
Impact of Data Quantity and Composition on Bucket Filling
Performance for Wheel Loaders

Daniel Eriksson1, Reza Ghabcheloo1, and Marcus Geimer2

Abstract— This paper investigates the impact of training data
with different quantities and compositions on the performance
and robustness of a Neural Network (NN) controller for the
wheel loader bucket filling task. Collecting training data for
machine learning methods with a real-world Heavy Duty Mobile
Machine (HDMM) is expensive, and therefore knowing how to
collect the data and in what quantities will significantly reduce
the data collection effort. We collected 2000 bucket fillings of
non-homogeneous material, more specifically, a blasted rock
pile with a kernel size of 0–400 mm. No previous study has
reported such a challenging material composition. The collected
data was divided into 6 datasets with sizes of 10, 20, 50, 100,
500, and 2000 bucket fillings. We use the Dynamic Time Warp
(DTW) distance, k-medoids clustering, and the silhouette score,
to create diverse and dissimilar datasets. Furthermore, one
additional dataset was created with 10 bucket fillings, which
are as similar as possible, resulting in 7 datasets in total.
The datasets were used to synthesize 7 controllers that were
then evaluated with a set of experiments to compare their
performance to one another and the human operator. The
results showed that the controller trained on similar bucket
fillings was not robust and had poor performance, as expected.
The experiment also showed that all the controllers trained
on diverse data were robust enough to load the blasted rock
material. However, the loaded material weight was less than
the human operator, where the best controller loaded 9% less
material weight, but 11% faster than the human operator.

I. INTRODUCTION

Delivering autonomous functions to different kinds of
Heavy Duty Mobile Machines (HDMMs) is an ongoing
research area for both universities and companies alike. The
wheel loader is a typical HDMM that is used in quarries
and construction sites, where a common task is to move
material between different locations. During this task, filling
the bucket requires the most experience from the operator for
efficient completion. A low-skilled operator will be slower,
use more fuel, and load less material in the bucket compared
to an experienced operator [1]. Therefore, a bucket filling
assistance system could make operators more fuel-efficient
and productive. It would also reduce the necessary skill level
of operators, which is important with the current trend of
labor shortages in the construction industry [2], [3].

Creating a rule-based algorithm or a trajectory-following
controller is challenging since the interaction forces between

*This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No. 858101.

1Automation and Mechanical Engineering, Faculty of Engineering and
Natural Sciences, Tampere University, P.O. Box 1001, 33014, Finland
daniel.eriksson@tuni.fi

2Institute Mobile Machines, Karlsruhe Institute of Technology,
Rintheimer Querallee, 76131, Germany

the material and the bucket are hard to model with many
unknown parameters that cannot be efficiently determined
in the field. Therefore, machine learning (ML) methods
are currently the most popular approaches for the bucket
filling problem [2], [4]. Imitation learning has been used to
create Neural Network (NN) controllers for the bucket filling
task in previous research [4]–[9]. These works have shown
that it is possible to load materials such as sand, different
kinds of gravel, and blasted rock (0–200 mm) with human-
level performance using around 100 examples [5], [8]–[10].
However, this paper targets blasted rock (0–400 mm), which
is a non-homogeneous material and more challenging to load
compared to the previous materials.

The training data is the most important part of any ML
system, and a model is only as good as the data it is trained
on. It is also a well-established fact that more data yields
better performance and generalization of ML models, as well
as reducing the problem of overfitting. It is easy to collect
more training data in domains such as natural language and
image recognition tasks, where there are many open datasets
as well as the internet [11]. This is a more challenging
problem when HDMMs are involved, since it is necessary to
record data on real machines, which is very time-consuming
and expensive. Therefore, it is important to know how much
training data is necessary to collect and what composition
the training data should have.

