
DMP-based Path Planning for Model Predictive Interaction Control

Tim Goller, Daniel Brohm, Andreas Völz and Knut Graichen

Abstract— This paper presents a three-layered hierarchical
architecture to control manipulation tasks which involve in-
teractions between the robot and workpieces. Learning from
demonstration (LfD) is exploited to train dynamical movement
primitives (DMPs) as fundamental building blocks for such
tasks. Thus, position and wrench profiles are obtained from
a kinesthetic demonstration, which makes the programming
process intuitive for factory workers without expert knowledge.
A model predictive path-following controller is used as the
underlying control method, in order to make use of the explicit
consideration of constraints within the controller formulation.
Thereby, the progress parameter of the path-following control
is used as the phase variable of the DMPs which results in a
tight coupling of both methods. Finally, experimental results
on a real robot system prove the effectiveness and real-time
capable implementation of the approach.

I. INTRODUCTION

Many industrial manufacturing tasks are nowadays still
not completely automated but executed by human workers.
One reason therefore is that most of the commercially avail-
able robotic systems require expert knowledge for creating
workflow programs [1]. Learning from demonstration (LfD)
or programming by demonstration (PBD) [2] address this
problem with the aim of reducing the programming effort to
a minimum and making this process as intuitive as possible.

Among the great variety of LfD approaches, dynamic
movement primitives (DMPs) gained a lot of interest in
the robotics community since they were developed in the
early 2000s and later reformulated by Ijspeert et al. [3].
Besides their elegant formulation as a simple second-order
attractor system, the possibility to model nonlinear discrete
and rhythmic trajectories, contributed to their success. The
major benefits are that the dynamic system, which encapsu-
lates the nonlinearity, can be easily trained to fit a human
demonstration, offers the possibility of temporal and spatial
scaling in order to adapt to varying tasks and that stability can
be investigated. For this reason, DMPs have been used to rep-
resent position trajectories in joint space [4], Cartesian space,
force-torque profiles as well as combinations of both [5]–[7].
A comprehensive review about DMPs including the variety
of formulations and their applications was recently published
by Saverino et al. in [8].

More complex tasks require the execution of a sequence
of motions and actions. With increasing complexity and
length, these tasks cannot be implemented efficiently as
single DMPs. Consequently, DMPs were integrated into
task planning frameworks and combined with error recovery

*This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under project No GR 3870/5-1.

The authors are with the Chair of Automatic Control, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
{tim.goller, daniel.brohm, andreas.voelz,
knut.graichen}@fau.de

routines [9], [10] to execute them sequentially. In such frame-
works, DMPs are used as the fundamental building blocks
to generate trajectories for an underlying control scheme
such as compliance control [6] or hybrid force/motion
control [7]. With these approaches it is already possible
to realize complex interactions as part of assembly tasks.
Nevertheless, the consideration of constraints is difficult with
these methods, especially if lifelong learning of the DMPs is
implemented [8]. With model predictive control (MPC) [11]
as an advanced control method, it is possible to consider
constraints directly within the controller design. Because of
this, several approaches for using MPC in robot control were
developed [12]–[15] and tested on real hardware recently.

In previous work of the authors, an MPC scheme, namely
the model predictive interaction control (MPIC), for con-
trolling motions and interactions was introduced [14] and
integrated into a hierarchical framework [16]. In the sub-
sequent work [17], the MPIC was reformulated as a path-
following controller in order to use the internal path dy-
namics to drive the progress along the task. However, the
fundamental building blocks were implemented as classical
trajectory or path planning primitives. In order to exploit the
benefits of model predictive control and dynamic movement
primitives in one framework, this paper presents an approach
for combining them in a three-layered hierarchical control
architecture, which integrates MPIC into an LfD approach.
This results in the further advantage that smooth transitions
of a DMP sequence are achieved by exploiting the predictive
nature of the MPIC scheme and by using the path dynamics
for variable temporal scaling.

II. METHOD

The considered system is a modern lightweight robot with
Ndof degrees of freedom, which is capable of controlling
interactions with its environment. Therefore, sensory infor-
mation about the interaction wrench F ext and a suitable
control method are required. The approach presented in this
paper relies on a three stage hierarchical control architecture
as depicted in Fig. 1. As a basis, the robot is stabilized
by a low-level PD controller with gravity compensation
(). On the mid-level, a model predictive path-following
controller computes the optimal desired joint positions and
velocities for the underlying low-level loop and thus acts
like an admittance controller. The Task-Skill-MP framework
implements the abstract task planning on the top-level.

