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Abstract— This paper investigates the issue of extended
Kalman filtering (EKF) for graphical nonlinear systems. For
the signals that have a nonlinear relationship with the graph
Laplacian matrix, we introduce a variance-constrained (VC)-
EKF, leveraging the graph Fourier transform (GFT), aimed
at enhancing the filtering performance. In this paper, the
GFT is applied for system variables and the updated estimate
is designed with a diagonal gain matrix for the transformed
system, then the higher-order terms are introduced into the
predicted error and the updated error, and the diagonal
gain matrix can be acquired through the solution of two
Riccati-like equations. The advantages of the GFT-VC-EKF
are that, the gain matrix represented by a diagonal matrix
enables the node signal to be updated independently, thus
reducing the iterative cumulative error, and the introduction
of higher-order terms makes it possible to compensate for the
linearization error caused by the fact that the EKF containing
only first-order Taylor expansion term. A simulation example
on a power system proves the superiority of the proposed
filter.

Index Terms— Variance-constrained, Extended Kalman fil-
ter, Laplacian matrix, Graph Fourier transform.

I. Introduction
The filtering problem in graphical systems is widely

applicable across diverse domains, including but not
limited to image processing [1], social network [2], recom-
mender systems [3], multi-agent systems [4], and sensor
networks [5]. In order to improve the filtering accuracy,
scholars have designed various filters for the graphical
systems [6]–[8].

For the time-invariant graphical systems, the core
idea of graph signal processing (GSP) has been adopted
by the existing literature to describe, transform, and
process the signal to realize the recovery, reconstruction,
or estimation [9], [10]. For instance, the problem of
optimal Wiener filtering on graphs was extended to
fractional Fourier domains in [11], showing promise for
enhancing performance by reducing errors. A sample
domain discrete trigonometric transform (DTT) filter
implementation was introduced in [12], drawing upon the
designs of polynomial graph filters and designs involving
multivariate polynomials in graph filtering. However,
practical engineering is usually modeled as time-varying
graphical systems in the field of control, so the design
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of dynamic filters for time-varying graphical systems has
become an important research direction.

The processing of time-invariant graphical systems
provides new tools for the filtering of time-varying graph-
ical systems, such as graph filter [13], graph recognition
[14], and graph Fourier transform (GFT) [15]. Using
the above tools, some filters for graphical nonlinear
systems have been developed [16], [17]. In [16], a novel
approach to unscented Kalman filtering (UKF) based
on graphs was introduced. This approach leveraged the
graph Laplacian matrix to design the Kalman gain
matrix, enabling independent updates for each vertex
signal. However, the above literature only discussed the
case where the measurement output is related to the
graph topology. The literature [17] made up for the above
shortcomings, and developed a GSP-extended Kalman
filter (EKF) for the system where both the monitoring
target and the measurement output are related to the
graph topology. The GSP-EKF was designed with a
diagonal gain matrix through the transformation of the
EKF into the graph frequency domain. However, there
is a linearization error due to the fact that the EKF
only retains the first-order Taylor expansion term, which
makes the filtering accuracy of the GSP-EKF still has
some room for improvement.

Building upon the preceding discussion, this paper
focus on designing a GFT-variance-constrained (VC)-
EKF for graphical nonlinear systems from two aspects:
Compensating for the linearization error and reducing
the iterative cumulative error. Specifically, we first
decompose the graph Laplacian matrix and use the
eigenvector matrix to apply the GFT for the variables in
the monitoring target and measurement output. Based
on this, the gain matrix can be designed as a diagonal
matrix following the structure of the graph filter, so that
the node signal can be updated independently. Next,
the higher-order terms containing bounded time-varying
matrix are introduced into the transformed predicted and
updated error to compensate for the linearization error.
Finally, the diagonal gain matrix can be determined
by solving a pair of transformed Riccati-like equations.
Simulation results on a power system show that the
proposed GFT-VC-EKF has better performance.

The organization of the following sections in this paper
is as outlined below. Section II gives the definition of a
graphical nonlinear system and presents the problem to
be solved. Section III details the design of the GFT-
VC-EKF. Section IV presents a numerical example on
a power system, followed by discussions on conclusions
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and future work in Section V.
Notation: The identity matrix I is defined with ap-

propriate dimensions, while AT denotes the transpose
of matrix A. For symmetric matrices A and B, if
A > B (A ≥ B), then A−B is positive definite (positive
semidefinite).