The composition of the training data is also important; it
should be diverse to create NN models with high generaliza-
tion capabilities and to avoid bias in them. For example, a cat
classifier should include many examples of different cats for
the classifier to have high accuracy on unknown data. For
example, increasing the diversity with augmented data has
been demonstrated to improve the generalization capabilities
for image classification [12], [13]. The same conclusions
should apply to bucket filling data, where the dataset should
consist of different but optimal bucket filling examples. This
results in a more exhaustive exploration of the input and
output spaces and minimizes the risk of a covariate shift
between the recorded data and the inputs at inference time
[14]. The covariate shift can occur even if we evaluate the
controller on exactly the same machine and material pile as
the training data because the pile could be slightly different at
test time, and compound errors from the controller’s outputs
causes the input distribution to drift from the original data.
Diverse training data will also reduce the risk of overfitting
since the variance of the inputs is higher, thus increasing the
generalization capabilities [15].

The goal of this paper is to investigate how the quantity

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 141

Fig. 1: The blasted rock (0-400 mm) pile used for data
collection and evaluation.

and composition of training data used for synthesizing bucket
filling controllers affect their performance and robustness.
Thereby, find the best strategy for recording bucket filling
data in the future. This is tested by splitting the training
data into datasets with different sizes and compositions,
and then using them to train different NN controllers. The
synthesized controllers are compared to each other and the
human operator in a field test.

II. TRAINING DATA

We collected training data from a blasted rock material
(0-400 mm), shown in Fig. 1, of approximately 2000 bucket
fillings. The training data were collected over the course of 2
months with several expert operators during normal working
operations.

The blasted rock material used for these experiments has
a larger kernel size of 0-400 mm in comparison to 0-200
mm, used in our previous work [9]. This material also had
a higher ratio of larger to smaller boulders compared with
the previous blasted rock material. These properties make
the material challenging, and it takes an experienced wheel
loader operator to load a full bucket.

The data consists of sensor data and operator command
signals, and it was sampled at 15 ms intervals. The sensor
data x = (θtilt, θlift, Ftilt, Flift, v), where θtilt and θlift are
the tilt and lift angles, Ftilt and Flift are the force in the tilt
and lift cylinders, and v is the velocity of the machine, as
visualized in Fig. 2. The joint angles θtilt, and θlift, are 0
when the bucket is placed flat on the ground, and increases
in the direction of the arrows in Fig. 2.

The operator commands u = (utilt, ulift, uthrottle) were
also recorded from the joystick and pedal signals. The
joystick signals utilt and ulift, controls the wheel loader’s
bucket by actuating the tilt and lift hydraulic cylinders via
the machine’s internal controller. The joystick commands are
in the range of [−1, 1]. Lastly, uthrottle controls the engine’s
power output, where the signal is in the range of [0, 1].

Fig. 2: Definition of the joint angles and forces.

III. BACKGROUND

This section describes the background knowledge and
methods used for measuring the similarities between the
bucket fillings and for dividing the recorded dataset into
different sizes. The collected bucket fillings forms a set
of M time series T = {τ1, τ2, ..., τM}, where τ i =
(τ i1, τ

i
2, ..., τ

i
I) is a time series with length I .

A. Dynamic Time Warp

We use Dynamic Time Warp (DTW) [16] to measure
the similarities between different bucket filling time series.
DTW was introduced for speech applications as an optimal
match problem, and is a suitable distance measure for time
series of different lengths, as in our case, or for equal but
shifted time series. Another common distance measurement
is the Euclidean distance, but it does not have the properties
described above that are necessary for our data [16], [17].

