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Abstract— In this work, we present the standard Singular
Perturbations technique applied to Implicit port-Hamiltonian
systems. The investigation produces a structure-preserving
reduced-order model if certain additional passivity conditions
are satisfied. Moreover, such an investigation provides a differ-
ent insight into the standard Singular Perturbations approach
relating the negligible time constant parameters ε to energy
parameters. We analyze the deviation between the complete
system model and the reduced one via a Lyapunov-based
approach. We then conclude the paper by applying the proposed
reduced order model to a DC-motor example to show the
effectiveness of the development.

I. INTRODUCTION

The port-Hamiltonian approach to modeling and control-
ling complex physical systems constitutes a well-established
framework that originated with the seminal work by van der
Schaft and Maschke [1], [2]. For a comprehensive overview
of this field, including control techniques, one can refer to
[3], [4], [5].

Port-Hamiltonian systems (PHS) have the particular fea-
ture of describing all the main physical properties of the
system under consideration, such as energy dissipation, pas-
sivity, and power conservation laws. Moreover, the formalism
is very suitable for the interconnection of physical systems,
preserving the passivity, stability, and structure in a larger
port-Hamiltonian system, [6]. When lumped-parameters sys-
tems are interconnected or when even a standard spatial
discretization of a distributed-parameter model is taken into
account, that state space dimension of the system rapidly
grows. Therefore, Model Order Reduction (MOR) techniques
play a crucial role in the analysis and the control design of
this kind of systems, [7].

The central goal of Model Order Reduction is to derive
a more compact or simpler model from the original high-
order model. As articulated in [7, Sec.1.3], the objectives of
model reduction can be succinctly summarized as follows:
gaining a deeper comprehension of the system, possibly
obtaining a macroscopic perspective of its dynamics or
input-output relationships; reducing computational demands
for simulation and control design; and achieving simpler-
to-implement control laws. Over the years, a plethora of
techniques have been developed, and they can be classified
based on the domain in which the original and approximated
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models are compared, i.e., the frequency or time domains.
In particular, time-domain techniques involve the state-space
realization of the system dynamics and amongst them, we
find the Singular Perturbations [8], time scale separation [9],
and more recent developments like those in [10]. All these
approaches are based on a state truncation, that is part of the
system’s evolution is neglected, thus leaving only the part
related to the slow evolution. The interested reader can find
up-to-date surveys on these and other model order reduction
techniques in [11], [12], as well as more classic references
such as [13], [14], [15], and [16].

In the context of port-Hamiltonian systems, the application
of these reduction techniques necessitates the preservation of
additional desired properties in the reduced model. Alongside
retaining stability and passivity, it is imperative to maintain
the system’s underlying structure.

To this end, all significant contributions to Model Order
Reduction for port-Hamiltonian systems must ensure struc-
tural preservation. Among all, the first results on this line,
rely on the balanced truncation technique [17] (see also [18]
and [19] for more recent results), while relying on Krylov
subspaces approach [20], Moment matching [21], [22], [23],
on interpolation methods [24]. More recent advancements
are based on symplectic Moder Order Reduction [25] and
on tangential interpolation for descriptor system [26].

A distinctive and relevant approach, particularly tailored
for port-Hamiltonian systems, is the Effort- and Flow-
constraint reduction method [27], developed and expanded
upon in [28] and [29]. Notably, the same authors claimed that
the standard Singular Perturbations technique, as described in
[30], is not suitable for a structure-preserving order reduction
applied to PHS, see [27, Remark 6.2], [28, Sec. 3] and [29].

In light of evolving methodologies and novel perspec-
tives in the field, this paper introduces a fresh analysis
of the Singular Perturbations technique for model order
reduction applied to port-Hamiltonian systems. The proposed
investigation, indeed, yields a structure-preserving reduced
order model for PHS, and it allows us to obtain a different
(more physical) point of view on the Singular Perturbations
technique and provides more insights into the negligible
system time constant, relating them to the system energy
parameters instead.

