
A minimax optimal control approach for robust neural ODEs

Cristina Cipriani1, Alessandro Scagliotti2 and Tobias Wöhrer3

Abstract— In this paper, we address the adversarial training
of neural ODEs from a robust control perspective. This is an
alternative to the classical training via empirical risk minimiza-
tion, and it is widely used to enforce reliable outcomes for input
perturbations. Neural ODEs allow the interpretation of deep
neural networks as discretizations of control systems, unlocking
powerful tools from control theory for the development and
the understanding of machine learning. In this specific case,
we formulate the adversarial training with perturbed data
as a minimax optimal control problem, for which we derive
first order optimality conditions in the form of Pontryagin’s
Maximum Principle. We provide a novel interpretation of
robust training leading to an alternative weighted technique,
which we test on a low-dimensional classification task.

I. INTRODUCTION

The recent advances in deep neural networks (DNNs)
combined with the rapidly increasing supply of computing
power have lead to numerous breakthroughs in science and
technology [1]. DNN algorithms have shown to possess re-
markable data generalization properties and flexible applica-
tion settings [2], [3]. Nonetheless, it has become evident that
many machine learning (ML) models suffer from a severe
lack of robustness against data manipulation. Adversarial
attacks describe inputs with minuscule changes, e.g. pictures
with added pixel noise that is invisible in low resolution,
which result in dramatic changes in the model outputs [4],
[5]. Such attack vulnerabilities limit the implementations
of ML algorithms in areas that demand high reliability,
such as self-driving vehicles or automated content filtering.
The robustness crisis further highlights the general lack
of theoretical understanding and interpretability of neural
network algorithms.

A central theoretical achievement of recent years is the
interpretation of DNNs, such as residual NNs, as dynam-
ical systems [6], [7]: The input-to-output information flow
through a network with an infinite amount of layers can be
formulated in the continuum limit. This leads to nonlinear
neural ODEs (nODE) [8], [9], where time takes the role
of the continuous-depth variable. The nODE vantage point
has proven to be a powerful tool that allows to interpret
the learning problems (or parameter training) of DNNs as
continuous-time control problems and to formulate Pontrya-
gin’s Maximum Principle (PMP) [10] in various network
settings [11], [8], [12]. The link between the training of
DNNs with batches of input and simultaneous control led to

1,2,3Technical University Munich (TUM), Department of Mathematics,
Munich, Germany.

1Munich Data Science Institute (MDSI), Munich, Germany
1,2Munich Center for Machine Learning (MCML), Munich, Germany

cristina.cipriani@ma.tum.de, scag@ma.tum.de, tobias.woehrer@tum.de

numerous additional theoretical insights into neural networks
[13], [14], [15].

In the context of nODEs, an adversarial attack in prede-
fined norm ∥·∥ of adversarial budget ε > 0 takes the form of
a perturbed initial data point x̃0 = x0 + α where ∥α∥ ≤ ε.
As a result, the adversarially robust learning problem has
been established [16], [17] as the minimax control problem

min
u

E(x0,y)∼µ

[
max
∥α∥≤ε

Loss(u, x0 + α, y)

]
(1)

where the initial data and labels (x0, y) are drawn from an
underlying (and generally unknown) data distribution µ and
where the function Loss(u, x0, y) quantifies the prediction
accuracy resulting from the model control u. While such
saddle-point problems have a long history [18], their non-
smooth, non-convex nature pose challenges in obtaining
theoretical result. Additionally, the inner maximization in (1)
is x0 dependent and in applications often high-dimensional.
Numerical implementations are therefore typically substitut-
ing the maximization by first-order guesses of worst-case
adversarial attacks [5], [16], [19], [20].

Contributions: In this work, we interpret the forward flow
of DNNs as nonlinear neural ODEs and take a control
theoretical approach. We investigate the non-smooth and
non-convex robust learning problem (1) by formulating the
corresponding PMP for a finite ensemble of data points. We
provide a proof of this classical result by means of separation
of Boltyanski approximating cones. In spite of being a well-
known result, the novelty consists in relating the solution of
the resulting PMP to the one of another smooth and properly
weighted control problem. Inspired by this interpretation, we
develop a numerical method to address the robust learning
problem, and we test it on a bidimensional classification task.

II. ROBUST CONTROL MODEL

In this paper, we consider the simultaneous and robust
control problem of a finite number of particles in Rd, whose
initial positions are subject to perturbations (also known
as attacks in the machine learning literature). Namely, the
control system driving the dynamics of a single particle is:{

ẋ(t) = F (x(t), u(t)), a.e. t ∈ [0, T],

x(0) = x0,
(2)

where x0 ∈ Rd represents the unperturbed initial datum,
F : Rd×Rm → Rd is a continuous function (with Lipschitz
dependence in the first variable), and u ∈ U := L2([0, T], U)
is an admissible control taking values in any compact set
U ⊂ Rm. Here, we consider a collection (or batch) of M

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 58

initial data points {x0
1, . . . , x

0
M} for the system (2), which are

simultaneously driven by the same admissible control u ∈ U .
In addition, each of these Cauchy data points is affected by
N additive perturbations, i.e.,

