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Abstract— Rack-and-pinion drives are preferred feed drives
for long travel distances and heavy loads in large machine tools.
One of the advantages compared to other feed drive systems
is consistent stiffness regardless of travel length. A primary
challenge with rack-and-pinion drives is the achievable accu-
racy due to backlash. To compensate for backlash, electrically
preloaded systems are commonly used in machine tools. In
the case of electrical preload between two motors, the system
is more complex to identify because the feed drive specific
properties cannot be directly assigned to the respective drive
train. To address this issue, this paper presents a novel method
for modeling and identifying the load-dependent stiffness and
damping of an electrically preloaded system. For this purpose, a
mathematical modeling based on experimental data from a test
bench with industrial components is presented to separate the
drive train specific properties. This allows the system behavior
to be modeled more accurately and used for control approaches.

I. INTRODUCTION

In machine tools, feed drives are a key component in
performing manufacturing tasks. Various types of drive sys-
tems are available to generate the movement of the machine
tool. The motion of the feed drive is mainly generated by
electromechanical servo drive systems. Motors with a trans-
mission element are used to convert the rotational motion
of the motor into translational motion. A ball screw drive
(BSD) or rack-and-pinion drive (RPD) is commonly used as
the mechanical transmission element for feed drive systems
[1]. The appropriate drive system is selected according to
the application. The BSD is characterized by high efficiency,
but the stiffness is position dependent [2]. This leads to
locally varying dynamics of the system [3] and is therefore
a challenge for model-based control.

RPDs are usually used when a feed drive for long travel
distances is required [4]. The stiffness and inertia of these
feed drives are independent of the travel distance [1]. RPDs
are therefore widely used for large scale manufacturing
processes where long travel distances and high load require-
ments need to be managed.

One of the biggest challenges with RPDs is backlash, as
it affects their overall dynamic properties [5] and reduces
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accuracy. Backlash occurs when the direction of motion
between the rack and pinion is reversed. This causes the
tooth flank of the pinion to change the tooth flank side
of the rack and the motor momentarily stops transmitting
force to the machine table. As a result, there is no contact
between the rack and the pinion and the machine table is in
a non-controllable state. The backlash affects the achievable
accuracy of the drive system as well as the control quality
due to the nonlinear transmission behavior [6].

To compensate backlash, various mechanical and electrical
preload techniques have been suggested in the literature.
Mechanical preload can be realized with a split pinion
on the drive shaft, with both pinions in contact with the
opposite flank of the rack [3] or with two pinions and a
respective gearbox, where the gearboxes are connected by
a flexible coupling [7]. Mechanical preload is a passive
preload and cannot be changed during operation. In addition
to mechanical preload, there is also electrical preload, which
is mainly used in industry and is also used in this paper.
Electrical preload requires two motors, each with a pinion,
which are preloaded against each other in opposite directions
with an additional torque. In the industry, a constant preload
torque is chosen for the electrical preload. It is typically
in the range of 10% to 30% of the rated motor torque [8].
However, it is beneficial to vary the preload during operation
to maximize the dynamics of the drive system [1]. This
property was presented in [6] and a novel adaptive preload
control to increase energy efficiency for RPDs was shown.

