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Abstract— This paper solves the platoon control of nonlinear
connected autonomous vehicles under variable spacing policy
as a formation problem. The main aim is to guarantee that each
vehicle, despite wireless communication impairments, moves
according to the imposed speed profile while following the
desired spacing, adaptable to different traffic conditions. To this
end, we first design a novel full-range nonlinear spacing policy
and then, by leveraging formation control theory, a distributed
controller ensuring CAVs platoon variable formation, despite
the presence of heterogeneous communication time-delay. By
exploiting the Lyapunov-Krasovskii approach, we derive a
delay-dependent stability condition that, expressed as a set of
feasible Linear Matrix Inequalities, allows tuning control gains.
Simulation results, carried out via MiTraS platform, disclose
the effectiveness of the proposed solution.

I. INTRODUCTION

Vehicle platooning composed of Connected and Auto-
mated Vehicles (CAVs) has been extensively studied since
it is expected to mitigate traffic congestion while increasing
road safety and traffic throughput [1], [2]. A key element of
platooning control strategies is the spacing policy. Its choice
is not trivial: limited inter-vehicle distance may enhance
traffic throughput but compromises safety; on the other
hand, the optimization of traffic flow requires spacing policy
to be adaptable to the prevailing traffic conditions. The
policies employed the most in the technical literature, the
Constant Spacing (CS) and the Constant Time Headway/Gap
(CTH/CTG) [3], are not flexible enough, especially in rapidly
changing speed situations, and they lead to a non-optimal
utilization of road in term of throughput [4]. To overcome
these limitations, many nonlinear spacing policies have been
proposed, although their usage for platooning applications
has received less attention. In this direction, a quadratic
spacing policy is employed in [5], where, by leveraging ge-
ometric control theory, a decentralized predecessor follower
nonlinear state feedback control is suggested to let linear
CAVs platoon tracking a desired behaviour. Considering,
instead, the specific case of heterogeneous CAVs platoon
subject to actuator faults, input quantization and dead-zone
nonlinearities, [6] introduces an improved quadratic spacing
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policy based on vehicle speed, braking capacity and lower
bound of fault factor. Then, an adaptive fault-tolerant control,
combined with an adaptive radial basis function neural net-
work for the estimation of nonlinear vector field, is proposed
for ensuring the tracking of the variable spacing.
All the aforementioned works design platooning controller
for variable spacing policy under some restrictive as-
sumptions, such as perfect wireless communication, lin-
ear/simplified vehicle dynamics and large inter-vehicle dis-
tance, which can lead to platoon performance degradation
in practice. To deal with the presence of Vehicle-to-Vehicle
(V2V) homogeneous communication delays, [7] proposes a
delayed consensus-based control strategy for a platoon of
homogeneous linear second-order CAVs under the quadratic
human policy developed in [8] and subject to acceleration
saturation. More recently, to improve the platoon safety,
[9] proposes a variable spacing policy which adapts the
inter-vehicle headway based on the actual road friction and
designs a back-stepping control to ensure its maintenance.
However, the main drawback of such approach is related
to its applicability in real-world due to the necessity of
estimating the road friction, which is a complex and error-
prone operation [10]. Again, the platoon control problem
for heterogeneous linear CAVs sharing information over a
realistic V2V communication network has been addressed
and solved in [11] via integral sliding mode controller to
ensure the leader-tracking under quadratic human spacing
policies.
However, it is worth noting that all the aforementioned
spacing policies do not simultaneously guarantee a safe
response in the full speed range and a maximization of
the traffic throughput. To this end, [12] proposes a full-
range nonlinear spacing policy, adaptable to both urban and
highway scenarios (i.e. low and high speeds), but for the sim-
pler case of the CACC of linear homogeneous autonomous
vehicles sharing information over ideal V2V network.
The above discussion highlights how it is crucial, with the
purpose of optimizing the traffic flow throughput, choosing
and explicitly taking into account innovative and more ef-
fective spacing policies when designing platooning control
strategies. This task becomes more challenging when con-
sidering vehicle dynamic nonlinearities, V2V time-varying
communication delays and external disturbances. In this case,
the control objective is to guarantee that the CAVs platoon
adapts its own formation to the current traffic situation while
ensuring resilience and robustness to communication time-
delay and vehicles nonlinearities. In this perspective, the aim
of this work is twofold. Firstly, we design a novel nonlinear
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spacing policy covering the full speed range so to ensure a
smooth transition between fixed distance at standstill and the
desired time gap at high speeds. Then, in order to follow the
desired variable spacing policy while guaranteeing a robust
and resilient tracking of a desired speed profile, the CAVs
platoon control is recast as a formation control problem.
A robust delayed distributed controller is, hence, proposed
to ensure that CAVs platoon safely moves in formation.
Simulation results, carried out via MiTraS platform [13],
confirm the effectiveness of the theoretical derivation and
discloses the advantages of the proposed approach.