II. Problem Formulation

This paper establishes the topology structure of non-
linear systems using an undirected graph denoted as
G = (V, E , A). In this context, V denotes the collection of
nodes, while E ∈ V×V signifies the interconnected edges
among these nodes. The representation of connections
between nodes is captured by the adjacency matrix,
A = [aij ]N×N , where each entry aij is non-negative.
Within the framework of this adjacency matrix, the
element at position (i, j) signifies the existence of an
edge between the ith and jth nodes; specifically, aij > 0
if (i, j) belongs to E . Additionally, it is assumed in this
paper that the diagonal entries satisfy aii = 1.

The Laplacian matrix of the undirected graph, denoted
as L = D−A, involves D representing the degree matrix
of the given graph. Its eigenvalue decomposition, L =
V ΛV T , includes V as the matrix of eigenvectors and Λ
as the eigenvalue matrix. Specifically, V V T = I, and Λ is
diagonal. By defining the Laplacian matrix L as a graph
shift operator (GSO), a graph filter g (L) is established.
This graph filter g (L) can be further decomposed into

g (L) = V g (Λ)V T (1)

where g (·) is a function, and g (Λ) is a diagonal matrix.

Consider the following graphical nonlinear systems:

xk+1 = f(L, xk) + wk (2)

and the measurement signals

zk = h(L, xk) + vk (3)

where xk =
[
x1,k x2,k ... xN,k

]T ∈ RN and zk ∈
RN represent the status of the monitoring target and
the measurement signals, respectively. f (·) represents a
nonlinear function, while h (·) denotes a measurement
function. We make the assumption that wk and vk are
independent sequences of Gaussian white noise, both
characterized by zero mean and covariance matrices
Q and R, respectively. Fig. 1 illustrates the model of
graphical nonlinear systems.

This paper aims to develop a filter to improve the
filtering performance specifically for graphical nonlinear
systems in terms of compensating the linearization error
and reducing the iterative accumulative error.

The introduction of the following lemmas is essential
for deriving the primary results of this paper.

Lemma 1 [18]: Assuming Π = ΠT > 0 and a scalar
δ > 0 satisfying δ−1I > ΩΠΩT , we have the following
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Fig. 1. Graphical nonlinear systems.

matrix inequality
(Φ + ΞΨΩ)Π(Φ + ΞΨΩ)

T

≤ Φ
(
Π−1 − δΩTΩ

)−1
ΦT + δ−1ΞΞT

where Φ,Ξ,Ψ, and Ω are matrices with appropriate
dimensions and satisfy ΨΨT ≤ I.

Lemma 2 [19]: Assuming 0 ≤ k < n and P = PT > 0,
let ϕk (·) and ϑk (·) represent two sequences of matrix
functions as given in

ϕk (P ) = ϕk

(
PT
)
, ϑk (P ) = ϑk

(
PT
)

If a matrix Q = QT > P exists as described in
ϕk (Q) ≥ ϕk (P ) , ϑk (Q) ≥ ϕk (Q)

then the solutions, denoted as Φk and Ξk, to the
subsequent difference equations:

Φk = ϕk (Φk−1) ,Ξk = ϑk (Ξk−1) ,Φ0 = Ξ0 > 0

meet the condition Φk ≤ Ξk.
III. Main Results

We first define the GFT of the node signal on the
graphical nonlinear systems by using the eigenvector
matrix as

xv
k = V Txk, f

v(L, xv
k) = V T f(L, xk), w

v
k = V Twk

zvk = V T zk, h
v(L, xv

k) = V Th(L, xk), v
v
k = V T vk

then we can derive the transformed system as outlined
below:

xv
k+1 = fv(L, xv

k) + wv
k (4)

zvk = hv(L, xv
k) + vvk (5)
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Next, we design the filter for the above system.
Assuming that the updated estimate x̂v

k|k and the
updated filtering error covariance matrix P v

k|k are known
at time k, let the predicted estimate of xv

k+1 at time k
be

x̂v
k+1|k = fv

(
L, x̂v

k|k

)
(6)

then the one step predicted filtering error is represented
by means of

x̃v
k+1|k = xv

k+1 − x̂v
k+1|k

= fv (L, xv
k)− fv

(
L, x̂v

k|k

)
+ wv

k

(7)

By utilizing a Taylor series expansion for the system
transition function fv (·) centered at x̂v

k|k, we can obtain
the following expression

fv (L, xv
k) = fv

(
L, x̂v

k|k

)
+ F v

k x̃
v
k|k + o

(∣∣∣x̃v
k|k

∣∣∣) (8)

where F v
k =

∂fv(L,xv
k)

∂xv
k

∣∣∣
xv
k=x̂v

k|k

is the Jacobian matrix,

and the higher-order term can be denoted as

o
(∣∣∣x̃v

k|k

∣∣∣) = Uv
kΩ

v
kx̃

v
k|k (9)

where Uv
k is a given problem-dependent scaling matrix

and Ωv
k is a time-varying matrix accounting for the

linearization error satisfying Ωv
kΩ

vT
k ≤ I.

