
Experimental Identification of a Lumped-Parameter Thermal Model
of a Li-ion Pouch Cell Assembly

Andrea Trivella, Matteo Corno, Stefano Radrizzani, Edoardo Catenaro, Sergio M. Saveresi

Abstract— Thermal models of lithium-ion cells play a critical
role in monitoring temperature distribution within battery
packs, sizing cooling systems, and predicting potential thermal
runaway scenarios. Pouch-type lithium-ion cells offer high
energy and power density solutions, however, they are less ther-
mally and mechanically stable than their cylindrical counter-
parts. Pouch cells require appropriate containment structures
to prevent excessive cell breathing that could alter electrical
performance. Experiments done without such holding devices
could conceal nominal cell behavior and lack repeatability. The
holding structure, on the other hand, influences the heat dissi-
pation of the cell and masks its temperature dynamics, making
the characterization of its thermal properties challenging. This
paper proposes a lumped-parameter thermal model and an
experimental identification protocol aimed at extracting the
parameters of interest, such as the cell thermal capacity, using
temperature measurements collected both on the cell and fixture
device components. The model is trained and validated under
current profiles that are highly effective in exciting the system
thermal dynamics.

I. INTRODUCTION

The lithium-ion battery industry is experiencing un-
precedented growth. Vehicle electrification is pushing man-
ufacturers into continuous technological innovation: new
chemistries for high energy density cells [1] [2], lightweight
and structural Battery Packs (BPs) [3], and advanced Battery
Management Systems (BMSs) for real-time monitoring and
optimization of battery operation. Among the various tasks
of a BMS, thermal management is one of the most critical
[4]: temperature greatly affects the performance and safety
of Li-ion cells, and thus of the entire pack. At the cell level,
temperature must be kept within a certain threshold to avoid
thermal runaways that can eventually produce explosions or
fires [5]. The cell temperature can affect its functionality:
the internal resistance is highly sensitive to temperature
variations [6] and impacts the State of Power (SoP), i.e.,
the power the cell can deliver at any instant, and the State of
Charge (SoC), i.e., the energy available in the cell. In the long
run, the working temperature strongly influences the aging
of cells [7], and therefore accurate State of Health (SoH)
estimators must account for the thermal dynamics. At the
pack level, thermal gradients must be monitored to predict
and mitigate possible system thermal failures. Hot spots
can cause non-uniform distribution of the SoP, SoC, and
SoH between cells, thus, BP temperature must be properly
regulated through well-sized cooling systems and effective
real-time thermal management strategies.
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In this context, thermal models are indispensable. In the
BP design phase, one can simulate the thermal dynamics of
cells under different current profiles, analyze temperature
distribution in battery packs, or simulate the heat generation
for cooling system sizing. In real-time operation, these
models can be used to estimate the core temperature of
cylindrical cells [8], software-sense the temperature of
certain cells to reduce the number of sensors in the pack,
detect abnormal temperature elevations to predict thermal
failures, and so on. Two kinds of models are typically
used for Li-ion cells: white-box electrochemical models
and empirical reduced-order models. The former couple
a classical physics-based model such as a Single Particle
Model (SPM), or a Pseudo-Two-Dimensional (P2D) model
with temperature dynamics driven by electrochemical
reactions [9]. These models are computationally demanding
and their non-invasive identification is challenging [10]
due to the high number of parameters. Hence, they are
mainly used in simulation frameworks for cell design rather
than real-time BMS algorithms [11]. In reduced-order
models, cell-generated heat is expressed as a function of
current, as the joule effect on internal resistance or, in
more accurate formulations, as the product between current
and overpotential [12]. The temperature distribution over
time is then obtained through heat diffusion equations
forced by generated heat, convective and conductive terms.
The computational complexity of these models depends
on the dimensionality and the detail of discretization, but
their identification is simpler since they can be represented
with a limited number of parameters. The dimensionality
is always related to the shape of the cell under analysis.
In cylindrical type cells, a 1-D model is preferred: heat
diffusion in the radial direction enables the estimation of
the core temperature while the temperature distribution
along the axial direction is considered uniform [13]. Things
are more complex with prismatic cells, where all the
three dimensions must be considered, and 3-D models are
employed to estimate the core temperature of the prism [14].

