized
by its friction profile [37]. The friction profile relates the
total friction torque experienced at the RWA bearing (f , in
millinewtons-meter) with the spin rate (ω, in radians per
second), both quantities that can be obtained from telemetry.
There are two factors contributing to the friction profile: the
dry and viscous friction torques. The former is a constant
torque that does not depend on the spin rate (the intercept
of the lines in Figure 2), while the latter is typically an
increasing function of the spin rate (the slope of the lines
in Figure 2) [38].
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Fig. 2. Examples of different friction profiles. The intercept of a line
represents the dry friction, hence a change in the intercept is categorized
as a dry friction anomaly. The slope of a line instead represents the effect
of viscous friction, with a change in slope signifying a viscous friction
anomaly.

Let f(ω) denote the friction profile, that is, the total
friction torque experienced at spin rate ω. Under nominal
conditions this function does not change. However, when
changes in the friction predicted by the nominal f(ω) deviate
from the data measured at the RWA, an anomaly occurs,
which may indicate an impending failure. The objective of
the following sections is to design an algorithm that can
detect such changes from nominal behavior. Additionally,
the algorithm should pinpoint whether the friction profile
changes are caused by a change in viscous or dry friction.
Characterizing the specific nature of the anomaly can indeed
lead to a better assessment of the RWA health [11], [30]. In
summary, we are interested in solving the following problem.

Problem: Design an algorithm to detect anomalies in
the behavior of an RWA by analyzing its friction profile.
Additionally, the algorithm should categorize the anomalies
as dry or viscous friction anomalies.

B. Preliminaries

The first step is to select a model for the friction profile
of the reaction wheel, based on which we will design the
proposed algorithm in section II-C. We choose a well-
accepted linear model that accounts for dry and viscous
friction and includes random Gaussian noise in order to
account for measurement errors [38]. Denoting by ωℓ ∈ R
the spin rate at time ℓ ∈ N, the total friction torque is
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modeled as

fℓ = −f c
ℓ sign(ωℓ)− fv

ℓ ωℓ + εℓ

= hℓxℓ + εℓ, (1)

where f c
ℓ and fv

ℓ are the dry and viscous friction parameters,
respectively, εℓ is random Gaussian noise with zero mean,
and xℓ =

[
f c
ℓ fv

ℓ

]T
, hℓ = −

[
sign(ωℓ) ωℓ

]
. The friction

parameters are scaled so that the noise has unit variance, 1

and they may change over time due to the occurrence of an
anomaly.

In the following, we define an anomaly as a change
between xℓ−1 and xℓ, due to either an increase in dry friction
(the first component), viscous friction (the second), or both.
Examples of the effect of both types of anomalies are shown
in Figure 2, and can be recognized by the greater (in absolute
value) intercept in the y-axis for the dry friction anomaly, and
the greater slope for the viscous anomaly.

The simplicity of model (1) will allow for the design of
an efficient detection algorithm which may be deployed on-
board the satellite itself and in real time, while still achieving
effective detection, as shown in section III.

C. Algorithm design

With model (1) in place, we can now develop the proposed
algorithm. The idea is to estimate online the current value
of the friction parameters xk, and notify of an anomaly
whenever significant changes occur. In the following we
introduce the estimation procedure – based on least squares –
and the anomaly detection trigger – based on the generalized
likelihood ratio.

a) State estimation: Consider a subset of data points
sampled in the window of time S = [k1, k2]. Owing to the
linearity of model (1) w.r.t. the friction coefficients, and the
assumption of zero mean Gaussian noise, the optimal state
estimation can be carried out by solving the least squares
problem

x̂S = argmin
x

∑
ℓ∈S

[yℓ − hℓx]
2
= Π−1

S qS , (2)

where we denote ΠS =
∑

ℓ∈S hT
ℓ hℓ and qS =

∑
ℓ∈S hT

ℓ fℓ.
Hereafter, x̂S denotes the least squares estimate over the data
collected during S = [ℓ1, ℓ2]. The estimate can be updated
recursively. Indeed, updating qS as new points are added or
removed from S is straightforward, and updating Π−1

S can be
made inexpensive by using the Sherman-Morrison formula:

Π−1
S∪{ℓ} =

[
ΠS + hT

ℓ hℓ

]−1
= Π−1

S −
Π−1

S hT
ℓ hℓΠ

−1
S

1 + hℓΠ
−1
S hT

ℓ

. (3)

This allows us to quickly update the state estimate as new
data points are obtained, which is critical for the computa-
tional performance of the algorithm.