In the following section, the system dynamics is briefly
summarized first, followed by the remaining components.
However, the interested reader is referred to [17] for a
detailed description of the path-following control and to [15]
for a detailed derivation of the dynamic equations.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 128

MPIC-PF

qd, q̇d

q, q̇,Fext

ż(τ) = f(z(τ),w(τ)), z(tk) = zk

z(τ) ∈ Z, w(τ) ∈ W

min
w

J(zk;w) =
∫ tk+T

tk
l(z(τ),w(τ)) dτ

s.t.

z

PD control
+

gravity
τ J

10ms 1ms

Task-Skill-MP framework

P,Q,B

Fig. 1. System layout including the robot on the right () and the online path planning on the left (). First, the task is demonstrated kinesthetically.
Then a sequence of DMPs is trained to represent the desired motions and interaction wrenches acting at the end effector. During the execution phase, the
sequence is evaluated by the Task-Skill-MP framework, nominal paths are generated and tracked by a model predictive path-following controller (MPIC-PF).

A. System Dynamics

The overall system dynamics consists of three individual
subsystems which are the PD-controlled robot, the inter-
action between the end effector and its surrounding and a
virtual dynamics of the path-following controller. Under the
assumption that only sufficiently slow motions are realized,
the closed loop dynamics of the PD-controlled robot can be
simplified to a first-order system [15] with the actual and
desired joint positions q, qd as state variables. Moreover,
the interaction wrench F ext is considered as a state variable
as well. Finally, a virtual second-order integrator with the
progress s and velocity ṡ along the path is used to realize the
path-following control scheme [17]. This virtual subsystem
is used to compute the current set point along the geometrical
path in every sampling step. Together, these three subsystems
compose the state

z = [qT, qT
d,FT

ext, s, ṡ]
T ∈ RNdof+Ndof+6+1+1 (1)

and control input vector

w = [q̇T
d, s̈]

T ∈ RNdof+1 (2)

with the desired joint velocities q̇d and the virtual acceler-
ation along the path s̈. The Cartesian pose p is computed
by evaluating the forward kinematics p = fk(q) and is
composed of the position t = [tx, ty, tz]T and the quaternion
o = (η, εx, εy, εz) for the orientation.

B. Task-Skill-MP Framework

Reducing the complexity of abstract manipulation tasks
by hierarchical decomposition is a common approach in
robotic applications [16], [18]–[21]. As a result, complex
tasks are usually represented as a sequence of fundamental
building blocks, so-called manipulation primitives (MPs).
Due to their generic formulation, they can be reused and
thus programming effort is reduced.

Based on the Task-Skill-MP framework [16], tasks are
complex and abstract descriptions, skills are recurring sub-
processes like peg-in-hole, push-button, etc. and imple-
mented as a sequence of MPs. Manipulation primitives rep-
resent fundamental control strategies and are characterized
by a generic formulation

MP := (P,Q,B, C) . (3)

Therein, the control strategy Q is specified according to
the control objective P ⊂ {q∗(sloc),p∗(sloc),F∗(sloc)}
with the MP-specific progress sloc ∈ [0, 1]. Additionally,

system- or MP-specific constraints can be specified in B
and the transitions in between the MPs are controlled by
the conditions C.

The generic definition (3) allows the user to implement a
variety of primitives to realize motions, interactions and dis-
crete actions like grasping. Furthermore, the control objective
can be specified as a set point, geometric path or trajectory
using arbitrary interpolation or planning methods. In previous
work of the authors, trapezoidal trajectories [15] and piece-
wise linear paths [17] were used within the MPs. Another
more advanced method to represent trajectories or paths
based on human demonstrations are dynamic movement
primitives [3], which are described in the next subsection.

C. Dynamic Movement Primitives
With DMPs [3], [8] it is possible to describe complex

nonlinear trajectories for robotic systems. The essential core
of a DMP is a linear spring damper system spanned between
the actual and goal position y, yg with a nonlinear forcing
term f(sloc), i.e.

y′′(sloc) = α(β(yg − y(sloc))− y′(sloc)) + f(sloc) , (4)

where (·)′ = dy
dsloc

and (·)′′ = d2y
ds2loc

denote the derivatives
with respect to the local MP-specific progress parameter sloc.