Compared to the BSD, the RPD has no position-dependent
stiffness. Any number of racks can be lined up to realize
a travel distance of any length [9]. However, the stiffness
between the rack and pinion depends on the load [10].
The components and in particular the tooth flanks deform
due to additional forces [11]. Under operating conditions
with high process forces or heavy workpieces, some of
the loads may be high and cause tooth deflection and thus
deformation of the contact line, resulting in varying stiffness
[12]. The load changes the contact surface between the rack
and pinion, which affects the stiffness and therefore the
system dynamics, as the stiffness has a central influence on
the motion quality and transmission behavior of the drive
system [1]. For each single tooth, the contact force moves
along a line due to the involute shape and the contact stiffness
takes a nonlinear shape along this contact line [13]. As the
load increases, the contact width and therefore the stiffness
of the system changes [13].
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As well as the stiffness, the damping of the whole system
also varies with the contact area. Neglecting the backlash,
the following three-mass oscillator shown in Fig. 1 can be
assumed for a preloaded system. We follow the convention
that the motor variables are denoted with index (·)1 for motor
1, (·)2 for motor 2, the table variables with (·)T and friction
with (·)F. The stiffness k and damping d are shown in the
figure as load-dependent and therefore vary depending on
the motor torque. The motor torque τi can be converted via
the gearbox ratio ig and the pitch diameter dp into a force
with Fi = 2 · ig/dp · τi.
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Fig. 1. Schematic model of the electrically preloaded rack-and-pinion
drive.

When identifying the stiffness and damping on a physi-
cal machine with industrial hardware, the two springs and
dampers are considered in combination. However, this rep-
resents the total stiffness and damping of the whole system,
whereas distributing the stiffness and damping between the
two drive trains remains a challenge. There is no approach
in the literature that describes how the determined total
contribution is distributed between the two individual drives.
This is investigated in this paper. The novelty is the gen-
eral approach to determine the load-dependent stiffness and
damping of each drive train for preloaded rack-and-pinion
drives, and thus the distribution of the overall properties to
the individual ones.

II. CONTROL OF PRELOADED SYSTEMS

The control structure of a preloaded system used in this
paper is described in the following. The machine table is
controlled by an industry-standard cascade controller. This
controller consists of three nested control loops [8]. The inner
control loop must always be faster than the outer one. From
the inside control loop to the outer, the cascade controller
consists of a current controller, a velocity controller and
a position controller. In a preloaded system, the control
structure is extended to include another cascade controller
for the second drive train (see Fig. 2), but the desired velocity
vd is provided by a common position controller [14]. A
velocity preload controller is used to electrically preload
the two drives against each other. The preload controller,
which is a P controller, generates a preload torque by
applying an additional velocity vp to the corresponding PI
velocity controller of each drive train. For one drive train
the additional velocity is added and for the other subtracted
to achieve the preload. The velocity controller then controls
the velocity error between the desired velocity vd and the
actual motor velocity vi. The preload torque is calculated by
considering half of the desired torques τdi

of the velocity

controllers (due to identical motors) and a constant preload
torque value τp, which determines the preload between the
two drive trains. τp can be used to set various preloads in
the system, which are later required for system identification.
The velocity preload controller leads to a constant preload
between the two drive trains and thus to a change in motor
force. The torque is then controlled by a PI current controller
and the motors are actuated. In Fig. 2 the controlled system
with the preload controller is shown.

m1

m2

mTτp

v1
τ1

preload
controller

velocity
controller

torque
controller

torque
controller

velocity
controller

τ2
v2

τd1

τd2

0.5

0.5

vd vp

Fig. 2. Block diagram of the preload control structure based on [6].

III. SYSTEM IDENTIFICATION

To increase the dynamic accuracy of machine tools, it is
important to analyze the dynamic properties of the system
used. With the help of the analysis, the dynamic behavior
can be identified and thus modeled. Especially in the case of
electrically preloaded RPDs, a more detailed investigation of
the impact of both drives is required due to the preload in
order to determine the preload-dependent properties.

In [5] the dependence of the stiffness on the driving
force was investigated. For this purpose, the machine table
was positioned against a mechanical stop and an increasing
drive force was applied to the torque-controlled motor. This
deforms the respective drive and statically determines the
stiffness using the measurement signals from the motor and
the table. In the state of the art it is shown that the preload
has an effect on the stiffness, which can be calculated and
represented using Hooke’s law k = F/∆x. In [15] a method
for determining the mesh stiffness in cylindrical tooth pairs
is presented. It is shown that the stiffness is nonlinear with
an increase in force due to the contact area [15]. Contact
stiffness can also be simulated using FE models and has
been shown in [16]. This allows an initial estimate of the
stiffness curve as a function of force to be analyzed and
shows a nonlinear shape. The nonlinear behavior of mesh
stiffness, considering contact deflections, is approximated
by an analytical function in [17]. An ansatz function of
the stiffness curve is also determined and identified in the
presented paper.