This paper is structured as follows. In Section II, we pro-
vide an overview of the framework within which we operate,
introducing port-Hamiltonian systems and their realization
on the Lagrange subspace in Section II-A. In Section II-B,
we delineate the structure-preserving Model Order Reduction
problem specific to port-Hamiltonian systems. In Section II-
C, we provide a concise review of the standard Singular
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Perturbations technique. In Section III, we deliver the main
result of this paper, demonstrating the application of the Sin-
gular Perturbations technique to Implicit port-Hamiltonian
systems and establishing the structure-preserving nature of
the reduced order model under specific passivity conditions.
In Section IV, we conduct a Lyapunov-based analysis of
the reduced order model’s performance in terms of state
and output deviation from the complete system model. We
conclude by applying the method to a DC-motor system in
Section V and summarizing our findings in Section VI.

II. MODEL ORDER REDUCTION FOR PORT-HAMILTONIAN
SYSTEMS

In this section, we begin by revisiting the definition of
port-Hamiltonian systems employed in this paper. This def-
inition builds upon recent developments where the implicit
characterization of energy through reciprocal relations [31],
and it leads to an implicit definition of port-Hamiltonian
systems, also called descriptor1 port-Hamiltonian systems
[32], [33]. Subsequently, we will provide a general definition
of singularly perturbed systems and outline how it applies to
the descriptor port-Hamiltonian systems considered in this
paper.

A. Port-Hamiltonian systems

1) Explicit port-Hamiltonian systems generated by a
Hamiltonian function: Let us first recall the definition of
passive port-Hamiltonian systems generated by an energy
function H = 1

2x
⊤Qx, where Q = Q⊤ ≥ 0, with dynamics

ẋ = (J −R)Qx+ (G− V )u

y = (G+ V )⊤Qx+ (N + U)u,
(1)

where x ∈ Rn, u ∈ Rm, u ∈ Rm and the matrices of
opportune dimensions, where J and N are skew-symmetric,
while R ≥ 0 and U are symmetric matrices. Moreover, we
have the passivity condition

W =

[
R V
V ⊤ U

]
≥ 0 (2)

as in [34], [28], [35], [3][ch.2], so that the energy balance
equation gives us

Ḣ(x) = y⊤u−
[
x⊤Q u⊤] [ R V

V ⊤ U

] [
Qx
u

]
≤ y⊤u

thus, providing passivity with storage function H, since H ≥
0 as it is a quadratic form.

2) Implicit port-Hamiltonian systems on Lagrange sub-
space: A more general formulation of port-Hamiltonian
systems has been suggested where instead of defining a
Hamiltonian function, one considers relations between the
state variable x and the effort variable e. Maxwell’s reci-
procity conditions on these relations correspond to the pair

1We call this type of system descriptor because of the structure of the
dynamics, and DAE pH systems, in our nomenclature, are a particular
(singular) case.

of state and effort variables belonging to the Lagrangian
subspace [31] which is defined as follows

L =
{
(x, e) ∈ X × X ⋆|S⊤x+ P⊤e = 0

}
where the matrices P, S ∈ Rn×n, satisfy

P⊤S = S⊤P and rank [P S] = n.

In this paper, we shall use the equivalent definition, called
image representation

L = {(x, e) ∈ X × X ⋆|∃z ∈ Rn s.t. x = Pz, e = Sz} .

In this context, a general port-Hamiltonian system with a
resistive element can be described by the following system
dynamics:

P ż = (J −R)Sz + (G− V )u

y = (G+ V )⊤Sz + (N + U)u
(3)

with the passivity property, related to the Hamiltonian func-
tion H = 1

2z
⊤SPz, given by

W =

[
R V
V ⊤ U

]
≥ 0.

Remark. In the formalism in Sec.II-A.1, the Lagrange sub-
space is described by the graph of Q, see [31].

For the purposes of this paper, we assume, without loss of
generality2, P and S to be block diagonal in the slow-fast
coordinates and we rewrite the matrices accordingly, i.e.,

P =

[
P1 0
0 P2

]
M = J −R =

[
M1 M12

M21 M2

]
S =

[
S1 0
0 S2

]
G− V =

[
G1 − V1

G2 − V2

]
.

