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Abstract— Distributed state estimation is a relevant research
topic due to its application opportunities in different fields,
such as multi-robot cooperation and control of large-scale
networked systems. In addition, event-triggering mechanisms
have been studied in recent years to reduce communication
between network nodes without significantly compromising the
desired behavior. In this work, we contribute a distributed
algorithm to estimate the state of a stochastic system under
event-triggered communication. The proposal uses consensus
on the state estimates, and it takes advantage of the asymptotic
form of the well-known Kalman-Bucy filter so that only state
information needs to be transmitted during the online execution.
We provide guarantees of boundedness of the error covariance
for the state estimates under event-triggered communication.
Moreover, we show that the centralized optimal solution can
be recovered when the event threshold is decreased, which
is an improvement with respect to existing event-triggered
estimators in the stochastic context. Finally, we show via
simulation that the proposal effectively reduces communication
without sacrificing the quality of the estimates, and it improves
performance with respect to previous approaches.

I. INTRODUCTION

Distributed state estimation is a relevant research topic
due to its application opportunities in different fields, such
as multi-robot cooperation and control of large-scale net-
worked systems [1]. This problem consists of producing
state estimates of a dynamical system from the measurement
information captured by a network of sensors, in which
each sensor node has access to its local measurement and
communication with neighboring nodes. The goal is for all
network nodes to estimate the plant’s full state adequately.

The distributed implementation brings several advantages,
such as redundancy that reduces the risk of single-point fail-
ure and the uncertainty of the state estimates [2]. Moreover,
the combination of information from different sensors allows
the reconstruction of the full state of the plant from each
node, even if the system is not observable using only the local
measurements. On the other hand, the main disadvantage
of distributed estimation is the high communication load
required between the network nodes. Constant transmissions
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of information may be detrimental to systems with resource
constraints. Examples of such systems are battery-powered
devices, transmission networks that are shared by several
nodes, or systems with limited bandwidth [3].

Event-triggered strategies have been widely studied in
recent years as a possible solution for the problem of con-
strained communication, achieving significant interest in the
context of networked systems and wireless sensor networks
(see, for example, [3], [4] and the references therein). They
aim to reduce communication through a decision mechanism
that monitors the behavior of the setup and chooses the nec-
essary transmission instants accordingly, so that satisfactory
performance is maintained.

In the context of distributed state estimation, several
works have proposed event-triggered state estimators for
different classes of systems. In terms of the event-triggering
mechanism, a variety of schemes also exist: monitoring
the measured signal and transmitting once its value differs
from the last transmitted one [5], [6], [7], [8]; applying the
triggering condition to the local state estimate [9], [10];
or evaluating the innovation of the measurements, i.e. the
difference between the measured signal and the predicted
measurement based on the estimates [11], [12], [13]. How-
ever, most of these works feature discrete-time systems, and
the works that consider continuous-time systems [14], [15]
do not typically include disturbances such as stochastic noise.
To the best of our knowledge, the only work that considers
the case of continuous-time systems affected by stochastic
noise in this context is [16], in which a dynamic consensus
algorithm is exploited to estimate the average measurement
of the sensor network. This approach is based on [2] but
includes event-triggered communication on the consensus
step. However, while the boundedness of the consensus
error is shown under mild assumptions, this bound is given
regarding the average measurement, not on the resulting state
estimates. Moreover, in the stochastic context, guarantees of
recovering the optimal solution of the centralized filter as
the frequency of events increases are not achieved by the
previously mentioned works, both considering discrete or
continuous-time filters.

This work proposes a different approach to event-triggered
distributed state estimation for stochastic systems. The pro-
posed algorithm performs consensus on the state estimates so
that stronger guarantees of performance can be provided in
comparison to the proposal from [16]. In particular, we prove
the boundedness of the error covariance of the estimates
under event-triggered communication and stochastic noise,
and we show that the optimal centralized solution can be
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recovered as the event threshold is decreased. This optimality
aspect is a novel contribution for event-triggered distributed
estimators in the stochastic context, regardless of continuous
or discrete-time formulations. Furthermore, we validate the
proposal via simulation examples, which show a performance
improvement compared to the approach from [16].