1This can be done by computing the scaling factor from historical data.
While this simplifies the discussion of the proposed algorithm, a version
that does not rely on rescaling the friction parameters can also be designed.

b) Detection metric: Consider k as the candidate time
for an anomaly; we define the two subsets of data points
Pk = [0, k − 1] and Tk = [0, k + w − 1], where w ∈ N is
the window size, a parameter of the algorithm that will be
discussed later. Pk represents the past data points collected
before time k, while Tk also includes w − 1 data points
collected after k. The metric we use to trigger an anomaly
detection at k, the log-likelihood ratio (LLR), is defined as
follows [39]:

LLRk = log

[
p(fPk

| x = x̂Tk
)

p(fPk
| x = x̂Pk

)

]
. (4)

The metric measures how much the optimal state estimate
on the points in Pk is degraded when we include the points
in [k, k+w−1]. If there is no change of state, we can expect
x̂Tk
≈ x̂Pk

, and the ratio will be close to 1, resulting in an
LLR close to zero. If there is a change of state, however,
the estimate x̂Tk

will perform much worse on the data in Pk

and yield a non-zero value of LLRk. Recalling the notation
of state estimate (2) over a window of time and taking
advantage of the Gaussian distribution of the noise, the LLR
at time k can be rewritten as:

LLRk =
∑
ℓ∈Pk

[fℓ − hℓx̂Tk
]
2 −

∑
ℓ∈Pk

[fℓ − hℓx̂Pk
]
2

=
∑
ℓ∈Pk

[hℓx̂Tk
]
2 − [hℓx̂Pk

]
2 − 2fℓhℓ [x̂Tk

− x̂Pk
]

= x̂T
Tk
ΠP x̂Tk

− x̂T
Pk

ΠP x̂Pk
− 2qPk

[x̂Tk
− x̂Pk

]

=
[
[x̂Tk

+ x̂Pk
]
T
ΠP − 2qTPk

]
[x̂Tk

− x̂Pk
]

= [x̂Tk
− x̂Pk

]
T
ΠP [x̂Tk

− x̂Pk
] (5)

As discussed above, all quantities involved can be computed
recursively, and thus the LLR can be obtained quickly at
every step, allowing us to track this metric online.

The following Lemma 1 characterizes the distribution of
the LLR in the presence or not of an anomaly, which will
allow us to design the proposed algorithm in the next section.

Lemma 1: Consider a signal {fℓ}k+w
ℓ=0 generated accord-

ing to (1), with the state begin x0 for ℓ ∈ [0, k − 1] and
x0 + ∆x for ℓ ∈ [k, k + w − 1], ∆x ≥ 0. Then the log-
likelihood ratio is distributed as

LLRk ∼ X2
1 +X2

2 , (6)

where Xi ∼ N (µi, λi), i = 1, 2, corresponding to a
generalized χ2 distribution. The values of λi are the eigen-
values of I − Π

1
2

Pk
Π−1

Tk
Π

1
2

Pk
, while the values of µi are the

components of UTΠ
1
2

Pk

[
I −Π−1

Pk
ΠTk

]
, with U consisting of

left-singular vectors in the singular value decomposition of[
I −Π

1
2

Pk
Π−1

Tk
Π

1
2

Pk

] 1
2

. For the nominal case (∆x = 0), the
normal distributions have zero means, and LLRk is a sum of
two χ2 distributions with 1 degree of freedom.

Computing the c.d.f. of the distribution functions presented
in the lemmas is not trivial, but there are approximate
methods for this task [40].
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c) The algorithm: We are now ready to describe Al-
gorithm 1. As mentioned above, the main idea behind the
algorithm is to estimate the state online (computing x̂Tk

and x̂Pk
), and then evaluating the LLR for the candidate

change point k (see lines 6–9). Relying on Lemma 1, we
can compute the probability that under nominal conditions
an equal or higher value of the LLR is attained (line 11 and
Algorithm 2):

pk = P

(
LLRk >

2∑
i=1

N(0, λi)
2

)
. (7)