With this matrix realization, the system can be split into slow
and fast dynamics:(

P1ż1
P2ż2

)
=

[
M1S1 M12S2

M21S1 M2S2

](
z1
z2

)
+

[
G1 − V1

G2 − V2

]
u

y =

[
G1 + V1

G2 + V2

]⊤[
S1

S2

](
z1
z2

)
+(N + U)u,

(4)

with z1 ∈ Rn1 and z2 ∈ Rn2 and their related matrices of
suitable dimensions. Accordingly, we split the x state into
x1 = P1z1 and x2 = P2z2. The choice of these mappings P1

and P2, (S1 and S2 respectively), has to be done ’wisely’,
according to the parameters that are going to be neglected.
In other words, we have to construct these mappings, for
the image representation of the Lagrange subspace L, such
that when P2 → 0 also x2 → 0, i.e. the latent variable z2 is
bounded when P2 → 0. Moreover, without loss of generality,
we consider M2S2 to be full rank.

Remark. A particular class of port-Hamiltonian systems
on Lagrange Subspace is that of DAE (or Constrained)
port-Hamiltonian systems, as described in [32], [36], [31],

2Because Q is a symmetric matrix it can always be diagonalized, and
thus P and S can always be taken as diagonal matrices.
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[37], [38], [39]. In particular, the latter can be obtained
by considering identically P2 = 0 in (4), thus obtaining an
additional algebraic relationship among the states along with
their dynamical evolution.

B. Model Order Reduction Problem

For PHS, the symmetry and positive semi-definiteness
properties of the involved matrices play a crucial role in
defining the passivity and stability of the involved system.
Thus, any Model Order Reduction technique applied to PHS
must be structure-preserving, i.e., it has to preserve such
symmetry and definiteness properties of the system matrices
in the reduced order model. In other words, when we
consider the full order model (3), the Model Order Reduction
problem is to find a reduced order model of the form

P ′ż′ = (J ′ −R′)S′z′ + (G′ − V ′)u

y = (G′ + V ′)
⊤
S′z′ + (N ′ + U ′)u

(5)

with R′ ≥ 0, J ′ = −J ′⊤ and

W ′ =

[
R′ V ′

V ′⊤ U ′

]
≥ 0

with related Hamiltonian H′ = 1
2z

′⊤P ′⊤S′z′.

C. Singular Perturbations

The standard Singular Perturbations setup, in the context
of linear dynamical systems, can be expressed as follows:

ẋ1 = A1x1 +A12x2 +B1u

εẋ2 = A21x1 +A2x2 +B2u

y = C1x1 + C2x2 +Du

(6)

where ε is usually a very small time constant that allows
us to characterize the time scale separation between the
two dynamics, thus identifying the slow and fast system
evolutions.
Assuming A2 is Hurwitz, the standard procedure, leading
to the approximated dynamics, involves imposing ε = 0
so to obtain the slow-driven behavior of x2, i.e., x̄2 =
−A−1

2 (A21x1+B2u) as a solution of the equivalent algebraic
constraint

ε ˙̄x2 = A21x1 +A2x̄2 +B2u =
ε=0

0

To analyze the attractiveness property of the slow evolution
x̄2, we introduce the deviation coordinate x̃2 = x2 − x̄2,
whose dynamics reads as

ε ˙̃x2 = εẋ2 − ε ˙̄x2

= A21x1 +A2 (x̃2 + x̄2) +B2u− ε ˙̄x2

= A2x̃2 − ε ˙̄x2

(7)

that is, the deviation dynamics has a stable filter realization.
Hence, because A2 is full rank, setting ε = 0, we additionally
have x̃2 = 0. This means that we can approximate the system
onto the slow manifolds by setting x2 = x̄2 (or considering
x̃2 = 0) in the original dynamical equations. As a result, the

reduced order system for the Singular Perturbations is given
by

ẋ1 =
(
A1 −A12A

−1
2 A21

)
x1 +

(
B1 −A12A

−1
2 B2

)
u

y =
(
C1 − C2A

−1
2 A21

)
x1 +

(
D − C2A

−1
2 B2

)
u.