Then the one step predicted filtering error (7) can be
characterized by the following expression

x̃v
k+1|k = (F v

k + Uv
kΩ

v
k) x̃

v
k|k + wv

k (10)

and the corresponding filtering error covariance matrix
can be calculated as

P v
k+1|k = (F v

k + Uv
kΩ

v
k)P

v
k|k(F

v
k + Uv

kΩ
v
k)

T
+Qv (11)

where Qv = V TQV .
Next, let the updated estimate at time k + 1 be

x̂v
k+1|k+1 = x̂v

k+1|k +Kv
k+1

[
zvk+1 − hv

(
L, x̂v

k+1|k

)]
(12)

where Kv
k+1 is the gain matrix to be determined.

Remark 1: In this step, we design the gain matrix
Kk+1 in the EKF as a graph filter gk+1(L) designed by
the GSO L, then the gain matrix Kv

k+1 in (12) can be
a diagonal matrix. Specifically, the updated estimate in
the EKF is denoted by

x̂k+1|k+1 = x̂k+1|k +Kk+1

[
zk+1 − h

(
L, x̂k+1|k

)]
(13)

which is equivalent to the following equation
V x̂v

k+1|k+1 = V x̂v
k+1|k + V Kv

k+1V
T

×
[
V zvk+1 − V hv

(
L, x̂v

k+1|k

)] (14)

then it is obviously that Kk+1 = V Kv
k+1V

T . It can be
seen from (1) that, Kv

k+1 = gk+1(Λ) which means Kv
k+1

is designed as a diagonal matrix. It has been shown in
[16] and [17] that, the advantage of designing the gain
matrix as a diagonal matrix is that the algorithm does
not need to solve for the inverse of the non-diagonal

matrix at each time step, and the signal of each node
can be updated independently, so that the accumulation
of filtering errors can be reduced.

Similarly, by employing a Taylor series expansion for
the measurement transition function hv (·) centered at
x̂v
k+1|k, the following expression can be obtained

hv (L, xv
k) = hv

(
L, x̂v

k+1|k

)
+Hv

k+1x̃
v
k+1|k

+ o
(∣∣∣x̃v

k+1|k

∣∣∣) (15)

where Hv
k+1 =

∂hv(L,xv
k)

∂xv
k

∣∣∣
xv
k=x̂v

k+1|k

. The higher-

order term can be described by o
(∣∣∣x̃v

k+1|k

∣∣∣) =

Sv
k+1Π

v
k+1x̃

v
k+1|k. Here, Sv

k+1 denotes a scaling matrix
that depends on the specific problem, and Πv

k+1 accounts
for time-varying factors, addressing the presence of
linearization errors, which remains unknown and must
satisfy Πv

k+1Π
vT
k+1 ≤ I.

Then the updated filtering error can be given by

x̃v
k+1|k+1 = xv

k+1 − x̂v
k+1|k+1

=
[
I −Kv

k+1

(
Hv

k+1 + Sv
k+1Π

v
k+1

)]
× x̃v

k+1|k −Kv
k+1v

v
k+1

(16)

and the corresponding covariance matrix results from

P v
k+1|k+1 =

[
I −Kv

k+1

(
Hv

k+1 + Sv
k+1Π

v
k+1

)]
×P v

k+1|k
[
I −Kv

k+1

(
Hv

k+1

+Sv
k+1Π

v
k+1

)]T
+Kv

k+1R
vKvT

k+1

(17)

where Rv = V TRV .
To deal with the unknown matrices Ωv

k and Πv
k+1,

we solve for the gain matrix Kv
k+1 through determining

the upper bound of the covariance matrices P v
k+1|k and

P v
k+1|k+1.
Theorem 1: Consider the graphical nonlinear system

after transformation, as described by (4) and (5), and in-
troduce two positive scalars αv

k and βv
k . If the subsequent

pair of Riccati-like difference equations:

Φv
k+1|k = F v

k

((
Φv

k|k

)−1

− αv
kI

)−1

F vT
k

+ (αv
k)

−1
Uv
kU

vT
k +Qv

(18)