In contrast to load-dependent stiffness, there is less infor-
mation available in the literature on load-dependent damping.
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In [18] a decreasing damping for higher velocities is shown.
From this, it can be deduced that the damping will also
exhibit a nonlinear behavior and a hyperbolic shape is
assumed in this paper.

In [5], the dynamic properties of the rack-and-pinion drive
were investigated under the influence of various preloads.
The varying system behavior during preload changes was
demonstrated and is now being used to identify the load-
dependent stiffness and damping of the system as a function
of contact force for use in modeling new approaches. The
function is defined for each drive train and the total contribu-
tion determined must be distributed to the corresponding one.
The dynamic stiffness as well as the damping are identified in
the frequency domain. For this purpose, the natural frequency
of the amplitude response is used for different preloads.
The mechanical transfer function is used to determine the
stiffness and damping from the frequency response. This
transfer function is defined so that the input is the velocity
of one motor, in our case the velocity of motor 1 v1, and
the output is the table velocity vT. The frequency transfer
function (FTF) of the compliant mechanics is defined in the
Laplace domain as G(s) = VT(s)/V1(s) using a spectral
density estimate of H3 [19] with a Hamming window of
length 1024 and window overlap of 717 samples. To obtain
the frequency response, a sine sweep is applied to the
target velocity. This signal excites different frequencies. The
measurement is then repeated for different preload torques.
Whereby a percentage value of the rated motor torque is set.
In this way, the load-dependent stiffness and damping can
be identified so that they can be modeled by approximating
a mathematical function.

In this paper, an experimental setup is used to investigate
how the load-dependent properties such as stiffness and
damping of the individual drives can be identified and
modeled in order to use them for model-based controllers.
The test bench is described in the following.

IV. EXPERIMENTAL SETUP

The test bench used for identifying the dynamic behavior
of electrically preloaded rack-and-pinion drives is shown
in Fig. 3. It consists of common industrial components,
which are mentioned in the following. The rotary motion
is generated by two permanent magnet synchronous motors
from Siemens (1FT7086-5AH70-1CA0), which have a rated
torque of 12.5Nm. They are equipped with an AM24DQI
motor encoder to obtain the motor position. The rotary
motion is transmitted to the pinion (Wittenstein RMT400)
by a two-stage planetary gearbox (Wittenstein RP040S) with
a ratio of ig = 16. The pinion, with a pinion pitch diameter
dp = 0.08488m, transmits the force to the rack (Wittenstein
ZST400) and the machine table performs a translational mo-
tion with a range of ∼ 3m. The total translational mass to be
moved has a weight of m = 403.8 kg. The table position xT

is measured using a linear measurement system in the guide
rails (Schneeberger AMSABS3). External forces simulating
disturbances or milling processes can be applied by a linear
direct drive (Siemens 1FN3300), which is mounted between

the guide rails under the table. The current control loop and
the velocity control loop for the motors run on a control unit
(Siemens CU320-2-DP). The position controller, the preload
controller and the trajectory planning are implemented on a
rapid control prototyping system.