A. Notation

Let In denote the n × n identity matrix and let 1 =
[1, . . . , 1]⊤. The operator ∥ • ∥ denotes the Euclidean norm,
and ⊗ is the Kronecker product. Let cov{•, ∗} = E{(• −
E{∗})(• − E{∗})⊤} denote the covariance operator, with
cov{•} = cov{•, •}. The notation diag(•i) represents the
diagonal composition of the matrices indexed by i.

II. PROBLEM STATEMENT

Consider a linear time-invariant system, with dynamics
described by

ẋ(t) = Ax(t) +Bw(t), t ≥ 0 (1)

where A ∈ Rn×n, B ∈ Rn×nw and w(t) ∈ Rnw

represents an unknown input, accounting for non-modelled
dynamics or disturbances. As usual in Kalman filtering
literature, let w(t) be an nw-dimensional Wiener process
with cov{w(s),w(r)} = Wmin(s, r) [17, Page 63] and
interpret (1) as a Stochastic Differential Equation (SDE).
Then, x(t) is normally distributed with known mean x0 and
covariance matrix P0 for the initial condition x(0).

The system described by (1) is observed by a network
of N sensors. We consider that the topology of the sensor
network can be described by an undirected graph G, with the
set of sensor nodes being V = {1, . . . , N} and E ⊆ V × V
denoting the edge set that describes communication links
between sensor nodes. Let AG = [aij ] ∈ {0, 1}N×N be the
adjacency matrix of the graph, which has elements aij = 1
if (i, j) ∈ E and aij = 0 otherwise, and QG be the Laplacian
matrix. We define Ni = {j ∈ V : (i, j) ∈ E} as the set of
neighbors of node i.

Each sensor in the network has access to a local measure-
ment of the form

yi(t) = Cix(t) + vi(t), ∀t ≥ 0

with Ci ∈ Rny×n and vi(t) being Gaussian white noise with
covariance Ri(t).

The goal for the sensor network is to jointly estimate the
state of the system (1) in a distributed fashion, so that each
node uses its local measurement as well as communication
with its neighboring nodes. Moreover, in order to save re-
sources in the communication process, each node features an
event-triggering mechanism that decides when to broadcast
information to the neighbors.

Assumption 1: The pair (A,C), where C is defined as
C = [C⊤

1 , . . . ,C
⊤
N ]⊤, is observable.

Remark 1: Note that Assumption 1 requires the system to
be collectively observable using the combined information
from all sensor nodes, but it does not require local observ-
ability.

III. OPTIMAL CENTRALIZED SOLUTION

The optimal centralized solution for the problem of
continuous-time state estimation in the stochastic context
is known to be the Kalman-Bucy filter [18]. This filter
provides estimates x̂(t) for the state x(t), as well as an error
covariance matrix P(t) = E{(x(t)−x̂(t))(x(t)−x̂(t))⊤} for
the estimation. The centralized implementation, considering
the measurements from all the sensors in the network, is
given by

˙̂x(t) = Ax̂(t) +K(t) (y(t)−Cx̂(t))

K(t) = P(t)C⊤R−1

Ṗ(t) = AP(t) +P(t)A⊤ +BWB⊤ −K(t)RK(t)⊤

(2)

with C defined in Assumption 1, R = diag(Ri) and y(t) =
[y1(t)

⊤, . . . ,yN (t)⊤]⊤. Moreover, for linear-time invariant
systems, the error covariance matrix P(t) converges to an
asymptotic solution P∞, given by the following Riccati
equation

0 = AP∞ +P∞A⊤ +BWB⊤ −P∞C⊤R−1CP∞ (3)

which provides the asymptotic form of the filter with constant
gain K∞ = P∞CR−1.

IV. DISTRIBUTED ASYMPTOTIC FILTER
UNDER EVENT-TRIGGERED COMMUNICATION

In order to achieve distributed state estimation with re-
duced communication, we propose the use of an asymptotic
filter featuring a consensus step on the state estimates, in
which information is exchanged between nodes in an event-
triggered fashion.