II. PLATOON FORMATION CONTROL UNDER NONLINEAR
VARIABLE SPACING POLICY

Consider a platoon composed of N heterogeneous CAVs
plus a leader, indexed with 0, moving as a string along
a straight road. The aim is to design a robust distributed
formation controller ensuring that each CAV adheres to the
prescribed behavior set by the leader, while maintaining a
desired variable nonlinear inter-vehicle spacing.

A. Nonlinear Heterogeneous Platoon Dynamics

The longitudinal dynamics of each CAV i (∀i = 1, ...N) is
described by its drivetrain dynamics [14]:

ṗi(t) = vi(t),

v̇i(t) =
ηi

Rimi
ui(t,τi j(t))−gsin(θ(t))−g fr,icos(θ(t))

− 0.5
mi

ρCD,iA f ,iv2
i (t),

(1)

where pi(t) [m] and vi(t) [m/s] are the position and the
speed; mi [kg] is the vehicle mass while ηi is its drive-
train mechanical efficiency; Ri [m] is the wheel radius; fr,i
is the rolling resistance coefficient; CD,i and A f ,i [m2] are
the drag coefficient and the frontal area; ρ [kg/m3] is the
air density; g [m/s2] is the gravity acceleration; θ(t) [rad] is
the road slope; ui(t,τi j(t)) [Nm] is the driving/braking torque
control input. Since CAVs share information via a non-
ideal communication network, each link connecting vehicles
i and j is affected by a time-varying heterogeneous com-
munication delay τi j(t), whose value depends on the actual
conditions/impairments of the communication channel.

Assumption 1: According to [15], V2V communication
time-delay τi j(t) is assumed to be bounded and slowly-
varying, i.e. τi j(t)≤ τ⋆i j and τ̇i j(t)≤ µi j ∈ [0,1[.

Indicating with xi(t) = [pi(t),vi(t)]⊤ ∈R2×1 the i-th vehi-
cle state vector, the nonlinear dynamic in (1) can be recast
as:

ẋi(t) =
[

vi(t)
ϕi(vi(t))

]
+

[
0
bi

]
ui(t,τi j(t)) (2)

where bi = ηi/(miRi) while ϕi(vi(t)) ∈ R is a continuously
differentiable and bounded nonlinear vector field, defined as:
ϕi(vi(t)) = −gsin(θ(t))− g fr,icos(θ(t))− 0.5

mi
ρCD,iA f ,iv2

i (t).
The leader dynamics imposing the reference behaviour for

the whole vehicle platoon, can be, instead, described by the
following nonlinear autonomous system:

ẋ0(t) =
[

v0(t)
ϕ0(v0(t))

]
. (3)

where x0(t) = [p0(t) v0(t)]⊤, being p0(t) [m] ∈ R[m/s] and
v0(t) ∈ R the position and the speed of the leading vehicle.

B. Communication Network

The communication among CAVs is modeled as a directed
graph GN = (VN ,EN ,A ) where VN is the set of N
vehicles while EN is the set of communication links. The
adjacency matrix A [αi j]N×N describes the communication
graph topology with elements such that: αi j = 1 if vehicle
j receives information from vehicle i (but not necessarily
viceversa), αi j = 0 otherwise. Accordingly, after introducing
the in-degree matrix D = diag{d1,d2, . . . ,dN}, with di =

∑ j∈V αi j (i.e. the number of vehicles communicating with
i), we define the Laplacian matrix of the digraph GN as
L = D −A . Taking into consideration that the leader is
considered as an additional agent, labeled with the index
0, the whole vehicular network topology is modelled via
an augmented directed graph GN+1 satisfying the following
assumption.