Unlike cylindrical ones, pouch cells are commonly
tested with ad-hoc fixtures to ensure specified compression
pressure [15]: in fact, optimal external pressure on the
pouch can both improve its power performance [16] and
slow down its capacity fade [17]. Even during the battery
pack design, the mechanical compression must be calibrated
to ensure safe and optimal performance [18]. As a side
effect, the containment structure greatly affects the thermal
dynamics of the cell, acting as a heat sink and masking
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its actual behavior. Thermal models of different complexity
and accuracy have been developed for pouch-type cells. A
lumped-parameters 1-D model is coupled with a second-
order ECM model and identified by Vertiz et al. [19].
A two-dimensional multi-domain model is developed by
Samba et al. [20]: the temperature distribution of tabs, case
and cell surface is simulated successfully. Many authors use
accurate three-dimensional formulations of heat generation,
supported by electrochemical equations, to characterize
the thermal dynamics of the pouch cell under analysis
[21]–[23]. However, to facilitate the sensing of the device
and isolate its thermal properties, the pouch cell was always
tested without any compression assembly.

This work proposes a lumped-parameter model and an
identification protocol to extract the main parameters of a
pouch cell when installed inside a compression assembly.
The model assumes that each object of the assembly has
a uniform temperature distribution, and captures the heat
transfer between them. This modeling approach allows to
(i) characterize the thermal impact of each element of the
fixture and (ii) isolate some parameters of interest, such as
the thermal capacity of the cell. The innovative contributions
in the articles are summarized in:

• the development of an RC-network-based lumped-
thermal model of a pouch cell, with overpotential-driven
heat generation, and fixture elements;

• the experimental identification and validation of the
model for a cell-aluminum-plexiglass testing setup.

The remainder of this document is organized as follows.
In Section II, the experimental setup is described and in
Section III the model for the setup is proposed. In Section
IV the experimental identification procedure and results are
presented. Finally, Section V contains the results of the
model validation on a different current profile.

II. EXPERIMENTAL SETUP

The fixture device has been developed in the laboratories
of Politecnico di Milano, Milan, Italy. The pouch cell under
test is 140×80×2.5 mm in size (excluding tabs). The cell
is packed between two aluminum plates. The plates have
a dimension of 240×180×15 mm, hence, covering the
entire area of the pouch. They have a dual functionality:
(i) they uniformly distribute the compression force over
the cell surface and (ii) they facilitate the dissipation of
the heat generated by the cell thanks to their high thermal
conductivity. Indeed, the use of low-conductive materials
as cell-contact layers could result in significant heat
buildup and possible thermal runaway, especially during
aggressive current requests. The second layer is composed
of 300×300×10 mm plexiglass panels. These panels were
installed for several reasons. First, they serve to support
the weights of the power cables, which for this application
(high discharge currents) are considerably heavy and could,
otherwise, damage the cell. Additionally, they provide a
layer of electrical insulation between the power elements
and the aluminum layer.

Eventually, since they can be easily machined, they facilitate
the integration of the elements used for compression (screws
and bolts). The latter are used to tighten the setup and
ensure the 500 N compression force specified by the cell
manufacturer. Fig. 1 shows the fixture described above.

plexiglass plate

pouch cell

aluminum plate

compression bolt

thermocouples

Fig. 1. Illustrative schematics of the cell fixture (dimensional proportions
are adjusted for representative purposes).

Three K-type thermocouples are inserted into the setup.
The first measures the temperature of the cell and is
placed at the center of its top surface. The other two are
vertically aligned to the first and measure the temperature
of the aluminum block and the plexiglass panel, respectively.

The cell is tested under controlled ambient conditions
inside a FDM Environmental Maker that can operate between
−20◦C and 60◦C. The battery testing equipment (BTE) is an
ARBIN LBT System with two I-V channels, capable of 5V-
500A each. The BTE can apply custom current profiles to
the cell and measure current, voltage and temperature at a
maximum rate of 1kHz. A computer station is connected via
TCP/IP to the BTE and is used to schedule experiments and
monitor their progress in real-time via ARBIN software MITS
PRO 8. The main elements that compose the test bench are
shown in Fig.2.

thermal chamber battery tester

power cables

thermocouples

data cables
PC station

cell

Fig. 2. Illustration of the testing equipment at Politecnico laboratory.
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Given the prototypical nature of the cell under test, for
confidentiality reasons, the cell specifications and the man-
ufacturer cannot be disclosed, and the graph axes will
be normalized. However, considering the generality of the
proposed method, the lack of these details does not hinder
the reusability for different cells and fixtures.