The DTW distance between two time series, τ i =
(τ i1, τ

i
2, ..., τ

i
I) of length |τ i| = I , and τ j = (τ j1 , τ

j
2 , ..., τ

j
J)

of length |τ j | = J , is defined as an optimization problem
on the form:

DTW(τ i, τ j) = min
π

√√√√ K∑
k=1

d(τ iπk,i
, τ jπk,j)

2

s.t. π1 = (1, 1),

πK = (I, J),

πk,i ≤ πk+1,i ≤ πk,i + 1,

πk,j ≤ πk+1,j ≤ πk,j + 1,

(1)

and finds the minimal warping path π = (π1, π2, ..., πK),
of length |π| = K, where πk = (πk,i, πk,j). Here πk,i, and
πk,j are indices from the two time series, with πk,i ∈ N,
1 ≤ πk,i ≤ I , and πk,j ∈ N, 1 ≤ πk,j ≤ J . The
function d(τ i, τ j) is any valid distance function, and we
use the Euclidean distance in this paper. The first and
last points of the time series must be matched, which is
guaranteed by the two first constraints. The warping path
must also be monotonically increasing and continuous, which
is guaranteed by the last two constraints.

142

B. k-medoids

k-medoids is a clustering algorithm that clusters a set of
objects into k discrete clusters. The set of objects can be
any abstract, which in the context of this paper, is the set
T that contains the bucket filling time series as defined
earlier. The algorithm is similar to the more known k-
means clustering algorithm, but with the difference that k-
medoids uses actual objects as centers, called medoids. It
also finds efficient solutions using any arbitrary dissimilarity
measure, for example, the DTW distance defined in the
previous section. k-means clustering, on the other hand,
usually requires the Euclidean distance.

The k-medoids algorithm greedily selects k time series as
medoids. The rest of them are associated with the closest
medoid and the association is swapped iteratively to lower
the dissimilarity between them in the clusters. The result is a
set of k clusters C = {C1,C2, ...,CK}, where each cluster
CK ⊂ T , and CK = {τK1 , τK1 , ..., τKn}, contains an
unspecified amount of n time series, where the number of
objects are different for each cluster [18], [19].

C. Silhouette Score

The silhouette score is used to evaluate how well each
object belongs to its own cluster compared to the other
clusters. A high silhouette score means that the object is
very similar to the other objects in its own cluster, while a
low silhouette score means that the object is more similar
to objects in a neighboring cluster. It is calculated using the
average dissimilarities between the object and the objects
in its own cluster, in relation to the average dissimilarities
between the object and the objects in the closest neighboring
cluster [20].

The silhouette score for an object τ i ∈ CA, where cluster
CA ∈ C with size |CA|, is defined as the ratio:

s(τ i) =
a(τ i)− b(τ i)

max{a(τ i), b(τ i)}
, (2)

a(τ i) =
1

|CA| − 1

∑
τ j∈CA,τ i ̸=τ j

δ(τ i, τ j), (3)

b(τ i) = min
B ̸=A

1

|CB|
∑

τ j∈CB

δ(τ i, τ j), (4)

where CB ∈ C is a neighbor cluster of size |CB|, and
is defined as the cluster different from CA which has the
lowest average dissimilarity between the objects in CB and
the object τ i. Furthermore, the function δ(τ i, τ j), is any
valid dissimilarity function defined between object τ i and
another object τ j , which is in our case, the DTW distance
defined in (1).

In summary, the silhouette score is calculated by first
calculating the mean dissimilarities between τ i and all
other objects in CA in (3). Then the average dissimilarities
between the object τ i, and the objects τ j neighbor cluster
CB , are calculated by (4).

IV. RELATED WORK

Choosing samples from a dataset has been researched
before in the ML context, mostly as a form of reducing
the dataset size to speed up the training of ML algorithms.
Therefore, most research concerns how to select a subset of
the training data that has the same properties as the original
data, and where an ML algorithm trained on the subset will
have the same results on the test set [21]–[24]. Even though
the core problem statement is different from ours, we share
some common goals, like selecting diverse and dissimilar
examples.

Coresets are a group of methods for summarizing a large
dataset, resulting in a subset with the same characteristics as
the original dataset. A coreset is usually defined for the target
objective function that minimizes it on the coreset instead of
the original. Therefore, the coresets found in the literature
are often specialized to the target problem and are often not
general solutions [21], [22].