AN
i := {α1

i , . . . , α
N
i }, ∀i = 1, . . . ,M,

where αj
i ∈ Rd (j = 1, . . . , N) is the j-th perturbation of

x0
i . We denote by xj

i : [0, T] → Rd the solution of (2)
corresponding to the initial condition xj

i (0) = x0
i +αj

i , while
we refer to the collection of the N perturbations of the i−th
particle using Xi(·) := (x1

i (·), . . . , xN
i (·)) ∈ Rd×N . Finally,

we employ the variable X = (X1, . . . , XM) ∈ (Rd×N)M to
describe the states of the whole system, i.e., the ensemble of
every perturbation of every particle. We are interested in the
minimization of the functional J : U → R, defined as

J(u) := max
j1=1,...,N
···

jM=1,...,N

1

M

M∑
i=1

gi
(
xji
i (T)

)

=
1

M

M∑
i=1

max
j=1,...,N

gi
(
xj
i (T)

)
=

1

M

M∑
i=1

g̃i(Xi(T)),

(3)

where xj
i (T) is the terminal-time value of the solution of (2)

starting from x0
i+αj

i and steered by the control u ∈ U , while,
for every i = 1, . . . ,M , g̃i : Rd×N → R is the non-smooth
function defined as g̃i(Xi) = max(gi(x

1
i), . . . , gi(x

N
i)), and

gi : Rd → R is a smooth convex function. Notice that
for each datum xi, we must consider various perturbations
αj
i , depending on the initial datum. This motivates the need

to compute the maximum over different indices ji, which
depend on the datum i. However, in the second identity of
(3), we exploit the fact that each perturbation is independent
from the others to swap the sum and the maximization.
In machine learning, the minimization of (3) can be
rephrased as the empirical loss minimization of the robust
training problem (1), where gi incorporates the i-th data
label, which has been denoted with the variable y in (1).

Definition 1. Given u ∈ U and the corresponding collection
of trajectories X : [0, T] → (Rd×N)M that solve (2) with
the perturbed initial data, we call the couple (u,X) an ad-
missible process. Moreover an admissible process (ū, X̄) is
a strong local minimizer for (3) if there exists an ε > 0 such
that, for every other admissible process (u,X) satisfying
∥X(·)− X̄(·)∥C0 ≤ ε, we have

1

M

M∑
i=1

g̃i(X̄i(T)) ≤
1

M

M∑
i=1

g̃i(Xi(T)).

Moreover, we further introduce

Ẋ(t) = F(X(t), u(t)), a.e. t ∈ [0, T], (4)

to denote the evolution of the whole ensemble of trajectories
in (Rd×N)M , where the mapping F : (Rd×N)M × Rm →
(Rd×N)M should be understood as the application of F (·, u)
component-wise. This allows us to conveniently define the

Hamiltonian H : (Rd×N)M × ((Rd×N)M)⋆ × Rm → R as

H(X,P, u) : = P · F(X,u) =

M∑
i=1

N∑
j=1

pji · F
(
xj
i , u

)
,

where P = (P1, . . . , PM), Pi = (p1i , . . . , p
N
i), and pji ∈ Rd

for every i = 1, . . . ,M and every j = 1, . . . , N .

A. Pontryagin Maximum Principle

Below, we specify the hypotheses needed to formulate the
necessary conditions for strong local minimizers of (3).

Assumption 2. We assume that
(A1) the function F : Rd × Rm → Rd that defines the

dynamics in (2) is continuous, and it is C2-regular in
the first variable. Moreover, there exists C > 0 such that

|F (x, ω)− F (y, ω)|2 ≤ C(|ω|2 + 1)|x− y|2,

for every x, y ∈ Rd and for every ω ∈ Rm;
(A2) for every i = 1, . . . ,M , the function gi : Rd → R

related to the terminal-cost in (3) is convex, C1-regular,
bounded from below and never equal to +∞.

From now on, when we consider a convex function f :
Rd → R, we assume that it never attains the value +∞.
Let us now present the main result which motivates our
numerical approach presented in Section IV.

Theorem 3 (PMP for minimax). Let (ū, X̄) be a strong local
minimizer for the minimax optimal control problem related
to (3). Then, there exist coefficients (γj

i)
j=1,...,N
i=1,...,M satisfying

γj
i ≥ 0 and

∑N
j=1 γ

j
i = 1 ∀i = 1, . . .M , and there exists

a curve P : [0, T] →
(
(Rd×N)M

)⋆
whose components solve

the adjoint equations{
ṗji (t) = pji (t)∇xF

(
x̄j
i (t), ū(t)

)
, a.e. t ∈ [0, T],

pji (T) = − 1
M γj

i∇xgi
(
x̄j
i (T)

)
,

(5)

such that, for a.e. t ∈ [0, T], it holds that

H(X̄(t), P (t), ū(t)) = max
ω∈U

H(X̄(t), P (t), ω). (6)

Moreover, for every i = 1, . . . ,M , if γj
i > 0, then

j ∈ argmax
j=1,...,N

gi
(
xj
i (T)

)
.