Remark. In this setting, system (6) is similar to the implicit
port-Hamiltonian System (4) where equivalently P1 = I and
P2 = εI .

III. MAIN RESULT

We analyze how the Singular Perturbations approach ap-
plies to port-Hamiltonian systems on Lagrange subspace, i.e.,
PHS in the form (4), and what type of passivity properties we
obtain from the system approximation to the slow dynamics.
In particular, we aim to describe the dynamics (4), with
state (z1, z2), via a particular change of coordinates that
introduces a deviation state on the fast dynamics bringing
to the state representation (z1, z̃2). The introduction of
the deviation state z̃2 will be a crucial step in obtaining
and characterizing the reduced order dynamics, with states
(z̄1, z̄2), obtained by projecting the whole dynamics on the
slow manifold. To clarify the approach, we need to establish
an equivalence between the first two sets of coordinates (thus
involving a different dynamics). Afterward, we will establish
an approximation relationship between the last two sets of
coordinates. The schematic representation of this process is
outlined below(

z1
z2

)
∼
Diff.
dyn.

(
z̄1
z̃2

)
≈

P2=0

(
z̄1

z̄2(z̄1)

)
We start presenting our main result with the following
assumption.

Assumption III.1 (Time-scale separation). P2 is the matrix
of energy parameters associated with the fast eigenvalues
(or the small time constants of the system) of the system
dynamics A = P−1MS. Moreover, the input u and its time
derivative u̇ are essentially bounded for all nonnegative t.

We then introduce the matrices involved in the reduced
order model, which are defined as follows:

J ′
1 = J1 −

1

2

(
M12M

−1
2 M21 −M⊤

21M
−⊤
2 M⊤

12

)
R′

1 = R1 +
1

2

(
M12M

−1
2 M21 +M⊤

21M
−⊤
2 M⊤

12

)
G′

1 = G1 −
1

2

(
M⊤

21M
−⊤
2 +M12M

−1
2

)
(G2 − V2)

V ′
1 = V1 −

1

2

(
M⊤

21M
−⊤
2 −M12M

−1
2

)
(G2 − V2)

N ′ = N − 1

2

(
(G2 + V2)

⊤
M−1

2 (G2 − V2)−

(G2 − V2)
⊤
M−⊤

2 (G2 + V2)
)

U ′ = U − 1

2

(
(G2 + V2)

⊤
M−1

2 (G2 − V2)+

(G2 − V2)
⊤
M−⊤

2 (G2 + V2)
)
.

(8)

These matrices are central to our analysis, and they are
employed to define the reduced-order model. With these
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definitions in place, we can now present the main result in
the following theorem.

Theorem III.1. Consider system (4), with a time scale
separation, i.e., Assumption III.1 holds, and assume P1 full
rank. Then, if matrices (8) satisfy R′

1 ≥ 0 and

W ′ =

[
R′

1 V ′
1

V ′⊤
1 U ′

]
≥ 0

then, system (4) can be reduced to the following PHS

P1 ˙̄z1 = (J ′
1 −R′

1)S1z̄1 + (G′
1 − V ′

1)u

ȳ = (G′
1 + V ′

1)
⊤
S1z̄1 + (N ′ + U ′)u

(9)

with Hamiltonian function

H =
1

2
z̄⊤1 P⊤

1 S1z̄1.

Proof: Following the Singular Perturbations approach,
we impose 3 P2 = 0, to get the approximation

z̄2 := −S−1
2 M−1

2 (M21S1z1 + (G2 − V2)u) . (10)

By assumption, P1 is full rank, and thus we can explicitly
write

˙̄z2 = −S−1
2 M−1

2

[
M21S1P

−1
1 (M1S1z1 +M12S2z2+

(G1 − V1)u)]− S−1
2 M−1

2 (G2 − V2) u̇.