Subspace clustering is a related approach, and it is the
process of selecting appropriate clusters of similar objects
in a dataset with a defined similarity function. Subspace
clustering algorithms usually use clustering methods such
as k-means or k-medoids, in combination with a similarity
measurement, similar to our approach [25]. One of these
algorithms is Dissimilarity-Based Sparse Subset Selection
(DS3) [23]. DS3 finds a representative subset of the original
data using pairwise dissimilarities between the data points in
the source and target sets. The authors demonstrated that it
could find a better subset of the data compared to k-medoids
and a few other clustering methods [23].

A similar but different problem is dataset distillation,
which reduces a dataset by compressing it into a new dataset
with a smaller size. The new dataset is not a subset of the
original data but an encoded version of it, and thus not
interesting for us to consider [24].

The methods described above could be adapted to fit with
our problem statement, but we chose a simpler and more
straightforward method as a first step, which is described in
the next section.

V. METHOD

The first step is to record many bucket filling examples
and subsample them into smaller datasets. There are several
approaches for subsampling a dataset, as discussed earlier.
The naive approach is to select randomly or chronologically,
but in this case, it will not be possible to conclude if any
performance differences are due to the size or composition
of the dataset. As mentioned earlier, training data with high
diversity is known to improve the performance of NN models
[12], [13]. Therefore, we want to create a dataset where the
input data has a high level of dissimilarity between the bucket
filling examples. The overall dissimilarity should be the same
for each dataset, where the major difference is the dataset’s
size. This would make it possible to isolate and evaluate the
effect of the dataset’s size on performance.

143

Fig. 3: Three bucket fillings examples from each cluster using θtilt for visualization.

A. Creating datasets

The selection process for diverse and dissimilar subsam-
pled datasets with sizes, m1, ...,mx, ...,mX , is summarized
by the following steps:

1) Measure dissimilarities: Calculate the DTW distance
between all the bucket filling examples and create a
symmetric dissimilarity matrix.

2) Cluster examples: Use the dissimilarity matrix to
cluster the bucket filling examples into k clusters with
the k-medoids method. k is chosen as the size of the
smallest dataset, m1.

3) Calculate silhouette scores: Calculate the silhouette
score for each bucket filling example and sort them
from highest to lowest score within each cluster.

4) Select samples: Draw n samples with the highest
silhouette score from each of the k clusters to create
a dataset of size mx = nk. Repeat this step to create
datasets of different sizes by changing n.

We also use a similar method to create a dataset with as
similar bucket fillings as possible by drawing n samples from
one of the clusters created in step 2.

VI. EXPERIMENTAL SETUP

Here we describe the data collection, the created datasets
and their respective synthesized controllers, as well as the
wheel loader setup used for the experiments.

A. Datasets

The 2000 recorded bucket filling were used to create 6
datasets of different sizes: m1 = 10, m2 = 20, m3 =
50, m4 = 100, m5 = 500, and m6 = 2000, using the
method explained in section V. The details for each step
are explained below:

1) Measure dissimilarities: We used the variables: θtilt,
θlift, and v for calculating the DTW distance between all the
bucket filling examples. These variables were chosen because
they represent the trajectory of the bucket tip through the pile.

Furthermore, the python implementation from [26] was used
to calculate the DTW distances.

2) Cluster examples: We used the FasterPAM algorithm
introduced in [27] for k-medoids clustering with a value of
k = 10 because our smallest dataset, m1, consists of 10
bucket fillings. An example of three bucket fillings from each
cluster is shown in Fig. 3 using θtilt for visualization. The
figure shows that the bucket fillings in each cluster look more
similar to each other than to the other clusters. However,
there are also some similarities between the clusters because
we do not want to find the true underlying cluster structure.
We only want to find the 10 most dissimilar bucket fillings,
since our smallest dataset has the size m1 = 10.