Remark 4. In Theorem 3 only normal extremals are con-
sidered, since the problem of minimizing the functional
J : U → R defined in (3) does not admit abnormal extremals.

Remark 5. Here we consider controls u : [0, T] → Rm

taking values in an arbitrary compact set U ⊂ Rm. However,
it is possible to remove this constraint, and to add in the
definition (3) of the functional J the penalization β∥u∥2L2

on the energy of the control, where β > 0 is a parameter
tuning this regularization. In this case, Theorem 3 holds in
the same form with a slightly different Hamiltonian, which
has now to take into account the running cost.

59

Remark 6. In (5) it is possible to assign the following
alternative terminal-time Cauchy datum:

pji (T) = −∇xgi
(
xj
i (T)

)
for every i = 1, . . . ,M and j = 1, . . . , N . In this case,
we introduce the probability measure dΓi on the set AN

i =
{α1

i , . . . , α
N
i }, defined as dΓi(α

j
i) = γj

i , where (γj
i)

j=1,...,N
i=1,...,M

are the coefficients prescribed by Theorem 3. Therefore, we
can rephrase (6) as

1

M

M∑
i=1

∫
AN

i

pji (t) · F
(
x̄j
i (t), ū(t)

)
dΓi(α

j
i)

= max
ω∈U

1

M

M∑
i=1

∫
AN

i

pji (t) · F (x̄j
i (t), ω) dΓi(α

j
i).

This formulation is particularly suitable to generalize to
the case of infinitely many perturbations, that has been
investigated in [21]. Furthermore, the case of infinitely many
particles with finitely many perturbations per particle can be
treated with a mean-field analysis, as recently done in [22],
[13] in the smooth framework.

B. Interpretation of the PMP

An important message conveyed by Theorem 3 is that any
strong local minimizer of the minimax problem related to the
functional J in (3) is an extremal for another smooth and
properly weighted optimal control problem. Namely, let us
consider the functional JΓ : U → R defined as

JΓ(u) =
1

M

M∑
i=1

N∑
j=1

γj
i gi

(
xj
i (T)

)
, (7)

where xj
i : [0, T] → Rd are the same as in (3), and where

(γj
i)

j=1,...,N
i=1,...,M are precisely the non-negative coefficients pre-

scribed by Theorem 3 for the strong local minimizer (ū, X̄)
of J . Then, it turns out that (ū, X̄) satisfies the corresponding
PMP conditions for the optimal control problem associated to
JΓ, which is smooth with respect to the terminal-states. This
fact is extremely interesting from a numerical perspective,
since the minimization of a functional with smooth terminal
cost can be, in general, more easily addressed. On the
other hand, the coefficients (γj

i)
j=1,...,N
i=1,...,M are not explicitly

available a priori, as they are themselves part of the task
of finding a strong local minimizer of J . In Section IV, we
propose and numerically test a procedure to iteratively adjust
these coefficients.

III. PROOF OF THE PMP

The proof of Theorem 3 is classical and can be deduced,
e.g., from [23, Theorem 6.4.1]. However, in that case, the
proof is rather sophisticated since it is developed in a very
general framework. In this section, we propose a more direct
proof based on an Abstract Maximum Principle, for which
we refer to the recent expository paper [24].

A. Abstract Maximum Principle
In order to prove Theorem 3, we first need to collect some

well known results of convex and non-convex analysis.

Lemma 7 (Result from [25], Lemma 2.1.1 (Part D)). Given
a convex function f : Rn → R and x ∈ Rn, then

f(x+ h) = f(x) + σ∂f(x)(h) + o(|h|) as h → 0, (8)

where ∂f(x) denotes the subdifferential of f at x.

We recall that, given a convex and compact set K ⊂ Rn,
the support function σK : Rn → R is the convex sublinear
function:

σK(x) := sup
p∈K

⟨p, x⟩.

For a thorough discussion on the properties of support
functions, we recommend [25, Part C].

Lemma 8. Given N convex functions fj : Rd → R,
j = 1, . . . , N , let us define Φ : Rd×N → R as Φ(ξ) =
maxj fj(x

j) for every ξ = (x1, . . . , xN). Then, for every
ξ ∈ Rd×N we have that

∂Φ(ξ) ⊂
{(

γ1∂f1(x
1), . . . , γN∂fN (xN)

)
:

γ ∈ Γ, γj = 0 if fj(xj) < Φ(x)
}
,

where Γ := {γ = (γ1, . . . , γN) ∈ RN : γj ≥ 0,
∑

j γ
j = 1}.

Proof. See [25, Corollary 4.3.2 (Part D)].

We also recall the definition of Boltyanski approximating
cones from [24, Definition 2.1].