For the sake of readability, in the dynamics equation of (3),
we temporarily consider (Gi − Vi) = Bi, i = 1, 2. Then,
we define the deviation coordinates z̃2 = z2 − z̄2, and the
corresponding dynamics is

P2
˙̃z2 = P2ż2 − P2 ˙̄z2

= M21S1z1 +M2S2z2 +B2u+ P2S
−1
2 M−1

2 ·[
M21S1P

−1
1 (M1S1z1 +M12S2z2 +B1u) +B2u̇

]
=
(
M2S2 + P2S

−1
2 M−1

2 M21S1P
−1
1 M12S2

)
z̃2+

P2S
−1
2 M−1

2 M21S1P
−1
1 ·(

M1S1 −M12M
−1
2 M21S1

)
z1+

P2S
−1
2 M−1

2 M21S1P
−1
1

(
B1 −M12M

−1
2 B2

)
u+

P2S
−1
2 M−1

2 B2u̇.

Considering P2 = 0, for bounded signals u and u̇, the
evolution of the deviation dynamics is that of a stable
autonomous linear system, i.e.,

P2
˙̃z2 = M2S2z̃2

which has z̃2 = 0 as a stable equilibrium point. Thus, we
obtain the dynamics of the resulting system by substituting
in (4), the slow evolution of z2, i.e., z2 = z̄2, that is we
consider the deviation coordinate z̃2 = 0, we obtain

P1ż1 =
(
M1 −M12M

−1
2 M21

)
S1z1

+
[
(G1 − V1)−M12M

−1
2 (G2 − V2)

]
u

y =
[
S⊤
1 (G1 + V1)−M⊤

21M
−⊤
2 (G2 + V2)

]⊤
z1

+
[
N + U − (G2 + V2)

⊤
M−1

2 (G2 − V2)
]
u.

3Note that, it is conceptually wrong to fix ż2 = 0, because, even if on the
slow manifold, the evolution of z2 may still be present and have a non-null
time derivative.

We can easily see that the system thus obtained has a port-
Hamiltonian structure by considering

J ′
1 −R′

1 = M1 −M12M
−1
2 M21

J ′
1 = J1 − skew{M12M

−1
2 M21}

R′
1 = R1 − sym{M12M

−1
2 M21}

G′
1 − V ′

1 = G1 − V1 −M12M
−1
2 (G2 − V2)

G′
1 + V ′

1 = G1 + V1 −M⊤
21M

−⊤
2 (G2 − V2)

N ′ + U ′ = N + U − (G2 + V2)
⊤
M−1

2 (G2 − V2)

from which we obtain matrices (8). □
It’s important to note that the matrix P1 can be considered

full rank without any loss of generality. This assumption
holds because if P1 were not full rank, it would imply that
the related singular dynamics in the z1 state should have been
considered as part of the algebraic constraint associated with
the fast evolution of the system.

Remark. Fixing P2 = 0, we obtain a flow-constraint [29],
i.e., ẋ2 = P2ż2 = 0, but in the z̃ coordinates, this induces
an effort-constraint [29] since M2S2 is full rank, i.e.,

P2
˙̃z2 = M2S2z̃2 + P2 ˙̄z2 =⇒

P2=0
0 = M2S2z̃2

which implies that z̃2 = 0, because M2S2 is full rank, and
thus the associated effort variable is zero S2z̃2 = 0.

In general, the slow behavior of the system is affected
by the fast or transient evolution of the dynamics, for
non-zero initial conditions. This implies that the transient
dynamics (such as z̃2 in this paper) has an impact on the
equivalent initial condition of the reduced order model, as
investigated in [10]. With the approach presented here, the
initial condition of z2 is completely ignored and z2 is thought
to be initialized directly on the slow manifold, z2(0) = z̄2(0).
This assumption simplifies the analysis but may not fully
capture the initial transient behavior.