Assumption 2: GN+1, contains a directed spanning tree
with the leader node as root, i.e. the information about the
leader is available for each CAV i, directly or indirectly [16].

C. Design of Nonlinear Variable Spacing Policy

The proposed spacing policy is formulated considering the
different driving conditions that platoons may encounter, i.e.
urban, freeway and motorway. Since urban conditions require
avoiding too high inter-vehicle distances while extra-urban
scenarios, both freeway and motorway, require higher inter-
vehicle distances due to high travelling speed, the spacing
policy should be designed as a variable function ensuring
the right trade-off between traffic throughput increasing
and vehicles safety in all driving scenarios. Accordingly,
indicating with dre f ,i(vi(t)) the desired inter-vehicle distance
between consecutive vehicles, based on [17], we propose
the following full-range nonlinear variable spacing policy
between vehicle i and the communicating vehicle j:

dre f ,i j(t) = (i− j)dre f ,i(vi(t))

= (i− j)
{

dst + vi(t)h+M[1− exp(−vi(t)
γ

)]
}
,

(4)

where dst [m] is the standstill distance; vi(t) [m/s] is the speed
of vehicle i; h [s] is the constant time-gap distance; M and
γ are parameters to be properly tuned via the optimization
procedure described in the following.

1) Spacing Policy Parameters Tuning: The optimization
procedure finds the parameters M and γ in (4) such that, in
the whole vehicles speed range, the variable spacing policy
dre f ,i(vi(t)) ensures the following objectives: 1) increasing
of the traffic throughput; 2) ensuring vehicle safety.
The design starts dividing the speed range according to
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Fig. 1: Full-range spacing policy (blank line) against minimal safe
distance (red line) and two CTG (blue and green lines).

the driving scenario, namely: urban, freeway and motorway,
which have V0 = 0 [m/s], Vu = 13.89 [m/s], Vf = 25 [m/s]
and Vm = 36 [m/s] as speed limits, respectively. To take
into account the objective of traffic throughput, we set dst =
0.5 [m] and h = 0.6 [s], i.e. lower than the typical ones [3].
Then, we define the reference values of inter-vehicle distance
at range speed boundaries as: dre f ,i(V0) = dst + 0.60V0 [m]
and dre f ,i(Vm) = dst +0.90Vm [m]. Moreover, we compute the
minimum critical distance as dsa f e,i(t) = (τac +

Bmax
2Jmax

)vi(t)−
B3

max
24J2

max
[m] [12], where τac = 0.2 [s] is the delay of actuator

response; Bmax = 4 [m/s2] and Jmax = 5.5 [m/s3] are the
maximum braking deceleration and jerk (also considering
comfort conditions).
To achieve the objectives 1)-2), parameters M and γ are
chosen as the solution of the following optimization problem:

min
M,γ

dre f ,i(vi(t)) (5)

subject to:

dre f ,i(V0) = dst +0.60V0 dre f ,i(Vm) = dst +0.90Vm
0 ≤ vi(t)≤ 36 dre f ,i(vi(t))≥ dsa f e,i(vi(t)).

The solution, obtained via the Matlab Optimization Tool-
box, provides the following results: M = −1.5976 and γ =
−21.0172. The resulting dre f ,i(vi(t)) is reported in Figure 1.

Assumption 3: Due to vehicle physical constraint,
dre f ,i j(t) is a bounded piecewise-continuously differentiable
function ∀i, j ∈ VN+1.

D. Platoon Control as a Formation Problem

The platoon control is here formulated as the following
second-order nonlinear formation problem.