This distribution depends on two parameters, λ1 and λ2, and
it is thus possible to generate a lookup table for the cumula-
tive distribution function, which yields pk given LLRk. If the
probability pk is below a predefined threshold r, we declare
that an anomaly has occurred (lines 18–22). We remark that
r represents the false positive rate that we choose to allow.
Notice that in practice, due to the measurements being noisy,
the LLR in the presence of an anomaly may not present a
strictly increasing trend (resp., the probability pk may not
be strictly decreasing). For this reason, we accept k as a
change point only if pk attained the minimum value over
the window [n, n + kverif] (see lines 18–22). Finally, once
an anomaly is declared, the algorithm is rebooted taking the
time of the anomaly as the new starting point (see lines 20–
21). We can then obtain an estimation of the friction profile
by using Least Squares on the points before the changepoint.

d) Parameter selection: The proposed Algorithm 1 has
three tunable parameters. The first is the false positive rate
r ∈ R, which represents the probability of incorrectly
detecting an anomaly at time k. A small value for r is of
course desirable, but considering that the measurements are
noisy, reducing r too much could actually lead to failure in
detecting an anomaly. The false positive rate can be tuned
according to Lemma 1.

The second parameter is the window size w ∈ N, which
determines how many data points collected after k are
employed to assess whether an anomaly has taken place
at time k. There is a trade-off for the choice of w: on the
one hand, a longer window yields better estimates and thus
improves anomaly detection, lowering the false positive rate.
On the other hand, the algorithm should run in real-time, and
longer windows result in longer detection delays. Addition-
ally, a longer window may include multiple anomalies, thus
degrading the effectiveness of the algorithm.

The last parameter is the verification window kverif ∈ N,
which represents the number of steps that we wait before
declaring a changepoint. Indeed, as mentioned above, due to
noise in the measurements the evolution of pk may not be
strictly decreasing towards an anomaly. Therefore, kverif is
used to ensure that an anomaly is not triggered by a local
minimum of pk.

III. NUMERICAL RESULTS & DISCUSSION

In this section, we present numerical results testing the
proposed algorithm on different anomalies and discuss the

Algorithm 1 Anomaly Detector
Require: window size w, verification window kverif, false

positive rate r
1: k ← w
2: P, T ← [0, w − 1] , [0, 2w − 1] ▷ sets of old and all

data
3: kmin, pmin ← 0, 1 ▷ time and p of worst step
4: loop
5: // Collect new data-point
6: k ← k + 1
7: P, T ← P ∪ {k − 1}, T ∪ {k + w − 1}
8: // Compute LLR at this step
9: LLRk ←

∑
ℓ∈P

[
(fℓ − hℓx̂P)

2 − (fℓ − hℓx̂T )
2
]

10: // Compute the probability that the LLR has this value
under nominal conditions

11: pk ← compute nominal probability(LLRk,P, T )
12: // check if n is a candidate change point
13: if pk < pmin then
14: pmin ← pk
15: kmin ← k
16: end if
17: // declare an anomaly for the current candidate
18: if k > (kmin + kverif) and pn,min ≤ r then
19: k ← k + 1
20: P ← [kmin, kmin + w − 1]
21: T ← [kmin + w, kmin + 2w]
22: end if
23: end loop

Algorithm 2 compute nominal probability
Require: current LLR, set of past points P , set of total

points T
1: ΠT ←

∑
k∈T hT

k hk

2: ΠP ←
∑

k∈P hT
k hk

3: λ← eig(I −Π
1/2
P Π−1

T Π
1/2
P )

4: // LLR follows λ1ε
2
1 + λ2ε

2
2 under nominal conditions

5: pk ← p(λ1ε
2
1 + λ2ε

2
2 > LLR)

role of Algorithm 1’s tunable parameters. For each simula-
tion, we select a spin rate profile and construct a friction
torque profile, including the effect of noisy measurements.
Throughout the section, we will fix kverif = w/2.