IV. PERFORMANCE EVALUATION OF THE REDUCED
ORDER MODELS

In the complete model where P2 ̸= 0, the system dynamics
does not involve any algebraic constraint among the system’s
states. This implies that the reduced order model obtained in
Th.III.1, i.e., (9), will show some state and output deviation
with respect to the evolution of the complete system. To
characterize this deviation, we consider the error state z̃1 =
z1− z̄1, where z̄1 is the state trajectory of the reduced order
model (9), with z̄1(0) = z1(0). The output signal is given by
the output error ỹ = y− ȳ, and z̃2 plays the role of the input
signal. Thus, we have the following involved dynamics:

P1
˙̃z1 =

(
M1 −M12M

−1
2 M21

)
S1z̃1 +M12S2z̃2

= (J ′
1 −R′

1)S1z̃1 + (G̃1 − Ṽ1)z̃2

ỹ =
[
(G1 + V1)−M⊤

21M
−⊤
2 S−⊤

2 (G2 + V2)
]⊤

S1z̃1

+ (G2 + V2)
⊤
S2z̃2

= (G̃1 + Ṽ1)
⊤S1z̃1 + (Ñ1 + Ũ1)z̃2
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with matrices G̃1, Ṽ1, Ñ1, and Ũ1 defined accordingly.
The obtained deviation dynamics has a port-Hamiltonian
structure and it is stable by assumptions on R′

1 in Th.III.1,
but that are no a priory passivity guarantees from input z̃2
and the output ỹ.
However, because z̃1(0) = 0 we can characterize the L2

norm of the output deviation ∥ỹ∥ as a function of the L2

norm of z̃2. This can be achieved by exploiting the H∞
norm of the deviation transfer function

G̃1(s)=(G̃1+ Ṽ1)
⊤S1(P1s−M ′

1S1)
−1

(G̃1− Ṽ1)+Ñ1+ Ũ1.

With this we can write ∥ỹ∥ ≤ ∥G̃1(s)∥∞∥z̃2∥, where4

∥G̃1(s)∥∞ = max
ω

σ
(
G̃1(jω)

)
.

To fully characterize the asymptotic evolution of the output
deviation (and of the slow evolution of the state) it is
important to describe the asymptotic behavior of ∥z̃2∥. This
can be achieved through a Lyapunov analysis, as detailed in
the following Theorem.

Theorem IV.1. Under Assumption III.1, denote M =
ess sup ∥ ˙̄z2∥. Then, for any positive ϵ <

√
2σmin(R2) there

exist a δ, such that 2R2 − δ2P2S
−1
2 ≥ ϵ2 and the limit

behaviour of ∥z̃2∥ is given by

lim
t→∞

∥z̃2∥ ≤
√
2

δϵ
µ(S⊤

2 P2)

√
σmax(S⊤

2 P2)

σmax(S⊤
2 S2)

M.

Proof: The proof runs on the analysis of the Lyapunov
function V = 1

2 z̃
⊤
2 S⊤

2 P2z̃2. In particular, by taking its time
derivative we have

V̇ = z̃⊤2 S⊤
2 M2S2z̃2 − z̃⊤2 S⊤

2 P2 ˙̄z2

≤ −z⊤2 S⊤
2 R2S2z̃2 +

1

2
δ2z̃⊤2 S⊤

2 P2z̃2 +
1

2δ2
˙̄z⊤2 S⊤

2 P2 ˙̄z2

≤ 1

2
z⊤2 S⊤

2 (δ2P2S
−1
2 − 2R2)S2z̃2 +

1

2δ2
˙̄z⊤2 S⊤

2 P2 ˙̄z2

≤ −ϵ2

2

σmin(S
⊤
2 S2)

σmax(S⊤
2 P2)

V +
1

2δ2
σmax(S

⊤
2 P2)M

2.

Then, by the comparison lemma, we have

V =
1

2
z̃⊤2 S⊤

2 P2z̃2 ≤

exp(−αt)V (z̃2(0))+
1

δ2ϵ2
σ2
max(S

⊤
2 P2)

σmin(S⊤
2 S2)

M2(1−exp(−αt))

with

α =
ϵ2

2

σmin(S
⊤
2 S2)

σmax(S⊤
2 P2)

.