Problem 1: (Heterogeneous Nonlinear Platoon Formation
Control Problem). Given the heterogeneous nonlinear
vehicle model as in (1), design the distributed control input
ui(t) (∀i ∈ VN) such that vehicle i tracks the reference
behaviour imposed by the leader in (3) while maintaining
the reference gap dre f ,i j(t) w.r.t. the neighbors j, i.e.:

lim
t→∞

∥pi(t)− p j(t)−dre f ,i j(t)∥= 0,

lim
t→∞

∥vi(t)− v0(t)− ḋre f ,i j(t)∥= 0,
(6)

despite the presence of heterogeneous communication time-
varying delays τi j(t) (∀(i, j) ∈ EN+1) affecting the communi-
cation network.

III. DESIGN OF DISTRIBUTED FORMATION CONTROL

Define, for each CAV i, the error formation w.r.t. the leader
as

ei(t) =
[

ep,i
ev,i

]
=

[
pi(t)− p0(t)−dre f ,i0(t)
vi(t)− v0(t)− ḋre f ,i0(t)

]
. (7)

To solve Problem 1, we propose the following distributed
formation control protocol:

ui(t,τi j(t)) = b−1
i

(
ui,net(ei(t),e j(t), t,τi j(t))+νi(t)

)
, (8)

where ui,net(ei(t),e j(t), t,τi j(t)) is the networked control
action that weights the outdated information shared among
vehicles via the V2V communication paradigm while νi(t) is
the local feed-forward control action which is used to com-
pensate the variation of the formation signal. Specifically, the
networked control action is designed as:

ui,net(ei(t),e j(t), t,τi j(t)) =

−
N

∑
j=0

αi jκi j(pi(t − τi j(t))− p j(t − τi j(t))−dre f ,i j(t − τi j(t)))

−
N

∑
j=0

αi jβi j(vi(t − τi j(t))− v j(t − τi j(t))− ḋre f ,i j(t − τi j(t))),

(9)

being κi j ∈R and βi j ∈R (∀i, j ∈ VN+1) the control gains to
be properly tuned. The local feed-forward control action is,
instead, selected as νi(t) = d̈re f ,i0(t).

A. Closed-loop system

Given the i-th CAV dynamics as in (2) and the ones of the
leader as in (3), by differentiating the formation error in (7),
the closed-loop dynamics for vehicle i can be derived as:

ėi(t) =
[

ėp,i(t)
ėv,i(t)

]
=

[
ev,i(t)

ϕi(vi(t))−ϕ0(v0(t))+biui(t)− d̈re f ,i0(t)

]
.

(10)

Substituting (8) in (10), given the error definition in (7), we
derive the closed-loop dynamics for the i-th vehicle as:

ėi(t) =ϕ̄i(ev,i(t))+αi0Ai0ei(t − τi0(t))

+
N

∑
j=1

αi jAi j(ei(t − τi j(t))− e j(t − τi j(t))),
(11)

where
ϕ̄i(ev,i(t)) =

[
evi(t)

ϕi(vi(t))−ϕ0(v0(t))

]
,

Ai0 =

[
0 0

−κi0 −βi0

]
Ai j =

[
0 0

−κi j −βi j

]
.

(12)

By exploiting a more compact notation [18], delays τi j(t)
can be represented as elements of the following delay sets:
σp(t) ∈ {τi j(t) : i, j = 1,2, ...,N, i ̸= j)} for p = 1,2, ...,m
with m ≤ N(N − 1); τl(t) ∈ {τi0(t) : i = 1,2, ...,N,} for
l = 1,2, ...,q with q ≤ N. Accordingly, by defining the
global error formation vector x̃ = [e⊤1 (t) e⊤2 (t) · · · e⊤N (t)]

⊤,
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the overall closed-loop delayed vehicular network dynamics
can be derived as:

˙̃x(t) =ψ(x̃(t))+
q

∑
l=1

A(l,τ)x̃(t − τl(t))+
m

∑
p=1

A(p,σ)x̃(t −σp(t)),

(13)

where

ψ(x̃(t)) = [ϕ̄⊤
1 (ev,1(t)) ϕ̄

⊤
2 (ev,2(t)); · · · ; ϕ̄

⊤
N (ev,N(t))]⊤ ∈ R2N×1,

(14)

A(l,τ) =


A1,1 02×2 · · · 02×2

02×2 A2,2 · · ·
...

...
...

. . .
...