A. Event-Triggering Mechanism

Due to the consensus step requiring communication of the
state estimates between nodes, we propose the use of the
following event-triggering mechanism to decide the sequence
of communication events {τ ik}∞k=0 at some node i ∈ V:

τ ik+1 = inf{t− τ ik >
¯
τ | ∥x̂i(t)− x̂i(τ

i
k)∥ ≥ δi} (4)

where δi is a user-defined event threshold and
¯
τ > 0 is

included as time regularization, in order to guarantee a
minimum inter-event time. Including time regularization is
a common strategy to ensure Zeno-freeness in continuous-
time systems [19]. In practice, this parameter can be set as
close to zero as necessary, e.g. to the sampling time used to
approximate the continuous-time behaviour.

The interpretation of the event-triggering mechanism (4)
is straightforward: the current state estimate x̂(t) of node i
is transmitted to its neighbors when it differs from the value
x̂(τ ik) transmitted at the last event by more than the threshold
δi. This mechanism ensures that the error in the knowledge
that a node j ∈ Ni has of the estimate at node i is bounded
by the event threshold.
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B. Distributed Filter

For the distributed filter, we adopt a similar approach as in
[20], where a distributed version of the asymptotic Kalman-
Bucy filter is proposed. This filter is shown to recover the
performance of the asymptotic centralized solution.

Here, we adapt the filter from [20] to include event-
triggered communication of the state estimates, as opposed
to considering continuous communication between the nodes.
By doing so, we obtain the following filter:

Ki =NP∞C⊤
i R

−1
i

˙̂xi(t) =Ax̂i(t) +Ki (yi(t)−Cix̂i(t))

+ κP∞
∑
j∈Ni

(
x̂j(τ

j
t )− x̂i(t)

) (5)

where κ is the consensus gain and we define τ jt = max{τ jk ≤
t} as the last event triggered at node j prior to time t,
recalling that each node has a different triggering sequence.

Note that if δi = 0, ∀i ∈ V , the filter with full
communication is recovered. Moreover, note that using the
asymptotic form of the filter requires the pre-computation of
the asymptotic covariance matrix P∞. As in [20], this can
be done by computing the average inverse covariance matrix
of the network C⊤R−1C =

∑N
i=1 C

⊤
i R

−1
i Ci through the

Push-Sum algorithm, which is a diffusion protocol for the
computation of values over graphs. Then, once the nodes
reach agreement on the value of C⊤R−1C, each node can
solve the Riccati equation (3) to obtain P∞. For brevity, we
refer the reader to [20] for additional details on how P∞ may
be computed. The number of nodes N can also be computed
similarly, if it is not a known parameter for the nodes.

From the point of view of saving communication re-
sources, using the asymptotic form of the Kalman-Bucy filter
is beneficial, since it only requires the communication of
x̂i(t) at events, rather than having to transmit both x̂i(t)
and its corresponding error covariance matrix Pi(t).

Remark 2: Note that the gains Ki,P∞ in (5) are relevant
in regards to the optimal centralized solution. As δi →
0, κ → ∞, (5) recovers the performance of the centralized
Kalman-Bucy filter (2), where P∞ is the asymptotic covari-
ance of the state estimates produced by the filter. Finally,
note that high gain arguments as for κ are common in other
popular observers, particularly under unknown inputs similar
to the case considered in this work.

C. Stability Analysis

In this Section, we provide formal guarantees of stability
of the proposed filter. In particular, we show that the true er-
ror covariance of the state estimates is bounded under event-
triggered communication, i.e. the estimates are bounded in
mean square error. Moreover, we show that the performance
of the optimal centralized solution can be recovered as the
event threshold δi → 0.

Proposition 1: There exists κ0 such that ∀κ > κ0 the
error covariance of the state estimates produced by (5) is
bounded. In particular, for δi → 0, κ → ∞, the true

error covariance of the estimates tends to the asymptotic
covariance of the optimal centralized solution, P∞, as t →
∞.

Proof: Define the estimation error of a node as ei(t) =
x(t) − x̂i(t) and let e(t) = [e1(t)

⊤, . . . , eN (t)⊤]⊤. Addi-
tionally, define the true error covariance of the estimates as
E(t) = cov{e(t)}.