Definition 9. Consider a subset K ⊆ Rn and a point y ∈ K,
and let K be a convex cone in Rn. We say that K is a
Boltyanski approximating cone to K at y if K = LC where,
(i) for an integer m > 0, C ⊆ Rm is a convex cone,
(ii) L : Rm → Rn is a linear mapping,
(iii) there exists δ > 0 and a continuous map F : C ∩

Bδ(0) → K such that

F(c) = y + Lc+ o(|c|), as c → 0. (9)

In the next proposition we provide the construction of a
Boltyanski approximating cone to the epigraph of a non-
smooth convex function. This represents a slight generaliza-
tion w.r.t. the framework of [24], where the cost function
is assumed to be differentiable. Indeed, in that case, it is
sufficient to consider the graph of the cost, and to take the
tangent hyperplane as a Boltyanski approximating cone.

Proposition 10. Let R ⊆ Rn be a set and, for y ∈ R, let
R ⊆ Rn be a Boltyanski approximating cone at y to R.
Let f : Rn → R be a convex function, and let epi(f|R) :=
{(x, η) ∈ Rn+1 : x ∈ R, η ≥ f(x)}. Then, a Boltyanski
approximating cone at (y, f(y)) to epi(f|R) is

R̃ := {(v, σ∂f(y)(v) + η) : v ∈ R, η ≥ 0}.

Proof. Since R is an approximating cone at y to R, there
exists a convex cone C ⊆ Rm, a linear mapping LR : Rm →
Rn, and a continuous function FR : C → R such that

FR(c) = y + LRc+ o1(|c|) as c → 0 , and R = LRC.

60

Thus, we set C̃ := {
(
c, σ∂f(y)(LRc) + η

)
: c ∈ C, η ≥ 0}.

We observe that C̃ is a convex cone, since it is the epigraph
of the support function c 7→ σ∂f(y)(LRc) restricted to C.
Moreover, let us set L̃ : Rm+1 → Rn+1 such that L̃(c, µ) :=
(LRc, µ) where (c, µ) ∈ C̃, and let us define the continuous
function F̃ : C̃ → epi(f |R) as:

F̃(c, µ) :=
(
FR(c), µ− σ∂f(y)(LRc) + f(FR(c))

)
.

We observe that
f(FR(c)) = f

(
y + LRc+ o1(|c|)

)
= f(y) + σ∂f(y)(LRc) + o2(|c|),

where we have used Lemma 7 and the boundedness of ∂f(y).
Hence, for every (c, µ) ∈ C̃, we have

F̃(c, µ) =
(
y, f(y)

)
+
(
LRc, µ

)
+
(
o1(|c|), o2(|c|)

)
=

(
y, f(y)

)
+ L̃(c, µ) + o(|c|),

and we set R̃ := L̃C̃. Recalling that, for every (c, µ) ∈ C̃,
L̃(c, µ) = L̃

(
c, σ∂f(y)(LRc) + η

)
=

(
LRc, σ∂f(y)(LRc) +

η
)
, we deduce the thesis.

Finally, we report here an extension of the Abstract
Maximum Principle presented in [24, Section 5], aimed at
encompassing the case of a non-smooth convex cost.

Theorem 11. Let us consider a metric space U , a continuous
map y : U → Rn, a convex function Ψ : Rn → R, and a set
S ⊂ Rn. Let (ū, y(ū)) ∈ U×Rn be a strong local minimizer1

for
min
u∈U

Ψ(y(u)) subject to y(u) ∈ S.

Setting ȳ := y(ū), we define R := {y(u) : u ∈ U}, and let
R,K be Boltyanski approximating cones at ȳ to R and S,
respectively. Then, there exists (λ, λc) ∈

(
Rn+1

)⋆
such that

(a) (λ, λc) ̸= (0, 0),

(b) λ ∈ −K⊥ and λc ≤ 0,

(c) max
v∈R

(
min

p∈∂Ψ(ȳ)
⟨λ+ λcp, v⟩

)
= 0.

Proof. Following the proof of [24, Theorem 5.1], let us
introduce the sets S̃ := {(x, η) ∈ Rn+1 : x ∈ S, η <
Ψ(ȳ)}∪{(ȳ,Ψ(ȳ))} and R̃ := epi(Ψ|R), and their respective
Boltyanski approximating cones at (ȳ,Ψ(ȳ)), i.e., K̃ =
{(w, ν) : w ∈ K, ν ≥ 0} and, owing to Proposition 10,
R̃ := {

(
v, σ∂Ψ(ȳ)(v) + η

)
: v ∈ R, η ≥ 0}. In virtue of [24,

Corollary 4.1], since R̃ and S̃ are locally separate (see [24,
Lemma 5.1]), it follows that R̃ and K̃ are linearly separable,
i.e., there exists (λ, λc) ∈

(
Rn+1

)⋆
s.t. (λ, λc) ̸= (0, 0),

⟨(λ, λc), w̃⟩ ≥ 0 ∀w̃ ∈ K̃,

⟨(λ, λc), ṽ⟩ ≤ 0 ∀ṽ ∈ R̃.