The parameters α, β that define the dynamics of the spring
damper system are mostly chosen such that critical damping
is achieved. In the DMP formulation [3], [8], a temporal
scaling factor τ is included, which is omitted in our approach
because the actual time parameterization is considered as an
additional degree of freedom and determined by the path-
following controller. Thus, the time evolution of the MP-
specific progress parameter sloc(t) determines the temporal
scaling.

The linear spring damper system of (4) can already be used
for trajectory generation, yet only realizing linear motions.
In order to achieve nonlinear profiles between the initial and
goal position y0 = y(sloc = 0) and yg = y(sloc = 1), a
nonlinear forcing term

f(sloc) =

∑Nw

i=1 wiΨi(sloc)∑Nw

i=1 Ψi(sloc)
(1− sloc)(yg − y0) (5)

is added with Nw weighted Gaussian kernel functions

Ψi(sloc) = exp(−hi((1− sloc)− ci)2) (6)

with width hi and center location ci along the phase variable.
In the original DMP formulation [3], a phase variable is

129

defined that decays exponentially from 1 to 0 and is mul-
tiplied with f such that the forcing term vanishes at the goal
position. Since in our approach sloc ∈ [0, 1] is increasing,
the phase variable is represented by (1 − sloc). However,
for the sake of simplicity, in the following sloc is named
the phase variable. The weights wi are trained with locally
weighted regression (LWR) [22] to fit the forcing term to the
demonstrated trajectories.

By definition, a single DMP represents a one-dimensional
trajectory. In order to describe multi-dimensional trajectories,
Ndmp individual DMPs, i.e. one for each degree of freedom,
are defined and synchronized by sharing the same phase vari-
able. Thus, it is possible to define DMPs for joint positions,
Cartesian pose and interaction wrench and to combine their
outputs yi, i ∈ [1, . . . , Ndmp] to

y = [y1, . . . , yNdmp]
T , (7)

which is used as control objective for the MPIC. Note that
discrete DMPs of the form (4) cannot be used for the
orientation described by quaternions. In this case, another
formulation is required as shown in [8], [23].

D. Model Predictive Interaction Control for Path-Following

The mid-level loop is the model predictive interaction
control for path-following (MPIC-PF), which acts like an
admittance control scheme in order to compute the desired
joint positions and velocities for the low level PD-controller
as shown in Fig. 1. The MPIC-PF is based on MPC [11],
where the optimization problem

min
w

J(zk;w;MPi;MPi+1) =∫ tk+Thor

tk

l(z(τ),w(τ);MPi;MPi+1) dτ

(8a)
s.t. ż(τ) = f(z(τ),w(τ)) , z(tk) = zk (8b)

z(τ) ∈ Z, w(τ) ∈ W, τ ∈ [tk, tk + Thor] (8c)

is solved over a prediction horizon with length T and
under consideration of the system dynamics (8b) and con-
straints (8c). Therein, the cost functional (8a) consists of the
integral cost

l(z(τ),w(τ);MPi;MPi+1) = ψ(τ)li(z(τ),w(τ),MPi)

+ (1− ψ(τ))li+1(z(τ),w(τ),MPi+1) (9)

with two cost parts li and li+1 that depend on the system
state z(τ), the input w(τ), and either on the current i-th or
the subsequent (i+1)-th MP. Thus, the transitionMPi→i+1

is defined by the progress value si+1 and is considered within
the prediction by the activation function

ψ(τ) =

{
1 if s(τ) < si+1

0 otherwise.
(10)

A major benefit of the MPIC-PF is the possibility to imple-
ment various control strategies such as pure motion control
in Cartesian or joint space, force control or hybrid forms
by adjusting the controller parameterization during the MP
transitions. The control strategy of the i-th MP is specified

by the entries of the weighting matrices Qq,Qp,QF of the
integral cost

li(z,w;MPi) = ‖∆q‖2Qq
+ ‖∆p‖2Qp

+ ‖∆F ext‖2QF

+‖w‖2Rw
+ ls(s, ṡ)

(11)

which scale the tracking error ∆x = x − x∗ of the
respective quantity x, i.e. joint positions q, Cartesian pose
p or interaction wrench F ext and the control objective x∗.
Additionally, the control input is penalized by Rw and the
path dynamics is considered in ls(s, ṡ) to ensure a steady
progress along the MP sequence [17].