Table

Rack

Motor

Gearbox

Pinion Linear direct drive

Guide Rails

Fig. 3. The rack-and-pinion drive test bench used for identification and
validation

V. MODELING OF THE LOAD-DEPENDENT PROPERTIES

The required measurements for the identification of the
load-dependent properties are performed on the test bench.
The influence of electrical preload on the properties of the
RPD in terms of stiffness and damping as a function of
load is investigated. To do this, the mechanical transfer
function G(s) = VT(s)/V1(s) is used. Frequencies in the
range of f ∈ [0.1, 400]Hz are excited with an amplitude
va of 0.001m/s for different preload torques. To eliminate
the nonlinear effect of static friction, a small offset velocity
voffset of 0.005m/s is added to the amplitude. The measure-
ment is performed for a respective preload that varies in the
range of 0% to 100% of the rated motor torque. Fig. 4
shows the mechanical frequency response of the system.
It can be seen that the natural frequencies increase with
increasing preload as well as the peak of the magnitude.
Therefore, if a system is preloaded with higher torques, the
natural frequency will increase and the position controller
gain can theoretically be increased, thereby increasing the
bandwidth of the system. A preload that adjusts according
to the requirement is presented in [6] as an adaptive preload
controller.

From the frequency response in Fig. 4, the transfer func-
tion and thus the natural frequency ω0, defined at the fre-
quency where the phase is equal to −90 ◦, can be determined.
Due to the change in natural frequency, the stiffness of
the system also changes. In the time domain it was seen
that backlash occurs at small preloads and therefore cannot
be represented in the FTF due to the nonlinearity of the
backlash. Using ω0 and neglecting the damping in the first
step, the total stiffness of the system can be determined from
ω0 =

√
k/m by rearranging the equation to solve for the

stiffness k. The mass m describes the total mass to be moved,
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Fig. 4. Frequency response for different preload troques.

which is the mass of the table with motors, gearboxes, direct
drive and the carriages, and can be determined in advance
from data sheets. To determine the damping of the system
from the mechanical frequency response, the damping ratio
must be used. This characterizes the frequency response of
the system. The damping ratio describes the actual damping
d in a damped system to the critical damping dc, where D =
d/dc. The stiffness is obtained from the natural frequency
and the mass, and the damping d can be determined from
the critical damping and the damping ratio:

k = ω2
0 ·m, d = D · dc (1a)

with

D =
1

2 · |G(jω0)|
, dc = 2 ·m · ω0. (1b)

Note that the above formulas hold, since the amplification
factor for G(s) is equal to 1. Due to the occurrence of
backlash at small preloads (0% to 6%) at our test bench,
these measurements are not considered in the further course.
Thus, in Fig. 4, the stiffness and damping of the whole
system can be obtained for a given preload. However, it
is important to determine the stiffness and damping of the
respective drive train. Varying the preload torque τp varies
the respective motor torque, which is converted to the motor
force using the conversion 2 · ig/dp in the following. Fig. 1
shows the varying stiffness k(Fi) and the varying damping
d(Fi) of the respective drive train as a function of the motor
force. How the total stiffness and damping are assigned to the
respective drive train is described in the following sections.

A. Stiffness

The stiffness for the overall system can be determined
from the individual measurements for each preload. In the

preloaded system, where two identical motors act on each
pinion, the amount of stiffness depends on the drive torque
generated by the motor. Due to the preload, the motor
forces are not equal during motion (F1 ̸= F2) and therefore
k(F1) ̸= k(F2). The total stiffness is a superposition of the
respective drive train stiffness

k(F1, F2) = k(F1) + k(F2) (2)

due to the arrangement of the springs in Fig. 1. Based on
the frequency response, only the total stiffness k(F1, F2)
for a given preload can be determined using the equation
for stiffness from (1a). The stiffness is calculated from the
transfer function for each applied preload. As the preload
increases, the natural frequencies and therefore the stiffness
increase. It is now necessary to identify the total stiffness
as a function of the two motor forces in order to model the
stiffness as a function of load. For this purpose, it is assumed
that the stiffness corresponds to a root function and that
the function is determined for the identified total stiffness,
taking into account the driving forces. The two-dimensional
representation of the stiffness becomes a three-dimensional
representation due to the two drive trains. The basic idea of
the representation is illustrated in Fig. 5. Due to the preload
and the resulting offset in the torque curves, motor 1 (M1)
and motor 2 (M2) do not encounter backlash at the same
time. If a drive does not apply any force to the rack (e.g.
in backlash), the remaining stiffness is only provided by one
drive and therefore the total stiffness decreases in this area.
After the drive has gone through the backlash and the pinion
is in contact with the rack again, the stiffness increases. This
can be seen in Fig. 5 at the transition from e.g. 3 to 4 (red
line for illustration) when motor 2 changes the sign of the
driving force. The different motor configurations results in
four quadrants where in 1 both motors represent a positive
force and in 3 both represent a negative force. In quadrants
2 and 4 the drives are preloaded with different signs of