3) Calculate silhouette scores: The silhouette score is
visualized for all the bucket filling examples in Fig. 4. The
figure shows the size of each cluster, the average silhouette
score for each cluster, and the average silhouette score for all
examples. The silhouette score indicates a weak clustering
structure, meaning that some clusters could be combined.
However, this is not a problem in our use case because of
the reasons mentioned in the previous paragraph.

4) Select samples: We created 6 datasets with different
numbers of bucket fillings by drawing the n bucket fillings
with the highest silhouette score from each cluster. For
example, to create the dataset with size m2 = 20, we select
the n = 2 bucket fillings with the highest silhouette scores
from each cluster, and so on for the other datasets. We
also created a 7th dataset with as similar bucket fillings
as possible by selecting 10 bucket fillings with the highest
silhouette scores from cluster C10. We chose C10 because
it had the highest average silhouette score, thus containing
the most similar bucket fillings.

B. Controllers

We used the same NN controller architecture as in our
previous work [8], [9], which is shown in Fig. 6.

144

Fig. 4: Silhouette score for all the bucket filling examples
in each cluster. The red line indicates the average silhouette
score for all examples, which was 0.14.

NN
Controller Machine’s

internal
controller

Actuators

Plant
Bucket-Pile

Environment
Measurement

System

𝐹𝑡𝑖𝑙𝑡θ𝑡𝑖𝑙𝑡 θ𝑙𝑖𝑓𝑡 𝐹𝑙𝑖𝑓𝑡 𝑣

𝑢𝑡𝑖𝑙𝑡
𝑢𝑙𝑖𝑓𝑡
𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒

Fig. 5: Block diagram of the control structure on the ma-
chine. The NN controller commands u, controls the tilt and
lift hydraulic valves as well as the engine power via the
machine’s internal controller.

The NN controller takes 16 samples of x, as defined in
Section II, as input, corresponding to the last 225 ms. The
input tensor is thus of the shape 16×5 and the NN controller
outputs u, also defined in Section II. An overview of the
control structure is shown in Fig. 5, where the commands u
controls the hydraulic valves of the tilt and lift cylinders
as well as the engine power via the machine’s internal
controller.

The first layer of the NN model is a 1-D Convolutional
Neural Network (1D-CNN) with a kernel size of 5. The
output of this layer is flattened and relayed to a fully
connected layer with a hidden size of 64 neurons. The final
layer is activated by the hyperbolic tangent function (tanh)
so the outputs are in the range [-1,1]. All the other layers
are activated by the Rectified Linear Unit (ReLU) function.

The network is trained to predict the true operator com-
mands in the training data using supervised learning, and the
mean squared error is used as a loss function with the ADAM
optimizer [28]. We also add a weight decay factor, λ, to the
loss function in order to minimize the risk of overfitting,
using a value of λ = 0.0001.

The 7 datasets from the previous section were used to

Fig. 6: Architecture of the NN controller. The model re-
ceives the joint angles, forces, and velocity, and outputs the
predicted commands.

synthesize 7 controllers trained on each dataset with the ar-
chitecture above. The NN models and the training procedure
were implemented in PyTorch [29].

The NN controllers: d-10, d-20, d-50, d-100, d-500 and d-
2000 were trained on the 6 datasets with the corresponding
size in the name using the format d-<size>. The last
controller s-10, was trained on the dataset with 10 bucket
fillings from the same cluster.

C. Bucket Filling Algorithm

The bucket filling loading algorithm used in this paper is
the same algorithm as in our previous work [8], [9], which
divides the task into three phases: approach pile, loading, and
exit. The first phase makes sure that the bucket is located
inside the pile before digging by laying it flat on the ground
and moving forward with 50% throttle. The second phase
starts when Flift reaches a threshold. Then the NN controller
is activated and fills the bucket until a θtilt threshold is
reached. Finally, the last phase makes sure that the bucket is
fully tilted in and that the material in the bucket is weighed.