From the first inequality, we deduce point (b) of the thesis,
while the second inequality yields

⟨λ, v⟩+ λc(σ∂Ψ(ȳ)(v) + η) ≤ 0

1This concept is the natural generalization of Definition 1. See also [24,
Definition 5.1 and Remark 5.2].

for every v ∈ R and η ≥ 0, which implies for η = 0 that
⟨λ, v⟩+λcσ∂Ψ(ȳ)(v) ≤ 0 for every v ∈ R. Since the equality
is attained for v = 0, we deduce that

max
v∈R

(
⟨λ, v⟩+ λcσ∂Ψ(ȳ)(v)

)
= 0.

Finally, recalling that λc ≤ 0, the thesis follows from (8).

B. Proof of Theorem 3

We finally prove the necessary optimality conditions as-
sociated to (3) using Theorem 11. In our framework, U
is the space of admissible controls, Rn = (Rd×N)M , and
y : U → Rn maps every control u ∈ U to the final-time
state of the corresponding solution of (4). Since we do not
deal with final-time constraints, we have that S = (Rd×N)M .
Moreover, we set R := y(U). As a direct application of [24,
Corollary 6.1], we obtain the approximating cones to R.

Proposition 12. Let (ū, X̄) be a strong local minimizer for
(3), and for r ≥ 1 let {t1, . . . , tr} ⊆ [0, T] be arbitrary
distinct Lebesgue points for t 7→ F(X̄(t), ū(t)), and let us
take ω1, . . . , ωr ∈ U . Then, if we set Wk := F(X̄(tk), ωk)−
F(X̄(tk), ū(tk)),

R := span+k=1,...,r {M(tk, T)Wk} (10)

is a Boltyanski approximating cone to R at X̄(T), where
M(·, ·) is the fundamental matrix2 associated to the lin-
earized equation V̇ (t) = ∇XF

(
X̄(t), ū(t)

)
V (t).

We observe that the Boltyanski cone (10) reflects the
particular structure of the dynamics (4). Indeed, we can write
R =

∏M
i=1

(∏N
j=1 span

+
k=1,...,r

{
M i,j(tk, T)w

i,j
k

})
, where

wi,j
k := F (x̄j

i (tk), ωk) − F (x̄j
i (tk), ū(tk)), and M i,j(·, ·) is

the fundamental matrix associated to the linearization of the
trajectory x̄j

i , i.e., v̇(t) = ∇xF (x̄j
i (t), ū(t))v(t). We are now

in position to present the proof of Theorem 3.

Proof of Theorem 3. In virtue of Theorem 11, since S =
(Rd×N)M , we have that K = (Rd×N)M and K⊥ = {0}.
Moreover, using the same notations as in Section II, we
have that Ψ(X) = 1

M

∑M
i=1 g̃i(Xi). Hence, by setting

λc = −1, we consider the approximating cone R to R at
X̄(T) constructed in Proposition 12 with Lebesgue points
{t1, . . . , tr}, and from Theorem 11 it follows that

0 = max
V ∈R∩B1(0)

min
P∈−∂Ψ(X̄(T))

⟨P, V ⟩,

since the maximum is attained at 0 ∈ R∩B1(0). Moreover,
by using von Neumann’s Minimax Theorem (see, e.g., [23,
Theorem 3.4.6]) we obtain that

min
P∈−∂Ψ(X̄(T))

max
V ∈R∩B1(0)

⟨P, V ⟩ = 0,

i.e., there exists P ∗ ∈ −∂Ψ(X̄(T)) such that ⟨P ∗, V ⟩ ≤ 0
for every V ∈ R∩B1(0). Since the last inequality is invariant
by positive rescaling, we deduce that

⟨P ∗,M(tk, T)
(
F(X̄(tk), ωk)−F(X̄(tk), ū(tk)

)
⟩ ≤ 0.

2See, e.g., [26, Section 2.2].

61

From the structure of the cost function Ψ and Lemma 8, it
follows that the covector P ∗= (P ∗1 , . . . , P

∗
M) has the form

P ∗i = − 1
M

(
γ1
i ∇xgi

(
x̄1
i (T)

)
, . . . , γN

i ∇xgi
(
x̄N
i (T)

))
. Then,

the thesis follows from a classical infinite intersection argu-
ment, as detailed e.g. in the proof of [27, Theorem 5.7.1].

IV. NUMERICS

In this section, we present numerical experiments designed
to validate our interpretation of the PMP in the context of
robust neural network training.
Here, we approach the robust training of deep neural net-
works from a control perspective. Specifically, we interpret
neural networks as discretized representations of controlled
ODEs such as the one depicted in (2). Then, the network
parameter training is viewed as a control problem. Our
objective is to minimize the cost function (3), which is
defined in order to obtain a network which robustly classifies
the input data. In particular, we employ the PMP outlined
in Theorem 3 and derived in Section III, to identify the
controls/network parameters that yield effective and robust
classification performance. The utilization of the PMP for
neural network training has already been successfully applied
and explored in [11], [22]. In practice, this approach typically
involves employing a shooting method, such as the one
outlined in Algorithm 1, which consists of repeating the
forward evolution of the trajectories, the backward evolution
of the adjoint variables, and the update of the controls, until
convergence. For further insights into this methodology, we
direct readers to [28]. It is crucial to emphasize that the
novelty of our approach lies in the selection of the weights
to be incorporated into (7), rather than in the use of the
PMP for training neural networks. To keep the analysis
simple, we focus on a classification task in 2d, but we defer
the extension to higher-dimensional experiments to future
research. The primary objective here is to robustly train a
network to distinguish between data points separated by a
nonlinear boundary.