E. MPC-based control of a MP sequence
As shown in Fig. 1, the MPIC-PF computes an optimal

control signal with a cycle time of 10 ms. Within this period,
the optimization problem (8) is solved once over the predic-
tion horizon Thor. Thus, the DMPs are evaluated over the
length of the prediction horizon to retrieve the nominal paths,
depending on the time evolution of the progress parameter
s. As the MPC horizon is shifted, this procedure of iterative
path planning is repeated as shown in Algorithm 1.

In order to control a sequence of manipulation primitives,
the progress parameter s as part of the state vector z is
interpreted as a progress along the sequence with the value
s = 1 marking the end of the execution. Thus, in every MP
the current value of s is mapped to the local MP-specific
progress by

sloc(τ) =
s(τ)− si
si+1 − si

, i = 0, . . . , NMP − 1 . (12)

Then, all Ndmp DMPs are evaluated by calculating the forcing
terms first and then solving (4) for the control objectives
yj(sloc), which are subsequently concatenated in the vector
y(sloc). Finally, the control objective x∗ = y(sloc) is ready
for use within the MPC cost function.

Algorithm 1 Iterative path planning
1: for τ ≤ Thor do
2: Calculate sloc(τ) with (12)
3: for j to Ndmp do . DMP loop
4: Calculate fj(sloc) using (5)
5: Solve (4) for yj(sloc)
6: Append yj(sloc) to y(sloc)
7: j ← j + 1
8: end for
9: Set x∗(τ) = y(sloc)

10: end for

III. EVALUATION

For the experimental validation of the proposed approach,
a Franka Emika robot with 7 degrees of freedom is used,
which is equipped with a 6-axis force/torque sensor at the
end effector and a handle bar for kinesthetic teaching. Note
that it is important to measure the task-specific interaction
wrench at the end effector since otherwise the human-caused
guiding forces and torques (e.g. during free motions) would
be included in the measurements. The complete experimental

130

Fig. 2. Experimental setup including the NIST task board #3 [24], a Franka
Emika robot equipped with a 6-axis force/torque sensor and a handle bar
for kinesthetic demonstration.

setup is depicted in Fig. 2. Therein, also a NIST task board
#3 [24] is visible, which is used for snap assembly scenarios.
Additionally, a peg-in-hole skill is considered for evaluating
variations of the workpiece position. In addition to this paper,
a video of all experiments can be found on the following link
https://www.fau.tv/clip/id/50427.

A real-time capable implementation of the MPIC-PF
is achieved with the MPC toolbox GRAMPC [25]. The
controller runs on a desktop PC with Intel(R) Core(TM)
i7-7700 CPU. As general GRAMPC settings, a prediction
horizon of T = 0.5 s, Nhor = 40 discretization steps,
and (igrad, imult) = (4, 1) gradient and multiplier iterations
are chosen. With these parameters an average and worst
case computation time of 2.8 ms and 6.0 ms are achieved.
The majority of the computational effort is caused by the
calculation of the forward kinematics whereas the iterative
evaluation and numerical integration of the DMPs can be
neglected.

A. Snap Assembly
The NIST task board #3 is originally intended for evalu-

ating a robot’s capability to manipulate flexible wires [24].
However, it also offers three distinct connectors and the cor-
responding sockets. Among these three options, an ethernet
and a 3.5 mm audio plug are chosen as snap assembly sce-
narios. Both are characterized by a force-sensitive insertion
of the connector into the socket. Thereby, the required force
profile is nonlinear due to the varying resistance which then
causes the connector to snap into the socket.

As a first step, the complete snap assembly is demon-
strated kinesthetically by a human. Then, the demonstration
is divided manually into several intervals which require
different control strategies such as motion control, force
control or hybrid forms. Each interval is then considered

−0.6
−0.4

−0.2
0 −0.61

−0.59
−0.57

−0.55

0.25

0.27

0.29

0.31

0.33

0.35

0.37

tx[m] ty[m]

t z
[m

]

t

t̄

t∗

tc

s = 0

s = 0.2

s = 0.5

s = 1

b)

s = 0

s = 0.2

s = 0.5

s = 1

a)

Fig. 3. Measurement results of the position profiles () for the snap
assembly of an ethernet a) and an audio plug b). The corresponding
demonstrations are plotted in blue () and the desired paths are drawn
as dashed red lines ().

as an individual MP. Automating this process is part of our
ongoing work. The overall task is described by subsequently
concatenating all intervals.