D. Wheel loader setup

We used a 33-tonnes Liebherr L586 wheel loader for data
collection as well as evaluating the models. The machine was
controlled with a consumer laptop connected to the wheel
loader’s control unit via the CAN-bus.

VII. EXPERIMENTS

The controllers were tested and evaluated using two ex-
periments. Firstly, we validated our subsampling method
and compared the controller d-10, which was trained on a
diverse dataset, with s-10, which was trained on a dataset
with similar bucket fillings. The second experiment evaluates
the performance of the controllers trained on different data
quantities.

Figure 7 shows the results from the two experiments,
where we tested the relevant controllers 10 times for each
experiment and reported the mean and standard deviation.
Furthermore, the material is always dumped in the same
location, to ensure that the pile is as similar in shape and
structure as possible between the different trials.

We also evaluate the robustness of the controllers; a
controller capable of loading the bucket successfully every
time is defined as robust. A bucket filling is considered

145

(a) Weight and time distributions of the d-10 and
s-10 controllers evaluated on a gravel pile.

(b) Weight and time distributions of the controllers evaluated on the blasted rock pile.
The green bars and lines represent the productivity [kg/s] during the bucket filling.

Fig. 7: Performance and robustness of the controllers evaluated in the two experiments. The x-axis displays the controller,
the success rate, and the difference between the average operator performance and the average controller performance. Each
vertical bar is the average of 10 bucket fillings per controller, and the horizontal lines show the average operator performance.
Blue represents the average weight [kg] and orange represents the average loading time [s].

successful if the controller is able to load the bucket without
getting stuck in the pile. The wheel loader might get stuck in
the pile if the tilt or lift cylinders are stalled, which depends
on the output commands from the controller. Another failure
mode is excessive wheel spin caused by too high throttle
commands.

A. Data composition

We first tested how the composition of the training data
affects the robustness and performance of the synthesized
controller by evaluating the d-10, and s-10 controllers on
a gravel pile. This pile was different from the blasted rock
pile used to collect the training data because it was more
available for testing. Using a gravel pile for this experiment
is not a problem because we showed in [9] that gravel is a
simpler material to load, and using a more complex material
for training is advantageous.

Figure 7a shows the average performance and robustness
of 10 trials for the two controllers evaluated on the gravel
pile, as well as the human operator’s performance. The figure
shows that the d-10 controller, which was trained on a dataset
composed of diverse bucket fillings, has a 100% success
rate. It is also able to get more material weight than the
operator, but with a slightly longer loading time. The s-10
controller, which was trained on similar bucket fillings, only
had a success rate of 60%, and a performance far below that
of the human operator.

B. Quantity of data

For the second experiment, we tested how the quantity
of the data influences the digging performance of the con-

trollers. We evaluated the 6 controllers: d-10, d-20, d-50,
d-100, d-500 and d-2000, on the blasted rock pile that was
used for data collection, and the results are shown in Fig.
7b. The figure shows that all the controllers are robust with
100% success rate, even the controller that was trained using
10 bucket filling examples. The results also show that the
performance is increasing with more training data, which
we can see from the mean productivity bar graphs in green.
Furthermore, the results show that using 100 examples or
more does not significantly improve the loaded weight; it
stays around 9% lower than the human operator, and using
more examples only improves the loading time.

None of the controllers are able to reach the same digging
performance as the human operator. The best-performing
controller, d-2000, is able to load on average around 10
tonnes in 7.9 s, compared to the human operator with about
11 tonnes in 9 s. In other words, it gets 8.9% less material
but is 11.4% faster than the human operator and has a
productivity that is 1.8% lower. Productivity in this context
is a measurement of how much material weight is moved per
time unit [kg/s].

VIII. CONCLUSIONS

We demonstrate how diverse and dissimilar bucket filling
examples can improve the robustness and stability of a NN
controller, and how the performance is improving with an
increasing number of examples. We create diverse datasets
of different sizes by measuring the similarities between the
bucket fillings and choosing the ones with high dissimilari-
ties.