A. The Classification task

The training data: We generate two classes by uniformly
sampling M = 200 data points in the domain [0, 1]2 exclud-
ing a separation region (shaded yellow in Fig. 1). These data
points are labeled according to their positions (y = 1 =
‘above’ or y = −1 = ‘below’) w.r.t. a predetermined
nonlinear boundary (depicted as a yellow line in Fig. 1).
The variable y introduced in (1) denotes the label associated
with each data point. Since this variable is incorporated in
the cost gi for every datum i, it does not explicitly appear
in Algorithm 1.

The network: We employ a residual neural network of 20
layers, which corresponds to a discretization of the interval
[0, T] with T = 1 and ∆t = 0.05. The network is interpreted
as an explicit Euler discretization of the 2d-controlled ODE{

ẋ(t) = F (x(t), u(t)) = σ
(
W (t)x(t) + b(t)

)
,

x(0) = ξ0.
(11)

Algorithm 1: Shooting method
Data:
u0 : initial guess for controls; iter max : number of shooting iterations;
∆t : time-discretization of the interval [0, T]; τ : memory parameter;
Result: uiter max

1 time nodes← T/∆t;
2 for k = 0, . . . , iter max do
3 for i = 1, . . . ,M , j = 1 . . . , N do
4 for n = 1, . . . , time nodes do
5 xj

i (tn+1)← xj
i (tn) + ∆t F (xj

i (tn), u
k(tn));

6 end
7 end
8 for i = 1, . . . ,M , j = 1, . . . , N do

9 pj
i (ttime nodes)← −

γ
j
i

M ∇xgi
(
xj
i (ttime nodes)

)
;

10 for n = time nodes, . . . , 1 do
11 pj

i (tn−1)←
pj
i (tn) + ∆t pj

i (tn) · ∇xF
(
xj
i (tn), u

k(tn)
)

;
12 end
13 end
14 for n = time nodes, . . . , 1 do
15 X(tn−1)← (xj

i)
j=1,...,N
i=1,...,M and P (tn−1)← (pj

i)
j=1,...,N
i=1,...,M ;

16 uk+1(tn−1)← maxω∈U [H(X(tn−1), P (tn−1), ω)

17 − 1
2τ ∥ω − uk(tn−1)∥22

]
;

18 end
19 If needed, update (γj

i)
j=1,...,N
i=1,...,M ;

20 end

Here, σ denotes an activation function acting component-
wise, set to be the hyperbolic tangent in our experiments. The
state-space of this system is R2, while the control variable is
u(t) = (W (t), b(t)) ∈ R2×2×R2. Here, given an admissible
control t 7→ (W (t), b(t)), evaluating the neural ODE written
above on our dataset means solving (11) with ξ0 = x0

i +αj
i ,

with i = 1, . . . ,M and j = 1, . . . , N .

The adversarial budget: We fix N = 4 equidistant
perturbations with adversarial budget ϵ = 0.02 around each
training point. This budget is chosen sensibly with the class
separation region (yellow in Fig. 1) in mind: The pertur-
bations may populate the region but an unwanted overlap
of opposite labels is prevented. We remark that in high-
dimensional implementations, such as image classification,
the attack’s budget is typically assumed to be very small
compared to the class distance, so that the labels are unaf-
fected.

The cost function: As loss functions gi, we use a cost
that promotes separation and clustering of the two classes.
In ML, it is typical to append a trainable linear layer at the
end of the network to project the classifier’s output, and then
to employ a penalization on the mismatch. However, in order
to maintain an optimal control formulation and for more
accurate comparison of the weight choices below, we prefer
to incorporate a fixed projection within the loss function.
Consequently, we use the following cost:

gi(x
j
i (T)) =

{
ev·x

j
i (T) yi = 1,

e−v·x
j
i (T) yi = −1,

where v = (1,−1). It is important to note that while our
method is applicable to any type of cost function, including
quadratic or more complex formulations, we have chosen the
above expression for visualization purposes.

62

The training: In Algorithm 1, we provide the shooting
method used for the numerical solution of the PMP, and
hence for training the network. The connection between the
shooting method and the training of neural networks with
gradient descent has been investigated in [11], [29]. Notice
that the extra term in the Hamiltonian (at line 17) comes
from [28] for stability reasons. We set the initial guess
u0 by randomly generating standard Gaussian values for
each entry and for each time-node, while the number of
shooting iterations is iter max = 1000. It is worth noting
that the maximization step in line 16 of Algorithm 1 can be
performed in various ways, such as gradient ascent. However,
we opt for the approach used in [13], which employs a fixed-
point method to find the point where the gradient of the
augmented Hamiltonian vanishes.