02×2 · · · · · · AN,N

 ∈ R2N×2N , (15)

with diagonal blocks such that (i = 1, . . . ,N ; l = 1, . . . ,q)

A 2×2
i,i =

{
Ai0 i = l,τl(·) = τil(·),

02×2 i ̸= l,τl(·) ̸= τil(·),
(16)

being Ai0 as in (12). Matrices A(p,σ) ∈R2N×2N (p= 1, · · · ,m)
in (13) are block matrices such that each block (referred for
the sake of clarity as Ap(r,q) ∈ R2×2) is given as:

Ap(r,q) =

 Ai j i ̸= j if σp(·) = τi j(·) ,r = q = i
−Ai j i ̸= j if σp(·) = τi j(·) ,r = i,q = j
02×2 otherwise

(17)
being r,q = {1,2, · · ·N} and Ai j as in (12). Given the defi-
nition of the closed-loop system in (13), since each vector
field ϕ̄i(v̄i(t)) is continuous, differentiable and bounded, i.e.
a Lipschitz function, the following condition holds.

Condition 1: [19] There exist constants ωi (∀i= 1, · · · ,N)
such that for any vectors xi(t),x0(t), the vector fields ϕ̄i(.)
satisfy the condition:

(xi(t)− x0(t))⊤
(

ϕ̄i(xi(t))− ϕ̄0(x0(t))
)

≤ ωi(xi(t)− x0(t))⊤(xi(t)− x0(t)).
(18)

IV. STABILITY ANALYSIS

The stability of the CAVs platoon under the action of
the proposed distributed formation control is ensured by the
following delay-dependent theorem which allows the proper
tuning of the control gains.

Theorem 1: Consider the closed-loop vehicular network
dynamics as in (13). Let Assumptions 1-2-3 and Condi-
tion 1 hold. Given the maximum allowable delay mar-
gin τ⋆, if there exist symmetric positive definite matrices
Q(l,τ),Q(p,σ),W(l,τ),W(p,σ) ∈R2N×2N (l = 1,2, · · · ,q and p =
1,2, · · · ,m) such that the following LMI holds:

Φ+
q

∑
l=1

Q(l,τ)+
m

∑
p=1

Q(p,σ)+(m+q)τ⋆
( q

∑
l=1

W(l,τ)+
m

∑
p=1

W(p,σ)

)
< 0 (19)

with Φ = diag(Ψ1, · · · ,ΨN) + ∑
q
l=1 A(l,τ) + ∑

m
p=1 A(p,σ) ∈

R2N×2N , being Ψi =

[
0 1
0 ωi

]
(i = 1, . . . ,N), as well as A(l,τ)

and A(p,σ) defined as in (15) and (17), respectively, then the
platoon formation control under nonlinear variable spacing
policy is achieved.

Proof: Consider the following Lyapunov-Krasovskii
functional

V (x̃(t)) =V1(x̃(t))+V2(x̃(t))+V3(x̃(t)), (20)

being

V1(x̃(t)) =
1
2

x̃⊤(t)x̃(t), (21a)

V2(x̃(t)) =
q

∑
l=1

∫ t

t−τl(t)
x̃⊤(s)Q(l,τ)x̃(s)ds

+
m

∑
p=1

∫ t

t−σp(t)
x̃⊤(s)Q(p,σ)x̃(s)ds, (21b)

V3(x̃(t)) =
q

∑
l=1

∫ 0

−τ⋆l

∫ t

t+θ

x̃⊤(s)W(l,τ)x̃(s)dsdθ ,

+
m

∑
p=1

∫ 0

−σ⋆
p

∫ t

t+θ

x̃⊤(s)W(p,σ)x̃(s)dsdθ . (21c)

Differentiating V1(x̃(t)) in (21a) along the trajectories of the
closed-loop system (13) we have:

V̇1(x̃(t)) =x̃⊤(t)ψ(x̃(t))+ x̃⊤(t)
q

∑
l=1

A(l,τ)x̃(t − τl(t))

+ x̃⊤(t)
m

∑
p=1

A(p,σ)x̃(t −σp(t)).
(22)