the motor force.

0
0

Force F2
Force F1

St
iff

ne
ss

k

1

2 4

3

Fig. 5. Approach for calculating the stiffness depending on both forces.

To identify the surface, it is sufficient to consider only one
quadrant in the following.
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For the stiffness, the following empirically determined
ansatz function is assumed

k(Fi) = k1 · k2
√
|Fi| (3)

with two parameters k1 and k2 to be identified. To obtain the
parameters, the particleswarm optimizer algorithm, described
in [20], is used. This method is an iterative procedure to
minimize the error between an assumed nonlinear function
and the actual measured data. The sum of k(F1) and k(F2)
provides the total stiffness

k(F1, F2) = k1 · k2
√

|F1|+ k1 · k2
√
|F2| (4)

depending on the respective motor force. Note that the
parameters for both functions should be the same. The
parameters are optimized by minimizing the normalized error
between the stiffnesses kmeas determined from the measured
frequency response and the stiffness calculated from the
ansatz function k(F1, F2) depending on the parameters,

[k∗1 , k
∗
2 ] = argmin

k1,k2

√
e⊤e

k⊤
measkmeas

(5a)

with

e = kmeas − k(F1,F2). (5b)

The parameters identified using particleswarm optimization
converge to

k∗1 = 1.8709e7, k∗2 = 5.6406 (6)

with a remaining error for the optimization function from
(5a) of 4.01%. The ansatz function k(F1, F2) from (4) rep-
resents the modeled stiffness from the frequency responses
with the parameters mentioned.

Fig. 6 shows the model from (4) and the test bench
measurements kmeas. Note that the measuring points are
located close to the angle bisector due to the preload and the
machine table movement. The total stiffness can therefore be
divided into the two individual stiffnesses of the drive trains,
represented by k(F1, 0) and k(0, F2), with one force being
set to zero in each case. This provides the stiffnesses k(F1)
and k(F2) needed for Fig. 1. Note that Fig. 6 only shows the
quadrant for two positive motor forces. To represent the full
range of stiffness, all four quadrants must then be considered
as shown in Fig. 5.

B. Damping

To identify the load-dependent damping d(F1) and d(F2),
the total system damping is determined from the transfer
function and divided using the same method to identify the
respective drive train damping from Fig. 1. The total damping
of the system is again the sum of the two drive trains:

d(F1, F2) = d(F1) + d(F2) (7)

To determine the damping d of the overall system, the
equation for damping in (1) is used. The damping is also
determined from the frequency response shown in Fig. 4.
When calculating the damping, the preload changes the
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Fig. 6. Surface of the modeled stiffness depending on the measurements.

natural frequency and the amplitude gain at that frequency.
The ansatz function assumed for damping, also determined
empirically, is a hyperbolic function

d(Fi) =
d1

d2 + |Fi|
+ d3 (8)

with three parameters (d1, d2 and d3) to be identified. Since
the total damping from (7) depends on both driving forces,
it can be determined as follows:

d(F1, F2) =
d1

d2 + |F1|
+ d3 +

d1
d2 + |F2|

+ d3 (9)

The parameters d1, d2 and d3 are also obtained using
particleswarm optimization. The ansatz function d(F1, F2)
is optimized to the measured points dmeas using the same
optimization function from (5). The values for the parameters
from the optimization are

d∗1 = 9.5376e5, d∗2 = 148.3813 and d∗3 = 2.0734e4 (10)

with a remaining error of 4.51%.
Fig. 7 shows the identified and modeled damping of the

system in the quadrant of positive motor forces. The function
from (9) with the parameters from (10) represents the total
damping. The surface was approximated to the measurements
from the frequency response dmeas and can now be divided
to the respective drive train.