At the beginning of the task execution, i.e. in the interval
s ∈ [0, 0.2], the robot is moved to the initial position of
the demonstration as depicted in Fig. 3. For this reason, no
demonstrated position profile is plotted for this interval. In
the second interval s ∈ [0.2, 0.5], the DMPs generate a de-
sired trajectory t∗ () from the demonstration t̄ (). Since
the end effector is not in contact with any environmental
object, this interval is realized as a Cartesian motion control
which is achieved by parameterizing the weighting matrices
of the MPC cost functional (9) accordingly. The measured
position profile is plotted in dark blue (). Finally, the third
MP implements a hybrid force/motion control for the connec-
tor insertion. Therein, the interaction force is controlled in the
end effector’s z-direction and the motion is controlled in the
complementary directions. Fig. 4 shows the corresponding
force profiles including again the demonstration F̄z (),
desired force for the MPC F ∗z (), and the measured profile
Fz (). The areas highlighted gray denote the intervals
where force control is active.

In the force profiles of Fig. 4 the nonlinearity in the
demonstration is clearly visible between s ≈ 0.65 and
s ≈ 0.8. Characteristic for both scenarios are the decreasing
interaction force in the middle of the insertion process and
the oscillations when the connector snaps into the socket.
Regarding the oscillations, using DMPs for trajectory gen-
eration is beneficial since they automatically smoothen the
noisy demonstration, cf. () in Fig. 4.

The time evolution of the progress parameter s, which
drives the ethernet snap assembly, is depicted in Fig. 5. It

131

−15

−10

−5

0

5
F

[N
]

Fz F̄z F ∗
z

a) Ethernet Plug-in Scenario

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−15

−10

−5

0

5

s[−]

F
[N

]

b) Audio Plug-in Scenario

Fig. 4. Force profiles of both snap assembly scenarios with the demon-
stration (), the desired force for the MPC () and the measured forces
of the executions ().

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
0

0.5

1

time [sec]

s
[−

]

-0.1

0

0.1

ṡ
[−

],
s̈
[−

]

s ṡ s̈

Fig. 5. Path dynamic of the ethernet snap assembly. The progress s is
plotted in blue (), the path velocity ṡ is drawn in red () and the path
acceleration s̈ is plotted in green ().

can be seen that the progress velocity ṡ is adjusted repeatedly
to ensure smooth transitions between the MPs and to avoid
jerky robot motions. This corresponds to the possibility of
temporally scaling DMPs in every sampling step by the path
dynamics, which is a major benefit of combining DMPs with
the MPIC-PF.

B. Position Scaling with Constraints
In order to increase the efficiency and reusability in robot

programming, it is desirable that the demonstrated workflow
is applicable to varying workpiece positions. One major
benefit of DMPs is that they can be spatially scaled by
adjusting the goal position yg in (4). By doing so, the
qualitative nonlinear shape of the trajectory is not affected,
but the spatial motion between the initial and goal position
is adjusted. This can be seen in Fig. 6, where the position
profiles of a peg-in-hole skill are depicted. Therein, the red
curve () is the demonstrated motion. The curves to its
left and right are spatially scaled and thus do not require
a repeated demonstration. In the experiments, the position
of the hole is assumed to be known, e.g. by using camera or
laser systems for object tracking [26].

The difference to the snap assembly scenarios is that no
force control is required during the insertion of the peg into
the hole. Thus, the application is divided into four MPs. First,
the robot is moved within s ∈ [0, 0.2] to the initial position of
the demonstration, which marks the actual start of the task,
cf. Fig. 6. Then the end effector is approaching the hole and
establishing contact within s ∈ [0.2, 0.5]. So far, both MPs
are realized as Cartesian motion control. The following third
MP implements the sliding motion towards the hole, such
that the peg and the hole are aligned for insertion. Thus,
in this interval s ∈ [0.5, 0.7] hybrid force/motion control is
needed. Therein, the force in the end effector’s z-direction
is controlled to maintain a stable contact and the motion
is controlled in the complementary directions. Besides the

0.2 0.25 0.3 0.35 0.4 0.45 0.5 −0.45−0.3
−0.15

0.4

0.45

0.5

0.55

tx[m] ty[m]

t z
[m

]

t
t̄
t∗

tc
s = 0

s = 0.2

s = 0.5 s = 0.7

s = 1

a)
b)

c)d)

Fig. 6. Position profiles of the peg-in-hole skill for the unscaled a) and
spatially scaled b), c) cases. The original demonstration is depicted in red
(), the desired positions for the MPC are drawn dashed blue () and
the measured profiles during the executions are plotted in dark blue ().
The profile of the constrained motion is drawn dashed green () d).