Focusing on the non linear vector field (14) and considering
the expression of its elements as in (12), under Condition
1, the term x̃⊤(t)ψ(x̃(t)) in (22) is such that the following
relation holds:

x̃⊤(t)ψ(x̃(t)) =
N

∑
i=1

e⊤i (t)ϕ̄i(ev,i(t)) =
N

∑
i=1

ep,i(t)ev,i(t)+ ev,i(t)ϕi(ev,i(t))

≤
N

∑
i=1

ep,i(t)ev,i(t)+ωie2
v,i(t)≤ x̃⊤(t)Ψx̃(t),

(23)

where Ψ ∈ R2N×2N = diag(Ψ1, Ψ2, · · · ,ΨN) with Ψi =
[0 1;0 ωi] ∈ R2×2. Then, by also applying the Newton-
Leibiniz formula [15], i.e. x̃(t − τ(t)) = x̃(t)−

∫ t
t−τ(t)

˙̃x(s)ds,
we can recast (22) as:

V̇1(x̃(t))≤x̃⊤(t)Φx̃(t)− x̃⊤(t)
q

∑
l=1

A(l,τ)

∫ t

t−τl(t)
˙̃x(s)ds

− x̃⊤(t)
m

∑
p=1

A(p,σ)

∫ t

t−σp(t)
˙̃x(s)ds,

(24)

where Φ = Ψ+∑
q
l=1 A(l,τ)+∑

m
p=1 A(p,σ) ∈ R2N×2N .

By differentiating V2(x̃(t)) in (21b), under Assumption 1, it
yields:

V̇2(x̃(t))≤x̃⊤(t)
q

∑
l=1

Q(l,τ)x̃(t)+ x̃⊤(t)
m

∑
p=1

Q(p,σ)x̃(t)

−
q

∑
l=1

x̃⊤(t − τl(t))Q(l,τ)(1−µl)x̃(t − τl(t))

−
m

∑
p=1

x̃⊤(t −σp(t))Q(p,σ)(1−µp)x̃(t −σp(t)).

(25)
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Moreover, we differentiate V3(x̃(t)) in (21c). Under Assump-
tion 1, by exploiting Jensen inequality [15], it holds:

V̇3(x̃(t))≤x̃⊤(t)
( q

∑
l=1

τ
⋆
l W(l,τ)

)
x̃(t)+ x̃⊤(t)

( m

∑
p=1

σ
⋆
l W(p,σ)

)
x̃(t)

−
q

∑
l=1

(∫ t

t−τl(t)
x̃(s)ds

)⊤
W(l,τ)

(∫ t

t−τl(t)
x̃(s)ds

)
−

m

∑
p=1

(∫ t

t−σp(t)
x̃(s)ds

)⊤
W(p,σ)

(∫ t

t−σp(t)
x̃(s)ds

)
.

(26)

Now, introduce the maximum delay upper bound τ⋆ =
maxl,p{τ⋆l ,σ

⋆
p} and use the free matrices method [20]:(∫ t

t−τl (t)
˙̃x(s)ds

)⊤
G⊤
(l,τ)×

[
x̃(t)− x̃(t − τl(t))−

∫ t

t−τl (t)
˙̃x(s)ds

]
= 0, (27)

(∫ t

t−σp(t)
˙̃x(s)ds

)⊤
G⊤
(p,σ)×

[
x̃(t)− x̃(t−σp(t))−

∫ t

t−σp(t)
˙̃x(s)ds

]
= 0, (28)

being G(l,τ), G(p,σ) ∈ R2N×2N (∀l = 1, . . . ,q p = 1, · · · ,m)
free matrices. Then, name ρ(t,τl(t),σp(t)) =
[x̃(t − τ1(t)) · · · x̃(t − τq(t)) x̃(t − σ1(t)) · · · x̃(t −
σm(t))]⊤ ∈ R2(q+m)N×2(q+m)N , ξ (t,τl(t)σp(t)) =
[
∫ t

t−τ1(t) x̃(s)ds · · ·
∫ t

t−τq(t) x̃(s)
∫ t

t−σ1(t) x̃(s)ds · · ·
∫ t

t−σm(t) x̃(s)ds]⊤

∈ R2(q+m)N×2(q+m)N , ε(t,τl(t),σp(t)) =
[
∫ t

t−τ1(t)
˙̃x(s)ds · · ·

∫ t
t−τq(t)