146

The results showed that a diverse dataset of different
bucket fillings is more important than its size. A diverse
dataset is also crucial for robust performance, as shown
in the first experiment. Furthermore, we achieved a robust
controller, d-10, with 100% success rate using only 10 bucket
filling examples. This controller was also able to load gravel
with human-level performance. The s-10 controller, which
was trained on similar bucket fillings, had, on the other hand,
a 60% success rate and low overall performance. Therefore,
when collecting bucket fillings for imitation learning, it is
important to include as many dissimilar but optimal bucket
fillings as possible. One possibility is to record data from
piles with different shapes as well as using different expert
operators since different humans load the bucket in a slightly
different way.

The results show that the performance is increasing with
a larger dataset, which is expected, but using a dataset larger
than 100 bucket fillings mostly improves the loading time and
not the material weight. Furthermore, none of the controllers
could achieve the same level of loaded material as the human
operator, even using 2000 examples. However, the material
used - blasted rock (0-400 mm) - is a complex material
and very challenging to load, and thus our approach to
imitation learning may have reached its limits, and more
training data might not help. This is indicated by the marginal
performance increase using the largest dataset for training.

Finally, the controller was robust, and the loaded material
weight was about 9% lower than the human operator when
using 100 bucket fillings or more as training data. This
makes it possible to use other methods to further fine-tune
the network and improve its performance on the pile. One
method is to use Reinforcement Learning (RL), which has
been used in [10], to optimize and improve an existing NN
controller on a new material.

ACKNOWLEDGMENT

This project has received funding from
the European Union’s Horizon 2020 re-
search and innovation programme under the
Marie Skłodowska-Curie grant agreement
No. 858101.

REFERENCES

[1] B. Frank, L. Skogh, R. Filla, A. Froberg, and M. Alaküla, “On
increasing fuel efficiency by operator assistance systems in a wheel
loader.”

[2] S. Dadhich, U. Bodin, and U. Andersson, “Key challenges in automa-
tion of earth-moving machines,” Automat. in Construction, vol. 68,
pp. 212–222, 2016.

[3] B. Brucker Juricic, M. Galic, and S. Marenjak, “Review of the
construction labour demand and shortages in the eu,” Buildings,
vol. 11, no. 1, p. 17, 2021.

[4] S. Dadhich, U. Bodin, F. Sandin, and U. Andersson, “Machine learning
approach to automatic bucket loading,” in 2016 24th Mediterranean
Conf. on Control and Automat. (MED). IEEE, 2016, pp. 1260–1265.

[5] S. Dadhich, F. Sandin, U. Bodin, U. Andersson, and T. Martinsson,
“Field test of neural-network based automatic bucket-filling algorithm
for wheel-loaders,” Automat. in Construction, vol. 97, pp. 1–12, 2019.

[6] E. Halbach, J. Kämäräinen, and R. Ghabcheloo, “Neural network pile
loading controller trained by demonstration,” in 2019 Int. Conf. on
Robot. and Automat. (ICRA), 2019, pp. 980–986.

[7] W. Yang, N. Strokina, N. Serbenyuk, J. Pajarinen, R. Ghabcheloo,
J. Vihonen, M. M. Aref, and J.-K. Kamarainen, “Neural network
controller for autonomous pile loading revised,” in 2021 IEEE Int.
Conf. on Robotics and Automat. (ICRA). IEEE, 2021, pp. 2198–
2204.

[8] D. Eriksson and R. Ghabcheloo, “Comparison of machine learning
methods for automatic bucket filling: An imitation learning approach,”
Automat. in Construction, vol. 150, p. 104843, 2023.

[9] D. Eriksson, R. Ghabcheloo, and M. Geimer, “Towards multiple
material loading for wheel loaders using transfer learning,” in Proc.
of 18th Scand. Int. Conf. on Fluid Power, SICFP23, 2023.