A. Anomaly detection precision

We start by evaluating how precisely the proposed al-
gorithm pinpoints the time when the anomaly occurs. To
do so, we consider a dry friction increase of either 0.3
or 0.5 at time step k = 1500. The telemetry is generated
according to (1), with the spin rate profile given by ωk =
20 − 10 cos(πk/1200). We apply the algorithm on 200
simulation runs, with different realizations of the random
noise, and choosing false positive rate r = 10−5 and window
size w = 500. The results are reported in Figure 3, with
dry friction change of 0.3 (left) and 0.5 (right). The upper
plots show the evolution of pk in logarithmic scale, that
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Fig. 3. Results of 200 simulations with a change of dry friction of 0.3
(left) or 0.5 (right) at step k = 1500. The upper plots show the evolution
of the LLR, while the lower ones show the distribution of the step at which
the anomaly was declared by the algorithm. In 4.5% of the simulations, no
anomaly was declared.

is, the estimated probability that an anomaly has occurred.
The lower plots show the distribution of the step at which
the anomaly was declared. We can see that on average the
algorithm accurately detects the anomaly at the correct time,
with some variability as a consequence of the measurement
noise.

Additionally, we notice that the larger the change in f c is,
the more precise the detection. To further investigate this
trend, we evaluate the empirical detection probability for
different values of the dry friction change ∆f c. The detection
probability is computed as the percentage of the 100 runs in
which the algorithm successfully detected the anomaly. We
use the spin rate profile ωk = 20 + 5 cos(πk/1000), with
w = 500 and three different values of r. In Figure 4 we
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Fig. 4. Probability of detecting an increase of dry friction depending on
its magnitude, for different false positive rates r. Solid lines represent the
simulation results, dashed lines the theoretical distribution characterized in
Lemma 1.

plot the empirical detection probability (solid lines) and the
theoretical one (dashed lines) as characterized by Lemma 1.
These results show that indeed the larger ∆f c is, the more
accurately the algorithm can detect the anomaly. Moreover,
they show how a smaller value of the false positive rate r

yields a more conservative detection with a smaller detection
probability. Section III-C will provide further details on the
effect of r.

B. False positives

We turn now to evaluating how often the proposed al-
gorithm yields a false positive detection. In particular, we
consider a set of 100 runs of the algorithm on telemetry
without any anomaly, with spin rate profile ωk = 20 +
5 cos(k/5000)2. In Figure 5 we plot the average run length
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Fig. 5. Average run length until a false positive detection, for different
values of the parameter r and window size w. The lower bound 1/r
represents the average run length in the case of independent terms in
{LLRk}k∈N. Notice that r decreases when moving to the right of the x-
axis.

before the algorithm returned a false positive, for different
values of r (in decreasing order). We compare the empirical
run length with 1/r, which represents the average run length
if {LLRk}k∈N were a sequence of independent r.v.s. We can
see that the smaller r is, the fewer false positives are returned.
Moreover, since the terms in {LLRk}k∈N are not actually
independent, the average run in practice is larger than 1/r.

C. The algorithm’s parameters

In the previous sections, we have seen how different
choices of the parameters r and w in Algorithm 1 affect its
performance. In this section, we further explore the effect
of these parameters on the detection probability. We run
100 simulations with spin rate profile ωk = 100 − k/1250
and an increase in dry friction of ∆f c = 0.3. We use as
default values r = 10−4 and w = 500. The empirical (solid
lines) and theoretical (dashed) detection probabilities (as
characterized by Lemma 1) are presented in Figures 6 and 7,
for different values of w and r, respectively. From Figure 6
we observe how a larger window improves detection, as
the state estimates with more data are more precise. And,
as observed in Figure 4 as well, larger values result in a
less conservative and thus more accurate detection algorithm.
We further remark that the theoretical result of Lemma 1
provides a good lower bound to the empirical detection
probability.

2This spin rate profile differs from that of the previous section in order
to test the algorithm in diverse scenarios.
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Fig. 6. Probability of detecting a ∆fc = 0.3 change in dry friction
over time, for different window sizes. Solid lines represent the empirical
probability, dashed lines represent the theoretical bound.
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Fig. 7. Probability of detecting a ∆fc = 0.3 change in dry friction over
time, for different false positive rates. Solid lines represent the empirical
probability, dashed lines represent the theoretical bound.

D. Realistic scenario

In the previous sections, the results were derived by
employing a periodical spin rate profile. In this section,
we conclude by testing the proposed algorithm on a more
realistic spin rate profile, which is depicted at the top of
Figure 8. Such a profile makes the friction torque estimation,
and thus the anomaly detection, more challenging. As we can
see in the middle plot of the figure, the proposed algorithm
still provides an accurate estimate of the friction. The lower
figure then depicts the evolution of the log-likelihood ratio
over time, with crosses denoting when an anomaly has
been declared. The results were derived with r = 10−4

and w = 400. We notice how the algorithm successfully
detects most anomalies even in the presence of this more
realistic spin rate profile. The run corresponds to 3 hours
32 minutes of data, which corresponds to 88000 datapoints.
To process them all, the algorithm takes around 5.6 seconds
using Python 3.11 on an Intel i7-1365U. Proportionally, it
takes 1 second to process 38 minutes of data.