˙̃x(s)
∫ t

t−σ1(t)
˙̃x(s)ds · · ·

∫ t
t−σm(t)

˙̃x(s)ds]⊤

∈ R2(q+m)N×2(q+m)N , and introduce the fol-
lowing augmented state vector: η(t) =
[x̃(t) ρ(t,τl(t),σp(t)) ξ (t,τl(t),σp(t)) ε(t,τl(t),σp(t))]⊤ ∈
Rδ×δ being δ = 2N[3(q+m)+1].
Accordingly, summing up (24)-(26) as well as the null
terms (27)-(28), the following inequality is obtained:

V̇ (x̃(t))≤ η
⊤(t)Θη(t), (29)

where Θ ∈ Rδ×δ is the following block matrix:

Θ11 02N×2(q+m)N 02N×2(q+m)N Θ14

0 −
[

Q̃τ 0
0 Q̃σ

]
0 −

[
G̃⊤

τ 0
0 G̃⊤

σ

]
0 0 −

[
W̃τ 0
0 W̃σ

]
0

0 0 0 −
[

G̃τ 0
0 G̃σ

]


, (30)

being

Θ11 =
(

Φ+
q

∑
l=1

Q(l,τ)+
m

∑
p=1

Q(p,σ)+(m+q)τ⋆
( q

∑
l=1

W(l,τ)+
m

∑
p=1

W(p,σ)

))
,

Θ14 =[G(1,τ)−A(1,τ) · · · G(q,τ)−A(q,τ) G(1,σ)−A(1,σ) · · · G(m,σ)−A(m,σ)],

Q̃τ = diag(Q(1,τ)(1−µ1), · · · ,Q(q,τ)(1−µq)),

Q̃σ = diag(Q(1,σ)(1−µ1), · · · ,Q(m,σ)(1−µm)),

W̃τ = diag(W(1,τ), · · · ,W(q,τ)), W̃σ = diag(W(1,σ), · · · ,W(m,σ)),

G̃τ = diag(G(1,τ), · · · ,G(q,τ)), G̃σ = diag(G(1,σ), · · · ,G(m,σ)).
(31)

Hence, the asymptotic stability of the delayed closed-loop
system in (13) is guaranteed if the matrix Θ in (30) is
negative definite. Due to its structure, Θ < 0 if each diagonal
block matrix is negative definite. Taking into account As-
sumption 1, since Ql,τ , Qp,σ , Wl,τ , Wp,σ are positive matrices
while G(l,τ), G(p,σ) are free matrices selected positive (∀l, p),
it follows that Θ < 0 if the LMI in (19) holds.

TABLE I: Heterogeneous Vehicles Dynamics Parameters.

Vehicle mass
[1545,1015,1375,1430,1067,1155]⊤

[m0,m1, . . . ,m5]
⊤ [Kg]

Wheel radius
[306,283,288,328,265,288]⊤

[R0,R1, . . . ,R5]
⊤ [mm]

Rolling resistance
[0.020,0.022,0.019,0.021,0.023,0.024]⊤

[ f0, f1, . . . , f5]
⊤ [−]

Drag coefficient
[0.3,0.3,0.24,0.29,0.29,0.33]⊤

[CD,0,CD,1, . . . ,CD,5]
⊤ [−]

Frontal area
[2.2,2.19,2.4,2.46,2.14,2.04]⊤

[A f ,0,A f ,1, . . . ,A f ,5]
⊤ [m2]

Remark 1: Theorem 1 provides a delay-dependent sta-
bility criterion expressed as a set of LMIs that allows the
proper tuning of the control gains in (9). LMI (19) can be
numerically verified by using the Yalmip Toolbox [14].