−12

0

12

F
[N

]
Fz F̄z F ∗

z

a) Unscaled

−12

0

12

F
[N

]

b) Scaled Left

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−12

0

12

s[−]

F
[N

]

c) Scaled Right

Fig. 7. Corresponding force profiles of the peg-in-hole skill variations.
The original demonstration in all three subplots is the same and plotted in
red (). The desired force for the MPC is drawn dashed () and the
measured forces of the executions are plotted in dark blue ().

motion (cf. Fig 6), the force profiles are depicted in Fig. 7.
Therein, the gray areas denote the third MP where force
control is applied. Finally, in the last MP s ∈ [0.7, 1], the
peg is inserted by a Cartesian motion control.

If motions and forces are demonstrated by hand guiding
the robot through a workflow, it can be assumed that the
resulting reference profiles (generated by the DMPs) are
valid and do not lead to the robot exceeding system or task
specific constraints. However, this is not the case anymore,
if position scaling is applied to the DMPs. In such cases, the
robot could potentially collide with environmental objects
located in the workspace, approach its joint limits or sin-
gular configurations. However, those cases can be avoided
by exploiting the redundancy of the robot and thus, by
considering constraints for the motion execution. By using
the MPIC-PF as the underlying control method, constraints
can be defined system specific, e.g. minimum/maximum joint
positions or task specific, e.g. Cartesian pose of the end
effector or elbow. They are then considered directly within
the controller formulation. Furthermore, by exploiting the
Task-Skill-MP framework the constraints can be defined MP-

132

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.49
0.51
0.53
0.55
0.57 d) Constrained

s[−]

t z
,e
[m

]

Fig. 8. Measured position profile of the elbow’s z-coordinate for the
constrained case of the scaled peg-in-hole task. The recorded profile is
depicted in dashed green () and the constraint in dashed black ()

specific and thus, changed during the execution phase. For
avoiding a potential collision of the elbow with the ceiling
due to scaling the motion to the left, the z-position of the
elbow is now restricted to tz,e ∈ [0.1, 0.55]. In Fig. 6 the
resulting position profile of the end effector is depicted in
dashed green () for the constrained motion. Fig. 8 shows
the constrained z-position of the elbow together with the
maximum allowed position (). It can be seen, that the
constraint is not violated while the desired pose of the end
effector could be succesfully tracked.

IV. CONCLUSION

In this paper, an approach for combining dynamic move-
ment primitives with model predictive interaction control is
presented. The resulting system combines the benefits of
both methods, which are the reduction of programming effort
by using learning from demonstration, spatial and variable
temporal scaling in every sampling step and the explicit
consideration of constraints within the model predictive con-
troller. Furthermore, a homogeneous controller architecture is
achieved by using the MPIC-PF within the hierarchical Task-
Skill-MP framework. Thus, complex manipulation tasks can
be described as a sequence of DMPs which is subsequently
executed by a single controller. Different control strategies
such as joint or Cartesian motion control, force control
or hybrid force/motion control are achieved by adjusting
few parameters of the MPC cost functional. Additionally,
constraints can be defined for each MP individually and are
considered directly within the controller formulation.

The approach is validated on a real robot system which
requires a real-time capable implementation of the model
predictive controller. Three different force-sensitive scenar-
ios show experimental results, including motion and force
profiles. A video of the experiments can be found on the fol-
lowing link https://www.fau.tv/clip/id/50427.

Future work focuses on the online adaptation of task
specific parameters which are difficult to demonstrate as, for
example, a wiggling motion. This also includes the devel-
opment of reliable error recovery strategies and a broader
evaluation focusing on the robustness of the approach. Be-
sides that, more complex tasks including gripper actions shall
be realized in order to investigate the reusability of already
demonstrated skills.

REFERENCES

[1] O. Heimann and J. Guhl, “Industrial robot programming methods: A
scoping review,” in Proc. of International Conference on Emerging
Technologies and Factory Automation (ETFA), 2020, pp. 696–703.

[2] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual review of
control, robotics, and autonomous systems, vol. 3, pp. 297–330, 2020.

[3] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[4] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control, planning,
learning, and imitation with dynamic movement primitives,” in IROS
Workshop on Bilateral Paradigms on Humans and Humanoids, 2003,
pp. 1–21.