B. The choice of the weights

One crucial challenge is that the PMP derived in Theo-
rem 3 does not specify how to choose the weights γj

i at line
19 of Algorithm 1. Therefore, we compare three options.

Uniform robust: The first approach involves assigning
uniform weights to all perturbations. In this method, we
consider the perturbations as training data points and mini-
mize the loss based on them. However, this straightforward
approach is not connected to a minimax problem and does
not align with the theoretical framework, where the weights
play a specific role in emphasizing the perturbations that
achieve the maximum.

Weighted robust: The second option is to introduce the
following weight functions for the perturbations:

γj
i =

1

Ci
ecgi(x

j
i (T)) with Ci =

N∑
j=1

ecgi(x
j
i (T)), (12)

where c > 0 is a constant chosen a priori. This choice is
inspired by Laplace’s principle [30] and it is reminiscent
of Gibbs measures. These weights must be updated each
time the control is adjusted, and they are determined based
on the cost gi of the network’s output xj

i (T), which we
aim to maximize across perturbations. Subsequently, these
weights are normalized according to the cost achieved by
the other perturbations. The benefit of this approach is that
if two perturbations (almost) achieve the maximum, they
will have (almost) equal weights, leading to a more stable
method. This peculiarity stands in contrast to the instability
of the worst-case approach described below. The constant
c needs to be chosen appropriately. Setting it to zero (or
too small) is equivalent to the uniform weighting method
described above. Similar considerations have already been
done in [31], motivated by the relaxation of the max function
by the LogSumExp.

Worst-case robust: The third approach consists of ex-
plicitly computing the worst-case scenario at each step —
which involves identifying for every datum the perturbation
that achieves the maximum — and in updating the controls
using exclusively these data-points. During the execution

of the shooting method, the worst-case perturbations are
typically different at each iteration. As a matter of fact,
the cost is highly oscillating along the iterative steps, since
improving the performance on the worst-cases might result
in deteriorating the behavior of the others. At each iteration
of the shooting method, this approach is equivalent to set the
coefficients (γj

i)
j=1,...,N
i=1,...,M according to (12), and then to send

c → ∞.

C. Results

In Fig. 1 we display the classification prediction prob-
abilities of the trained models. We compare all the four
methods described above, namely the non-robust approach
using the unperturbed set of training data, the uniform robust
method, the weighted robust approach with weights as (12)
with c = 100 and finally the worst-case robust method. For
the robust methods, as training input, we use the perturbed
version of the data employed in the non-robust method, i.e.
M × N = 800 training points, with unchanged parameter
initialization. Upon initial visual analysis, it is apparent that
while the robust methods may not significantly outperform
the non-robust method in precisely identifying the decision
boundary, they excel in recognizing areas with higher risk
of misclassification and making more cautious predictions.
To provide a more quantitative comparison of all methods,
we present in Table I several metrics obtained by averaging
over multiple experiments. These metrics are: test accuracy
(on [0, 1]2), classification margin accuracy of the excluded
margin of unperturbed training points, and high-confidence
mistakes, which determine the share of all misclassifications
in [0, 1]2 with prediction confidence of more than 70%. This
last metric highlights the algorithm’s capability to identify
areas of ambiguity. Finally, we provide a comparison of

Fig. 1. Classification level-sets on [0, 1]2: the color bar indicates the
confidence of prediction of one class (red above the yellow margin) or the
other class (blue below the yellow margin).

63

Test Accuracy Margin Accuracy High-confidence
Mistakes

Non-robust 94,12 % 56,52 % 78,50 %
Uniform robust 94,26 % 56,80 % 72,57 %
Weighted robust 94,12 % 57,14 % 65,13 %
Worst-case robust 94,68 % 58,31 % 55,76 %

TABLE I

robustness in Fig. 2, where we examine the value of J as
defined in (3). To achieve robustness, the objective is to
minimize this value, motivated by the minimax formulation
(1). The key observation here is that the worst-case robust
method achieves the lowest loss, which aligns with the
results presented in Table I. However, this method exhibits
considerable oscillations due to the instability of the maxima.
Indeed, when handling scenarios involving multiple perturba-
tions that are close to the maximum, the worst-case method
would select a single perturbation and adjust the parameters
accordingly. This approach may favor one direction while
neglecting the others. In contrast, the weighted robust method
considers the influence of all perturbations. This is confirmed
by the plot in Fig. 2: our proposed weighted robust approach
generally exhibits slightly reduced robustness compared to
the worst-case robust method, but it offers more stability
during training.

V. CONCLUSIONS

In this work, we investigate the minimax optimal control
problem of neural ODEs in order to improve adversarially
robust training of deep neural networks. In the continuous
ODE setting, we provide a proof of the first order optimality
conditions in form of the PMP. Inspired by these conditions,
we present a numerical scheme for training neural networks
that incorporates weighted adversarial attacks for each train-
ing point. This method achieves promising results in low
dimensions: it surpasses the uniform robust method in terms
of accuracy and exhibits greater stability in terms of training
behavior compared to the worst-case approach. Our novel
approach has potential for higher dimensional settings, where
the precise computation of the local maximum is infeasible,
but a weighted approximation could improve robustness.