The load-dependent damping d(Fi) from Fig. 1 can then
also be distributed to the respective drive train and the respec-
tive damping of the drives on the table can be determined.

C. Validation

The stiffness and damping of the system have been
identified and can now be modeled using the presented
ansatz functions from (3) for stiffness and (8) for damping.
Section V-A and Section V-B shows an analysis of how to
divide the total stiffness and damping in a preloaded system.
Figure 8 shows a comparison of the measured motor torques
from the test bench and the simulated motor torques with
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the modeled varying stiffness and damping. The simulation
model is based on the three-mass oscillator from Fig. 1
with backlash. A time-optimal trajectory with a trapezoidal
acceleration profile is used to validate the motor torques. The
desired trajectory xd is shown in the upper figure in Fig. 8
with xd ≤ 1m, |ẋd| ≤ 0.5m/s, |ẍd| ≤ 1m/s2, | ...

x d| ≤
20m/s3 and a preload of 10%. The quality of the fit is shown
in Fig. 8 and a mean absolute error Jτ (e) = 1/M

∑M
i=1 |eτ |

is used to evaluate. Jτ (e1) is the error between the measured
motor torque τ1 and the simulated motor torque τ1,sim and
is Jτ1(eτ1) = 0.4042Nm. For motor 2 the mean absolute
error between τ2 and τ2,sim is Jτ2(eτ2) = 0.3271Nm.
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Fig. 8. Comparison of measured and simulated motor torques with varying
stiffness and damping.

A novel load-dependent stiffness and damping model for
electrically preloaded systems was derived and experimen-
tally validated.

VI. CONCLUSION

This paper presents a method for determining the load-
dependent system properties of stiffness and damping for
each drive train in a preloaded system. Due to the preload,

only the overall stiffness and damping of the physical
machine can be identified. A three-mass oscillator, which
represents the preloaded system, illustrates the coupling
between stiffnesses and between dampings. The paper is
motivated by the nontrivial partitioning of the identified
total stiffness and damping from the frequency response and
proposes an approach to model these properties with ansatz
functions for the particular drive train. The parameters of
the functions are determined with a particleswarm optimizer
to obtain precise modeling of those properties. Finally, the
load-dependent modeling of the stiffness and damping was
validated in the time domain and shows small deviations in
the resulting motor torques from the measured data on the
test bench.

For electrically preloaded systems, the presented method
can now be used to determine the appropriate part of the drive
train and allow more accurate modeling. The focus of this
paper is on the method of distributing stiffness and damping
to the drive train. The modeled and identified properties can
be used for the representation of the test bench in a simula-
tion model, for reconstructions and observer concepts, since
these system properties are also required there. For example,
to increase the accuracy of indirect controlled and preloaded
RPDs, the table position can be reconstructed based on the
respective motor encoder, including stiffness, see [21]. The
reconstruction can now be extended to include the load-
dependent stiffness in the system with the approach in this
paper. To further increase the accuracy of the system, only
the reconstructed signal from the motor, which is not affected
by the backlash, can be fed back into the position control
loop using smooth switching with two sigmoid weighting
functions. This will be demonstrated in future work.

In addition, the approach of this paper can also be consid-
ered to develop a new control concept for preloaded systems.
In particular, for an adaptive preload controller of the two
motors, the representation from Fig. 5 can be used to control
the preloaded systems with a certain stiffness along the
surface. In this way, the preload can be adjusted to maintain a
certain level of stiffness under different operating conditions.
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