We can thus explicitly write ∥z̃2∥2 ≤ V/σmin(S
⊤
2 P2) and

taking the limit for t → ∞ gives

lim
t→∞

∥z̃2∥2 ≤ 2

δ2ϵ2
σmax(S

⊤
2 P2)

σmin(S⊤
2 P2)

σmax(S
⊤
2 P2)

σmin(S⊤
2 S2)

M2,

taking the square root will then prove the theorem. □

4By σ(Λ) we mean the set of singular values of the matrix Λ.

V. EXAMPLE: DC-MOTOR

We consider the example of a DC-motor, with shaft
angular momentum pω and magnetic flux variable ϕ with
an associated Hamiltonian function

H =
1

2

(
pω ϕ

) [ 1
J 0
0 1

L

](
pω
ϕ

)
with associated dynamics

(
ṗω
ϕ̇

)
=

[
−β kτ
−ke −R

]
∂H
∂pω
∂H
∂ϕ

+

[
1 0
0 1

](
−τℓ
V

)

y =

(
ω
I

)
=

[
1 0
0 1

]
∂H
∂pω
∂H
∂ϕ


where ω and τℓ are the shaft angular velocity and the load
torque, kτ and ke are the torque and back e.m.f. constants,
while R, I, and V are the resistance, current, and applied
voltage of the electrical circuit, respectively.
Defining z1 = pω and z2 = I = ∂ϕH = ϕ/L we re-write
the energy in the latent variable coordinates via the total
Legendre transform H⋆(pω, I) = p2ω/(2J) +LI2/2 and the
dynamics in the z coordinates reads as(

ṗω
Lİ

)
=

[
−β kτ
−ke −R

]( 1

J
pω

I

)
+

[
1 0
0 1

](
−τℓ
V

)
y =

(
ω
I

)
=

[
1 0
0 1

] [
1
J 0
0 1

](
pω
I

)
where the matrices P and S here read as P = diag(1, L)
and S = diag(J−1, 1). Following the Singular Perturbations
procedure, we impose L = 0, thus obtaining I = (V −
ke(∂H⋆)/(∂pω))/R and hence the reduced order dynamics
reads as

ṗω = −

(
β +

kτke

R

)
∂H⋆

∂pω
+

[
1

kτ

R

](
−τℓ
V

)

y =

(
ω
I

)
=

 1

−
ke

R

 ∂H⋆

∂pω
+

0 0

0
1

R

(−τℓ
V

)
.

One can easily appreciate that the system is in the port-
Hamiltonian form (3) and but does not preserve passivity
for all possible system parameters. Indeed, we have

W ′ = T


β +

kτke

R
−
kτ + ke

2R
0

−
kτ + ke

2R

1

R
0

0 0 0

T⊤, T =

1 0 0
0 0 1
0 1 0


whose first principal minor is always positive and the second
one is nonnegative if and only if 2Rβ − (k2τ + k2e) ≥ 0, that
may not be true in general (e.g., take β or R sufficiently
small). Thus, applying the standard singular perturbation
approach does not always lead to a structure-preserving, thus
passive, reduced-order model.

2068



VI. CONCLUSIONS

We apply the standard Singular Perturbations method to
Implicit port-Hamiltonian systems. Our analysis provides a
structure-preserving port-Hamiltonian reduced order model,
under certain additional passivity assumptions. The resulting
reduced order model is moreover defined on the Lagrange
subspace of the slow dynamics.

Exploiting the port-Hamiltonian formalism, we deepen
the understanding of the Singular Perturbation technique,
offering new and more physically insightful connections
between the negligible time constant parameterization and
an ’energetic’ parameterization.

We complete the analysis by investigating the asymptotic
deviation between the original system and the obtained
reduced-order model. We then conclude the work with an
analytical example, showing the effects of the developed
analysis.

It is worth highlighting that in this paper we have not dealt
with possible singularities in the structural matrices (such as
neglecting resistive terms) and thus in the Dirac structure.
This case is currently under consideration and may be the
subject of future work on the topic.
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