[5] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.

[6] F. Steinmetz, A. Montebelli, and V. Kyrki, “Simultaneous kinesthetic
teaching of positional and force requirements for sequential in-contact
tasks,” in in Proc. of International Conference on Humanoid Robots
(Humanoids), 2015, pp. 202–209.

[7] N. Wang, C. Chen, and A. Di Nuovo, “A framework of hybrid
force/motion skills learning for robots,” IEEE Transactions on Cogni-
tive and Developmental Systems, vol. 13, no. 1, pp. 162–170, 2020.

[8] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel,
“Dynamic movement primitives in robotics: A tutorial survey,” The
International Journal of Robotics Research, vol. 42, no. 13, pp. 1133–
1184, 2023.

[9] F. J. Abu-Dakka et al., “Solving peg-in-hole tasks by human demon-
stration and exception strategies,” Industrial Robot: An International
Journal, vol. 41, no. 6, pp. 575–584, 2014.

[10] N. Krüger et al., “Technologies for the fast set-up of automated
assembly processes,” KI-Künstliche Intelligenz, vol. 28, pp. 305–313,
2014.

[11] E. F. Camacho and C. Bordons, Model Predictive Control. Springer,
2007.

[12] A. Wahrburg and K. Listmann, “MPC-based admittance control for
robotic manipulators,” in in Proc. of Conference on Decision and
Control (CDC), 2016, pp. 7548–7554.

[13] K. J. Kazim, J. Bethge, J. Matschek, and R. Findeisen, “Combined
predictive path following and admittance control,” in in Proc. of
Annual American Control Conference (ACC), 2018, pp. 3153–3158.

[14] T. Gold, A. Völz, and K. Graichen, “Model predictive interaction
control for industrial robots,” in Proc. of IFAC World Congress, 2020,
pp. 10 026–10 033.

[15] ——, “Model predictive interaction control for robotic manipulation
tasks,” IEEE Transactions on Robotics, vol. 39, no. 1, pp. 76–89, 2022.

[16] T. Gold, A. Lomakin, T. Goller, A. Völz, and K. Graichen, “Towards a
generic manipulation framework for robots based on model predictive
interaction control,” in Proc. of International Conference on Mecha-
tronics and Automation (ICMA), 2020, pp. 401–406.

[17] T. Goller, T. Gold, A. Völz, and K. Graichen, “Model predictive
interaction control based on a path-following formulation,” in Proc. of
International Conference on Mechatronics and Automation (ICMA),
2022, pp. 551–556.

[18] M. Pedersen et al., “Robot skills for manufacturing: From concept to
industrial deployment,” Robotics and Computer-Integrated Manufac-
turing, vol. 37, pp. 282 – 291, 2016.

[19] B. Finkenmeyer, T. Kröger, and F. M. Wahl, “Executing assembly task
specified by manipulation primitive nets,” Advanced Robotics, vol. 19,
no. 5, pp. 591–611, 2005.

[20] F. Steinmetz, V. Nitsch, and F. Stulp, “Intuitive task-level programming
by demonstration through semantic skill recognition,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3742–3749, 2019.

[21] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A framework for
robot manipulation: Skill formalism, meta learning and adaptive con-
trol,” in Proc. of International Conference on Robotics and Automation
(ICRA), 2019, pp. 5844–5850.

[22] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning,” Artificial Intelligence Review, vol. 11, pp. 11–73, 1997.

[23] F. J. Abu-Dakka, B. Nemec, J. A. Jørgensen, T. R. Savarimuthu,
N. Krüger, and A. Ude, “Adaptation of manipulation skills in physical
contact with the environment to reference force profiles,” Autonomous
Robots, vol. 39, pp. 199–217, 2015.

[24] K. Kimble et al., “Benchmarking protocols for evaluating small parts
robotic assembly systems,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 883–889, 2020.

[25] T. Englert, A. Völz, F. Mesmer, S. Rhein, and K. Graichen, “A
software framework for embedded nonlinear model predictive control
using a gradient-based augmented Lagrangian approach (GRAMPC),”
Optimization and Engineering, vol. 20, no. 3, pp. 769–809, 2019.

[26] L. Pérez et al., “Robot guidance using machine vision techniques
in industrial environments: A comparative review,” Sensors, vol. 16,
no. 3, p. 335, 2016.

133