ACKNOWLEDGMENT

C.C. is partially supported by the DFG SPP 2298. A.S. is
partially supported by INdAM-GNAMPA. T.W. is supported
by the Austrian Science Fund (FWF) grant no. J 4681-N.
Finally, the authors want to thank Prof. Franco Rampazzo.

Fig. 2. Robustness measure displayed on a semilogarithmic scale.

REFERENCES

[1] J. Jumper, R. Evans, A. Pritzel, et al. Highly accurate protein structure
prediction with alphafold. In: Nature, 596:583–589, 2021.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In: 2016 IEEE CVPR, 770–778, 2016.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, R. Fergus. Intriguing properties of neural networks. In: 2nd
ICLR, 2014.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing
Adversarial Examples. In: 3rd ICLR, 2015.

[6] W. E. A proposal on machine learning via dynamical systems. In:
Comm. Math. Stat., 1(5):1–11, 2017.

[7] E. Haber, L. Ruthotto. Stable architectures for deep neural networks.
In: Inverse problems, 34(1), 2018.

[8] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud. Neural
Ordinary Differential Equations. In: Advances in Neural Information
Processing Systems, 2018.

[9] E. Dupont, A. Doucet, Y. W. Teh. Augmented neural odes. Advances
in Neural Information Processing Systems, 2019.

[10] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F.
Mishchenko. The mathematical theory of optimal processes. In: In-
terscience Publishers John Wiley & Sons Inc., 1962.

[11] Q. Li, L. Chen, C. Tai, W. E. Maximum principle based algorithms
for deep learning. In: J. Mach. Learn. Res., 18(1):5998—6026, 2017.

[12] C. G. Trillos, N. G. Trillos. On the regularized risk of distributionally
robust learning over deep neural networks. In: Res. Math. Sci., 9(54),
2022.

[13] C. Cipriani, M. Fornasier, A. Scagliotti. From NeurODEs to
AutoencODEs: a mean-field control framework for width-varying
neural networks. In: Eur. J. Appl. Math., 2024.

[14] C. Esteve, B. Geshkovski, D. Pighin, E. Zuazua. Large-time asymp-
totics in deep learning. In: arXiv:2008.02491

[15] D. Ruiz-Balet, E. Zuazua. Neural ode control for classification, ap-
proximation, and transport. In: SIAM Review, 65(3):735–773, 2023.

[16] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu. Towards
deep learning models resistant to adversarial attacks. In: 6th ICLR,
2018.

[17] U. Shaham, Y. Yamada, S. Negahban. Understanding adversarial
training: Increasing local stability of supervised models through robust
optimization. In: Neurocomputing, 307:195–204, 2018.

[18] A. Wald. Statistical decision functions which minimize the maximum
risk. In: Annals of Mathematics, 46(2):265–280, 1945.

[19] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, P. McDaniel. The
space of transferable adversarial examples. In: arXiv:1704.03453,
2017.

[20] N. S. Frank, J. Niles-Weed. Existence and minimax theorems for ad-
versarial surrogate risks in binary classification. In: arXiv:2206.09098,
2022.

[21] R.B. Vinter. Minimax optimal control. In: SIAM J. Control Optim.,
4(3):939-968, 2005.

[22] B. Bonnet, C. Cipriani, M. Fornasier, H. Huang. A measure theoretical
approach to the mean-field maximum principle for training NeurODEs.
In: Nonlinear Analysis, 227:113-161, 2023.

[23] R.B. Vinter. Optimal control. In: Birkhäuser, 1(1), 2000.
[24] M. Motta, F. Rampazzo. An Abstract Maximum Principle for con-

strained minimum problems. In: arXiv:2310.09845, 2023.
[25] J.-B. Hiriart-Urruty, C. Lemaréchal. Fundamentals of Convex Analy-

sis. In: Springer Science & Business Media, 2004.
[26] A. Bressan, B. Piccoli. Introduction to the mathematical theory of

control. In: AIMS, Springfield, 2004.
[27] H.J. Sussmann. Geometry and Optimal Control. In: Baillieul, J.,

Willems, J.C. (eds) Mathematical Control Theory. Springer, 1999.
[28] Y. Sakawa, Y. Shindo. On global convergence of an algorithm for

optimal control. In: IEEE Trans. Automat. Contr. 25(6):1149-1153,
1980.

[29] M. Benning, E. Celledoni, M. Ehrhardt, B. Owren, C. B. Schhönlieb.
Deep learning as optimal control problems: models and numerical
methods. In: Journal of Computational Dynamics, 2019.

[30] A. Dembo and O. Zeitouni. Large deviations techniques and applica-
tions. In: Springer Science & Business Media, 38, 2009.

[31] T. Li, A. Beirami, M. Sanjabi, V. Smith. Tilted Empirical Risk
Minimization. In: 8th ICLR, 2020.

64