Note that the event-triggering mechanism (4) introduces an
error in the consensus term given by di(t) = x̂i(t)− x̂i(τ

i
t ),

with ∥di(t)∥ ≤ δi.
Considering the system dynamics (1) and the filter (5), we

can write the error dynamics of the estimate in a node as

ėi(t) =ẋ(t)− ˙̂xi(t)

=Ax(t) +Bw(t)−Ax̂i(t)−Ki (yi(t)−Cix̂i(t))

− κP∞
∑
j∈Ni

(
x̂j(τ

j
t )− x̂i(t)

)
=Ax(t) +Bw(t)−Ax̂i(t)−KiCix(t)−Kivi(t)

+KiCix̂i(t)− κP∞
∑
j∈Ni

(x̂j(t)− dj(t)− x̂i(t))

= (A−KiCi) ei(t) + ni(t)

− κP∞
∑
j∈Ni

(x̂j(t)− x̂i(t)) + κP∞
∑
j∈Ni

dj(t)

= (A−KiCi) ei(t) + ni(t)

− κP∞
∑
j∈Ni

(ei(t)− ej(t)) + κP∞
∑
j∈Ni

dj(t)

where we have defined ni(t) = Bw(t) − Kivi(t). For
the aggregate error of the nodes, e(t), we can write the
dynamics as follows, taking into account the Laplacian QG
and adjacency AG matrices of the graph:

ė(t) =diag (A−KiCi) e(t) + n(t)

− κ (QG ⊗P∞) e(t) + κ (AG ⊗P∞)d(t)

=A(κ)∗e(t) + n(t) + κ (AG ⊗P∞)d(t)

(6)

with diag (A−KiCi) being the diagonal composition
of the matrices (A−KiCi) for all nodes i ∈ V ,
A(κ)∗ = diag (A−KiCi) − κ (QG ⊗P∞), n(t) =
[n1(t)

⊤, . . . ,nN (t)⊤]⊤ and d(t) = [d1(t)
⊤, . . . ,dN (t)⊤]⊤.

Note that (6) resembles the error dynamics obtained in
[20], with the exception of the error term κ (AG ⊗P∞)d(t)
induced by the event-triggered communication. Recall that if
δi = 0, this term vanishes and the error system from [20] is
recovered.

According to [20, Theorem 1], there exists a κ0 > 0
such that ∀κ > κ0 the matrix A(κ)∗ in (6) is Hurwitz.
Moreover, note that the covariance of the noise disturbance
n(t) is constant. This can be observed since cov{ni(t)} =
BWB⊤ +KiRiK

⊤
i and

cov{ni(t),nj(t)}
= cov{Bw(t),Bw(t)}+ cov{Bw(t),Kjvj(t)}
+ cov{Kivi(t),Bw(t)}+ cov{Kivi(t),Kjvj(t)}
= cov{Bw(t),Bw(t)} = BWB⊤

Hence, cov{n(t)} = 11⊤ ⊗BWB⊤ + diag(KiRiK
⊤
i ).
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For the event-triggered error term, we have the following
covariance:

cov{κ (AG ⊗P∞)d(t)} =

= κ2 (AG ⊗P∞) cov{d(t)} (AG ⊗P∞)
⊤

Recalling that ∥di(t)∥ ≤ δi, this implies

∥d(t)∥ ≤ δ̄
√
N

with δ̄ := maxi δi, then

∥d(t)− E{d(t)}∥ ≤ 2δ̄
√
N

Therefore the elements of the vector

q(t) = [q1(t), . . . , qnN (t)]⊤ := d(t)− E{d(t)}

satisfy |qµ(t)| ≤ 2δ̄
√
N for all µ ∈ {1, . . . , nN}.

As a result,
|mµν(δ̄)| ≤ 4δ̄2N

with mµν(δ̄) := E{qµ(t)qν(t)} and mµν(0) = 0. Hence-
forth,

cov{d(t)} = E{q(t)q(t)⊤} ≡ [mµν(δ̄)]

implying cov{d(t)} is a bounded function of δ̄ and
cov{d(t)} ≡ 0 when δ̄ = 0.

Then, the proof of boundedness for the error covariance
follows from A(κ)∗ being Hurwitz, and the covariances for
the terms n(t) and the event-triggered error being bounded.

Finally, recalling that when δi → 0 the algorithm from
[20] is recovered, [20, Theorem 3] ensures that the true
covariance of the estimates produced at each node of the
network tends to the asymptotic solution of the centralized
Kalman-Bucy filter (2), i.e. cov{ei(t)} → P∞, as κ →
∞, t → ∞.