Φv
k+1|k+1 =

(
I −Kv

k+1H
v
k+1

)
×
((

Φv
k+1|k

)−1

− βv
kI

)−1

×
(
I −Kv

k+1H
v
k+1

)T
+Kv

k+1

(
(βv

k)
−1

Sv
k+1S

vT
k+1 +Rv

)
×KvT

k+1

(19)

have positive definite solutions, labeled as Φv
k+1|k and

Φv
k+1|k+1, with an initial condition Φv

0|0 = P v
0|0 > 0 and

satisfying the subsequent inequalities for all k ≥ 0

(αv
k)

−1
I > Φv

k|k
(βv

k)
−1

I > Φv
k+1|k
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then the matrix Φv
k+1|k+1 signifies an upper bound of

P v
k+1|k+1. Furthermore, the diagonal gain matrix Kv

k+1

is restricted as

Kv
k+1 = ddiag

(((
Φv

k+1|k

)−1

− βv
kI

)−1

HvT
k+1

)

×

(
ddiag

(
Hv

k+1

((
Φv

k+1|k

)−1

− βv
kI

)−1

×HvT
k+1 + (βv

k)
−1

Sv
k+1S

vT
k+1 +Rv

))−1

(20)

where ddiag (·) signifies a diagonal matrix composed
of the diagonal elements extracted from the matrix in
parentheses.

Proof. Applying Lemma 1 to (11) and (17), we have

P v
k+1|k ≤ F v

k

((
P v

k|k

)−1

− αv
kI

)−1

F vT
k

+ (αv
k)

−1
Uv
kU

vT
k +Qv

(21)

P v
k+1|k+1 ≤

(
I −Kv

k+1H
v
k+1

)
×
((

P v
k+1|k

)−1

− βv
kI

)−1

×
(
I −Kv

k+1H
v
k+1

)T
+Kv

k+1

(
(βv

k)
−1

Sv
k+1S

vT
k+1 +Rv

)
×KvT

k+1

(22)

Then, by applying Lemma 2 to (11), (17), (21), and
(22), it becomes evident that

P v
k+1|k ≤ Φv

k+1|k
P v

k+1|k+1 ≤ Φv
k+1|k+1

(23)

Finally, the gain matrix can be determined by setting
the following equation to zero

∂tr(Φv
k+1|k+1)

∂Kv
k+1

= −2

((
Φv

k+1|k

)−1

− βv
kI

)−1

HvT
k+1

+2Kv
k+1

[
Hv

k+1

×
((

Φv
k+1|k

)−1

− βv
kI

)−1

HvT
k+1

+
(
(βv

k)
−1

Sv
k+1S

vT
k+1 +Rv

)]
(24)

Up to now, the design of the GFT-VC-EKF is com-
plete.

Remark 2: It is well known that, the EKF using
the first expansion term of Taylor series has obvious
linearization error. Although the higher-order EKF can
make the system parameters closer to the original nonlin-
ear relationship, the calculation is more complicated. To
eliminate the linearization error easily, the VC approach
was put forward in [20], and the advantage of the
VC approach used in EKF has been proved in various
models [21]–[23]. Different from the above literature, the
objective of this paper is to enhance the filtering accuracy
of the VC-EKF even further.

IV. Numerical Simulation
In this section, the advantages of the GFT approach

are verified and GFT-VC-EKF is compared with existing
filters.

We employ the graphical dynamic model to depict
the state transition and the measurement output in the
power system [24]. The state vector xk encompasses the
voltage phases of various buses, while the measurement
output zk includes the active powers at these buses.
The electrical network’s structure is determined by the
Laplacian matrix L [25].

The function f(·) is denoted by f(L, xk) = cos(xk),
and the measurement function h(·) is represented by

[h(L, xk)]i =

N∑
j=1

|ei| |ej | (Gi,j cos(xi,k − xj,k)

+Bi,j sin(xi,k − xj,k)) (25)

where xi,k represents the voltage phase at the ith bus,
while |ei| denotes its amplitude. The parameters Gi,j and
Bi,j correspond to the conductance and susceptance of
the transmission line linking buses i and j, respectively,
where (i, j) ∈ E [26]. In normalized power systems, it is
a common assumption to set |ei| = 1 [26]. Additionally,
we set Gi,j to a value of 10.