Fig. 8. State tracking for simulated satellite data

APPENDIX I
PROOF OF LEMMA 1

We start by assuming that an anomaly occurs at time k,
that is, the state of the RWA evolves according to

xℓ =

{
x0 if ℓ < k

x0 +∆x otherwise
(8)

for some ∆x and k.
Letting P = [0, k − 1] and T = [0, k +w − 1], we define

the following vectors and matrices:

HT =
[
hT
1 · · · hT

k+w−1

]T ∈ R(k+w−1)×2

FT =
[
fT
1 · · · fT

k+w−1

]T ∈ R(k+w−1)

εT =
[
ε1 · · · εk+w−1

]T ∈ R(k+w−1)

HP =
[
hT
1 · · · hT

k−1 0 · · · 0
]T ∈ R(k+w−1)×2

FP =
[
f1 · · · fk−1 0 · · · 0

]T ∈ R(k+w−1).

With this notation in place, we can then characterize the state
estimates as a function of the noise ε as follows:

x̂P = Π−1
P qP = Π−1

P HT
PFP

= Π−1
P HT

P [HPx0 + εT ]

= x0 +Π−1
P HT

P εT (9)

x̂T = Π−1
T qT = Π−1

T HT
T FT

= Π−1
T HT

T [HT x0 + [HT −HP ] ∆x+ εT ]

= x0 +
[
I −Π−1

T ΠP
]
∆x+Π−1

T HT
T εT . (10)
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As a consequence, the log-likelihood ratio is given by

LLRk = [x̂T − x̂P ]
T
ΠP [x̂T − x̂P ] = zT z

where

z = Π
1/2
P [x̂T − x̂P ]

= Π
1/2
P
[
ΠT H

T
T εT +

[
I −Π−1

T
]
∆x−ΠPH

T
P εT

]
= Π

1/2
P
[
Π−1

T HT
T −Π−1

P HT
P
]
εT

+Π
1/2
P
[
I −Π−1

T ΠP
]
∆x

= RεT +Q∆x,

with R = Π
1/2
P
[
Π−1

T HT
T −Π−1

P HT
P
]

and Q =

Π
1/2
P
[
I −Π−1

T ΠP
]
.

We take now the singular value decomposition R =
UΣV T , where U ∈ R2×2, V ∈ R(k+w)×(k+w) and Σ ∈
R2×(k+w), which yields:

z = UΣV T εT + UQ̃∆x

= U Σ̃EV T εT + UQ̃∆x

= U
[
Σ̃η + Q̃∆x

]
(11)

where Q̃ = UQ, Σ̃ is a square diagonal matrix with the
non-zeros entries of Σ (which we call σ1 and σ2) and E =
[e1 e2]

T , ei being a vector where the i-th entry is 1 and
the other are 0. We have then defined η = EV T εT , whose
entries are independent and normally distributed since both E
and V T are orthonormal. We can then rewrite the distribution
of the LLRk as:

LLRk = zT z =
[
Σ̃η + Q̃∆x

]T
UTU

[
Σ̃η + Q̃∆x

]
=
∣∣∣Σ̃η + Q̃∆x

∣∣∣2
=
[
σ1η1 + eT1 Q̃∆x

]2
+
[
σ2η2 + eT2 Q̃∆x

]2
(12)

This last expression corresponds to the sum of two squared
normally distributed variables. In order to obtain the non-
zero entries of Σ, we note that RRT = UΣ2UT = I −
ΠPΠ

−1
T ΠP , so they have the same singular values. Since the

right matrix is symmetric, these coincide with its eigenvalues
λ1 and λ2, which can be easily computed. Then, we obtain
the singular values of Σ as σ1 =

√
λ1 and σ2 =

√
λ2.

This result holds for any ∆x, including ∆x = 0, thus
characterizing the distribution of LLR both in the presence
or not of an anomaly. □
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[38] H. Olsson, K. J. Åström, C. Canudas de Wit, M. Gäfvert, and
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