V. DISCUSSION

In this Section, we discuss the main differences between
our proposal and the approach taken in [16], which is, to the
best of our knowledge, the only other work that considers a
similar setup for continuous-time stochastic systems.

In particular, the algorithm proposed in [16] is as follows.
First, define the average measurement of the network in
information form z̄(t) and its inverse covariance matrix Z̄:

z̄(t) :=
1

N

N∑
i=1

C⊤
i R

−1
i yi(t)

Z̄ :=
1

N

N∑
i=1

C⊤
i R

−1
i Ci

Each node computes its estimates ẑi(t) of z̄(t) via the
following event-triggered consensus algorithm:

ṗi(t) = −γpi(t) + κ
∑
j∈Ni

(
ẑi(t)− ẑj(τ

j
t )
)

ẑi(t) = C⊤
i R

−1
i yi(t)− pi(t)

(7)

Fig. 1. Graph representing the sensor network used in the experiments.

with the event-triggering mechanism being

τ ik+1 = inf{t− τ ik >
¯
τ | ∥ẑi(t)− ẑi(τ

i
k)∥ ≥ δi}

The inverse covariance matrix is updated at events by
requesting Ẑj(τ

i
k−) from the neighbors j ∈ Ni prior to the

event τ ik, averaging the values as

Ẑi(τ
i
k) =

Ẑi(τ
i
k−) +

∑
j∈Ni

Ẑj(τ
i
k−)

Ji + 1

where Ji :=
∑N

j=1 aij , and broadcasting Ẑi(τ
i
k) so that all

neighbours also update their estimate to the same value. Fi-
nally, nodes input their estimates of the average measurement
and covariance matrix to their local Kalman-Bucy filter:

˙̂xi(t) =Ax̂i(t) +NPi(t)ẑi(t)−NPi(t)Ẑi(t)x̂i(t)

Ṗi(t) =APi(t) +Pi(t)A
⊤ +BWB⊤ −NPi(t)Ẑi(t)Pi(t)

Note that this algorithm performs consensus on the av-
erage measurement of the network, rather than the state
estimates. Therefore, while boundedness of the consensus
error on z̄(t) is proven in [16, Proposition 1], providing
guarantees on the error of the resulting state estimates is
not straightforward. In contrast, our proposal (5) performs
consensus directly on the state estimates, rather than the
measurements, enabling the analysis of the error covariance
of the state estimates and providing a direct relation between
this covariance and the event threshold, rather than the
less explicit bound on the consensus error given in [16].
Moreover, for the proof of convergence of the consensus
algorithm, an assumption is needed on the bounds of noise
of the signals, which we no longer need for the analysis
presented here.

Finally, from the point of view of reducing communica-
tion, the proposal here only requires the communication of
state estimates at events, rather than both the information-
form measurement and its inverse covariance matrix.

VI. SIMULATION EXAMPLES

To illustrate the effectiveness of the proposal, consider the
sensor network with N = 5 sensors, described by Figure
1, which observes the trajectory of a moving target on a
plane. Let the state vector x(t) = [x(t), y(t), vx(t), vy(t)]

⊤,
where the position of the object in Cartesian coordinates is
given by (x(t), y(t)) and the corresponding velocities are
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(vx(t), vy(t)). The system can be described by (1) with

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , B =


0 0
0 0
1 0
0 1


and the covariance of the process noise w(t) is given by
W = Inw . The sensors obtain a measurement of the state of
the plant in the form yi(t) = Cix(t) + vi(t), with

C1 = C5 =
[
1 0 0 0

]
C3 = C4 =

[
1 0 0 0
0 1 0 0

]
C2 =

[
0 1 0 0

]
and noise covariances for vi(t) given by R1 =

0.01, R2 = 0.015, R5 = 0.02 and

R3 = R4 =

[
0.02 0
0 0.01

]
Note that the plant is not locally observable from all nodes,
only from 3 and 4, which will also perform better than if
they used only their local data.

For the simulation tests, we have initialized the true system
state to x0 = [1, 1, 1, 1]⊤. Since initial conditions are often
unknown in practice, we have initialized the estimates to
x̂(0) = [0, 0, 0, 0]⊤ and P(0) = In. We have used a
simulation step of h = 10−4, which also acts as the minimum
inter-event time

¯
τ in (4).