V. SIMULATION ANALYSIS

This section investigates the effectiveness of the
proposed control approach in guaranteeing platoon
formation under the proposed nonlinear spacing policy
via MiTraS simulation platform [13]. We consider a
heterogeneous platoon composed of N = 5 CAVs (with
equal length of 4.7 [m] and ηi = 0.89, ∀i = 1, · · · ,N),
plus the leader following a trapezoidal speed profile.
The initial conditions are [p0(0), p1(0), . . . , p5(0)] =
[280,250.3,220.6,190.9,161.2,131.5][m] and vi(0) =
18[m/s] (∀i = 0,1, · · · ,N), while CAVs parameters are
listed in Table I. The connectivity among vehicles
undergoes Leader-Predecessor-Follower (LPF) topology
while communication delays are emulated as random
variable uniformly distributed within the range [0,0.05] [s].
Accordingly, the control gains in (9) are selected via
Theorem 1 as: [κ10, κ20, κ21, κ30, κ32, κ40, κ43, κ50, κ54, ] =
[318, 143, 135, 149, 120, 149, 120, 110, 120]
and [β10, β20, β21, β30, β32, β40, β43, β50, β54] =
[393, 177, 80, 185, 80, 138, 80, 149, 80]. Results in
Fig.s 2 (a) and (b) depict the inter-vehicle distance and
speed profiles of CAVs platoon and disclose how formation
control objectives (6) are achieved. Indeed, the proposed
strategy ensures that each vehicle tracks the leader speed
profile with smooth behaviour during transient phases and
without over-shoots and under-shoots, while maintaining the
variable nonlinear spacing policy dre f ,i j(t) ((i, j) ∈ EN+1).
Fig. 2(c) compares the proposed nonlinear spacing with the
typical CTG when h = 0.6 and h = 0.9. As expected, the
behaviour of the proposed policy is comparable to CT Gh=0.6
for low speed, while it ensures larger (and safer) distance at
higher speed (but still significantly lower than CT Gh=0.9).
This further confirms how the proposed spacing is able to
guarantee an increasing of traffic throughput, differently
from CT Gh=0.9 while ensuring the vehicles safety at high
speed, differently from CT Gh=0.6 (see also Figure 1). To
capture variations in longitudinal vehicles control, we also
calculate Driving Volatility [21] index with a 3 seconds-time
window. The results listed in Table II highlight that the
proposed spacing policy significantly reduces the speed
variation w.r.t. CT Gh=0.6 with a behavior comparable to
CT Gh=0.9 despite lower inter-vehicle distances.
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(a) (b) (c)
Fig. 2: Platoon formation control under (9): (a) Time history of the desired spacing policy between consecutive vehicles, i.e. dre f ,ii−1(t)
(see solid lines), vs the actual inter-vehicle distance pi−1(t)− pi(t) (see dashed lines), ∀i = 1, · · · ,N; (b) Time history of vehicles speed
vi(t) ∀i = 0,1, . . . ,N; (c) Time history of platoon length when comparing (4) with respect to CT Gh=0.6 and CT Gh=0.9.

TABLE II: Comparison w.r.t. different spacing policy implementa-
tion: Driving Volatility value [m/s] and improvement percentage.

Spacing Vehicle Vehicle Vehicle Vehicle Vehicle
Policy 1 2 3 4 5

Proposed (4) 52.6 54.6 55.7 55.2 55.2
CT Gh=0.6 56.0 60.0 60.5 58.0 57.4

−6.1% −9% −8% −4.9% −3.9%
CT Gh=0.9 52.4 54.1 53.6 52.9 52.7

+0.3% +0.9% +3,9% +4,3% +4,7%

VI. CONCLUSIONS

This paper has addressed the platoon control problem
for nonlinear CAVs, sharing information via a non ideal
V2V network, under nonlinear variable spacing policy. After
suggesting a variable time-gap based desired inter-vehicle
distance, covering the full speed range for platooning control
systems, the problem is recast as a formation control one.
Thus, a distributed robust control strategy is proposed to
ensure that each CAV in the platoon tracks the desired
motion while maintaining the desired variable spacing policy,
adapted to the current traffic situation, despite the presence
of communication impairments. Simulation analysis disclose
the effectiveness and the advantages of the proposed solution.

REFERENCES

[1] Q. Li, Z. Chen, and X. Li, “A review of connected and automated
vehicle platoon merging and splitting operations,” IEEE Transactions
on Intelligent Transportation Systems, 2022.
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