The graph representation of the electrical network, de-
noted by L, is typically associated with the susceptance
of the transmission lines Bi,j [27], and their relations are
constructed as:

L =


−Bi,j , i ̸= j

N∑
c=1,c̸=i

Bi,c, i = j
(26)

The associated Jacobian matrix is derived by (25) as:

[H(L, xk)]i,j =
∂hi(L, xk)

∂xk
=

Gi,j sin(xi,k − xj,k)
−Bi,j cos(xi,k − xj,k), i ̸= j

N∑
c=1,c̸=i

−Gi,c sin(xi,k − xc,k)

+Bi,c cos(xi,k − xc,k), i = j

(27)

The initial state is defined as xi,0 = 0.5i, while the ini-
tial state estimate is initialized to x̂i,0 = 0. The problem-
dependent scaling matrices Uv

k , S
v
k and the coefficients

utilized in computing the upper bound matrices αv
k, β

v
k

are selected properly. The covariance matrix of noises
wi,k and vi,k is set to q = 1 and r = 0.5, respectively.

In the given graph, a total of N nodes are distributed
randomly across the square [0, 1.1] × [0, 1.1]. Nodes are
linked if their distance falls below d.

The evaluation criterion employed for comparison is
the root mean square error (RMSE):

RMSEk =

√√√√ 1

MN

M∑
m=1

N∑
i=1

(xi,k − x̂i,k (m))
2 (28)
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Fig. 2. Graph topology with N = 50.
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Fig. 3. RMSE with N = 50.

where x̂i,k (m) represents the estimate from the mth
Monte Carlo simulation, with a total of M = 100
independent Monte Carlo runs conducted.

Case 1: In this simulation, we set d = 0.2, and
the number of nodes are selected as N = 50, 100, re-
spectively. The communication relationship between the
nodes in the graph and the RMSE comparison between
filters in different topologies are shown in Figs. 2-5. It is
evident that, the GFT-EKF exhibits better performance
compared to the EKF, and the performance of the GFT-
VC-EKF is superior to the VC-EKF. This highlights
the considerable influence of the GFT approach on the
improvement of filter performance for graphical nonlinear
systems.

Case 2: The topological sparsity is an important index
for graphical nonlinear systems. To verify the perfor-
mance of the GFT-VC-EKF under different topological

Fig. 4. Graph topology with N = 100.
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Fig. 5. RMSE with N = 100.

TABLE I
RMSE with different d and N .

d Filter N = 25 N = 50 N = 75 N = 100

0.2 EKF 4.38 5.76 6.89 7.71
GFT-EKF 1.99 2.15 2.43 2.28
VC-EKF 3.25 3.57 4.28 4.98
GFT-VC-EKF 1.90 1.82 1.99 2.08

0.5 EKF 3.91 5.20 6.27 7.17
GFT-EKF 1.98 2.02 2.05 2.18
VC-EKF 3.09 3.82 2.25 2.36
GFT-VC-EKF 1.91 2.01 1.92 2.05

0.8 EKF 3.87 4.94 6.08 6.73
GFT-EKF 1.95 1.85 2.03 2.09
VC-EKF 3.24 1.96 2.19 2.33
GFT-VC-EKF 1.91 1.78 1.96 2.02
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sparsity, we modify the connection distance d of the
graph topology with the other parameters are the same
as Case 1, and the corresponding RMSE are shown in
Table I.

From Table I, it can be inferred that irrespective
of the changes in topological sparsity, the GFT-VC-
EKF consistently demonstrates superior performance
compared to the other three filters. On the other hand, it
can be seen from the limited data that, as the connection
distance d increases, the filtering accuracy of EKF and
GFT-EKF is improved, which means that the dense
topology contributes positively to the enhancement of
efficiency for the EKF and the GFT-EKF. For the VC-
EKF and the GFT-VC-EKF, the impact of topological
sparsity on them is not discussed here because their
performance is affected by the selected parameters.

V. Conclusion
This paper has introduced an extended Kalman filter

called GFT-VC-EKF with higher precision for graphical
nonlinear systems. Inspired by the GFT, a diagonal
Kalman gain matrix has been designed by using the
eigenvector matrix of the Laplacian matrix. Then the up-
per bound for the predicted and updated error covariance
matrices has been determined to address the presence
of the unknown bounded matrix, so that the double
guarantee of compensating for the linearization error
and reducing the iterative cumulative error has been
realized. The simulation results on a power system have
shown that the GFT approach can play an active role in
reducing the filtering error, and the proposed GFT-VC-
EKF has superior performance. This paper has provided
a new perspective on the filtering of graphical nonlinear
systems whose node signals are one-dimensional, and
our future work will consider the filtering of graphical
systems with high-dimensional node signals.
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