[10] S. Dadhich, F. Sandin, U. Bodin, U. Andersson, and T. Martinsson,
“Adaptation of a wheel loader automatic bucket filling neural network
using reinforcement learning,” in 2020 Int. Joint Conf. on Neural
Networks (IJCNN). IEEE, 2020, pp. 1–9.

[11] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” IEEE Intell. Syst., vol. 24, no. 2, pp. 8–12, 2009.

[12] Ekin Dogus Cubuk, Ethan S Dyer, Rapha Gontijo Lopes,
and Sylvia Smullin, “Tradeoffs in data augmentation:
An empirical study,” in ICLR, 2021. [Online]. Available:
https://openreview.net/forum?id=ZcKPWuhG6wy

[13] S. Yang, S. Guo, J. Zhao, and F. Shen, “Investigating the effectiveness
of data augmentation from similarity and diversity: An empirical
study,” Pattern Recognition, vol. 148, p. 110204, 2024.

[14] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt,
“Measuring robustness to natural distribution shifts in image
classification.” [Online]. Available: http://arxiv.org/pdf/2007.00644v2

[15] D. Hendrycks and T. Dietterich, “Benchmarking neural network
robustness to common corruptions and perturbations.” [Online].
Available: http://arxiv.org/pdf/1903.12261v1

[16] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimiza-
tion for spoken word recognition,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 26, no. 1, pp. 43–49, 1978.

[17] E. J. Keogh and M. J. Pazzani, “Relevance feedback retrieval of time
series data,” in Proc. of the 22nd Annu. Int. ACM SIGIR Conf. on Res.
and Develop. in Inf. Retrieval, F. Gey, M. Hearst, and R. Tong, Eds.
New York, NY, USA: ACM, 1999, pp. 183–190.

[18] Leonard Kaufman and Peter J. Rousseeuw, “Clustering by means of
medoids,” in Statistical Data Analysis Based on the L1 Norm and
Related Methods, Yadolah Dodge, Ed., 1987, pp. 405–416.

[19] L. Kaufman and P. J. Rousseeuw, Eds., Finding Groups in Data, ser.
Wiley Series in Probability and Statistics. Wiley, 1990.

[20] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” J. of Comput. and Appl. Math., vol. 20,
pp. 53–65, 1987.

[21] D. Feldman, “Core–sets: An updated survey,” WIREs Data Mining and
Knowledge Discovery, vol. 10, no. 1, 2020.

[22] I. Jubran, A. Maalouf, and D. Feldman, “Overview of accurate
coresets,” WIREs Data Mining and Knowledge Discovery, vol. 11,
no. 6, 2021.

[23] E. Elhamifar, G. Sapiro, and S. S. Sastry, “Dissimilarity-based sparse
subset selection,” IEEE transactions on pattern analysis and machine
intelligence, vol. 38, no. 11, pp. 2182–2197, 2016.

[24] R. Yu, S. Liu, and X. Wang, “Dataset distillation: A comprehensive
review,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 46, no. 1, pp. 150–170, 2024.

[25] H.-P. Kriegel, P. Kröger, and A. Zimek, “Subspace clustering,” WIREs
Data Mining and Knowledge Discovery, vol. 2, no. 4, pp. 351–364,
2012.

[26] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo,
Guillaume Androz, Chester Holtz, Marie Payne, Roman Yurchak,
Marc Rußwurm, Kushal Kolar, and Eli Woods, “Tslearn, a machine
learning toolkit for time series data,” 2020.

[27] E. Schubert and P. J. Rousseeuw, “Fast and eager k -medoids clus-
tering: O(k) runtime improvement of the pam, clara, and clarans
algorithms,” Inf. Syst., vol. 101, p. 101804, 2021.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization.” [Online]. Available: http://arxiv.org/pdf/1412.6980v9

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library.”

147