First, we compare the performance of our event-triggered
proposal to the full communication algorithm. We have set
the consensus gain κ = 50 in (5), and the event threshold
δi = 0.1 ∀i ∈ V in (4) for the event-triggered case. Recall
that, for δi = 0, (5) becomes the full communication case.

Figures 2 and 3 show the estimation results for the full
communication and event-triggered case, respectively. While
the result in terms of the state estimates appears similar, the
event-triggered case uses, on average for a node, only 0.3%
of the communication slots available for the node to send
information, considering that in the full communication case
communication occurs at every simulation step.

As usual in event-triggered state estimation, a trade-off
usually exists between the frequency of communication and
the resulting estimation error, i.e. increasing δi in the event-
triggering mechanism reduces communication, at the cost of
increasing the estimation error [21]. To evaluate the effect of
different event thresholds in the communication-error trade-
off, we have run simulations for a range of values of δi, and
computed the communication rate Cs and mean estimation
error Es of a sensor node for each simulation as follows:

Cs =
∑N

i=1 ei h

N Tf

Es =
1

N Tf

N∑
i=1

∫ Tf

0

∥x̂i(t)− x(t)∥dt

where ei is the number of events triggered at node i, h is the
simulation step and Tf is the total time for each simulation,

Fig. 2. State estimates of all nodes in the network, using full communi-
cation (δi = 0, ∀i ∈ V).

Fig. 3. State estimates of all nodes in the network, using event-triggered
communication with δi = 0.1, ∀i ∈ V . Communication is reduced to 0.3%
of the full communication case for each node, on average.

which we have set to Tf = 10. Note that the communication
rate is normalized between 0 (no communication) and 1 (full
communication).

To account for the presence of stochastic noise, we have
run S = 10 simulations for each value of δi, and then
averaged the results to obtain

C =
1

S

S∑
s=1

Cs, E =
1

S

S∑
s=1

Es

With these values, we have obtained the results shown in
Figure 4. We have computed the trade-off curves for different
values of the consensus gain κ in (5), namely κ = 100 and
κ = 1000, in order to see how the interaction between the
event threshold and consensus gain may affect the resulting
estimation error. As seen in the Figure, communication
can be very significantly reduced without impacting the

735



[16]
[16]

Fig. 4. Communication vs. estimation error trade-off, for different consen-
sus gains κ. Our proposal greatly reduces communication without degrading
performance with respect to the full communication case. Moreover, it is
robust with respect to the choice of κ and it improves performance with
respect to the proposal from [16].

estimation error. Additionally, the algorithm is robust with
respect to the choice of κ, even for low communication rates,
and does not need κ → ∞ in practice to produce adequate
results.

Moreover, we have computed the same communication-
error curves for the method proposed in [16], again with
similar consensus gains (we have fixed γ = 5 in (7)).
The results are also represented in Figure 4. As shown
in the Figure, this algorithm can also significantly reduce
communication, but the error values for low communication
rates increase more significantly than with our proposal here.
This may be due to our proposal having the triggering
condition monitoring the actual estimates, rather than the
measured signals as in [16]. Additionally, the effect of the
consensus gains is much more significant for [16], where a
high value for κ can severely amplify the error induced by the
event-triggering mechanism as communication is reduced.
Thus, not only has our proposal an advantage from the point
of view of formal analysis, but it also results in a smaller
estimation error for similar communication rates in practice.

VII. CONCLUSIONS

In this work, we have presented a distributed state estima-
tor with event-triggered communication based on the asymp-
totic form of the Kalman-Bucy filter. In opposition to prior
literature, it features consensus on the state estimates rather
than on the average measured signal of the network, which
allows stronger guarantees of performance and improved
results in practice. We have proven that the estimates are
bounded in mean square error through formal analysis and
that the centralized solution can be recovered by decreasing
the event threshold. Additionally, we have validated the pro-
posal through simulation experiments, which show that our
proposal achieves a significant reduction in communication

compared to its full communication counterpart, without
sacrificing performance, as well as lower estimation errors
for the same communication rates compared to prior work.
Future research will address additional problems, such as
communication delays or losses and directed graphs.
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