III. LUMPED THERMAL MODEL

The model assumes that each element of the containment
structure has a uniform temperature distribution, thus, can
be described by a single temperature value. Given a generic
object x, its temperature dynamic Tx(t) is defined by the
heat balance equation:

Cx
dTx(t)

dt
= qx(t) +

∑
y∈Y

Ty(t)− Tx(t)

Rxy
, (1)

where Cx [J/K] is the object’s thermal capacity, qx(t) [W] is
the internal heat generated by the object, if any, Y is the set
of all elements y in thermal contact with x and Rxy [K/W] is
the thermal resistance between x and y. Based on the setup
described in Section II, the set of differential equations used
to simulate the temperature dynamics of the three elements
is: 

Cc
dTc(t)

dt
= qgen(t) +

Ta(t)− Tc(t)

Rca

Ca
dTa(t)

dt
=

Tc(t)− Ta(t)

Rca
+

Tp(t)− Ta(t)

Rap

Cp
dTp(t)

dt
=

Ta(t)− Tp(t)

Rap
+

Te(t)− Tp(t)

Rpe

(2)

where the subscripts c, a, p, and e indicate cell, alu-
minum, plexiglass and environment, respectively, qgen(t) is
the internal heat generated by the Li-ion cell, Rca is the
cell-aluminum thermal resistance, Rap is the aluminum-
plexiglass resistance and Rpe is the convective resistance
between the plexiglass and the surrounding air.
The thermal model can be visualized through the equivalent
electrical circuit in Fig. 3. where the currents represent heat
fluxes, voltages represent temperatures, capacitors represent
heat capacities and resistances represent thermal resistances.
Accordingly, the cell heat is pictured as a current generator
and the ambient temperature, which is assumed to be a
constant value, is depicted as a voltage generator.

+-

𝑇𝑇p 𝑇𝑇e𝑇𝑇a𝑇𝑇c

𝑅𝑅ca 𝑅𝑅ap 𝑅𝑅pe
𝐶𝐶p𝐶𝐶a𝐶𝐶c

𝑞𝑞gen

Fig. 3. Circuital representation of the thermal model.

The heat generated in lithium-ion cells is typically com-
puted as the sum of two contributions [24]: the first, and
major, is the product of current I(t) and overpotential η(t) =
(V (t)−Vocv(t)), where Vocv(t) is the cell Open-Circuit Volt-
age (OCV). The second is commonly referred to as entropic
heat generation and is computed as I(t)Tc(t)dVocv(t)/dTc(t).
The experimental investigation of the entropic heat co-
efficient dVocv(t)/dTc(t) has been exhaustively carried out
in recent literature [25]–[28]. In [25], for example, tem-
perature dynamics with and without entropic contribution
are compared over a cycle of charge and discharge, inter-
spersed with long relaxations: although the full model pre-
dicts local temperature fluctuations with high precision, the
overpotential-only formulation already succeeds in fitting the
measurements with satisfactory accuracy. In [26], entropic
and overpotential heat are compared during C-Rate tests:
when SoC is above 20%, the entropic contribution is shown
to be negligible. This result is confirmed in most of the
reviewed literature works: the entropic coefficient becomes
meaningful in the total heat computation only at low SoC.
Given that, in this work, the heat generated is computed as:

qgen(t) = I(t)η(t) = I(t)(V (t)− Vocv(t)). (3)

The OCV is then expressed as a function of the cell’s State
of Charge (SoC). Given the high linearity of the Open Circuit
Voltage (OCV) for the pouch cell under test, a third-order
polynomial was deemed sufficient to accurately describe the
relationship between Vocv(t) and SoC(t):

Vocv(t) =

3∑
i=0

aiSoC(t)
i. (4)

Finally, SoC(t) is computed with Coulomb Counting open-
loop current integration:

SoC(t) = SoC0 −
∫ t

0

I(t)

3600Qnom
dt, (5)

where SoC0 is the SoC at the beginning of each experiment
and Qnom is the nominal capacity of the cell, obtained
with a capacity test. Coulomb Counting is generally used
as a groundtruth for estimating the SoC under controlled
laboratory conditions, when SoC0 is known and the current
is reliably measured by a BTE, as in this case. All differential
equations mentioned so far are approximated through finite
differences and implemented in MATLAB.

IV. MODEL IDENTIFICATION

Model parameters can be divided into two categories: elec-
trical parameters, i.e., the coefficients ai of the Vocv(SoC)
curve, and thermal parameters, which characterize the tem-
perature dynamics of the three objects, i.e., the thermal
capacities Cx and the contact resistances Rxj. The model
identification is achieved in two sequential steps. In the first
step, the OCV curve is identified. Characterization of OCV
is a simple task, often addressed in the literature whenever
an Equivalent Circuit Model (ECM) is identified [29]–[31].
In this work, a full constant discharge at low C-Rate is
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𝑉𝑉 𝑡𝑡

𝐶𝐶x

Fig. 4. The two identification steps (top) with relative tests and parameters
identified and the two sub-models (bottom) enabled.

employed for this purpose. Knowing the OCV parameters of
the cell, then, the overpotential heat can be computed using
voltage measurement V (t), current measurement I(t) and
Vocv(t) computed through (5) and (4). In the second step, the
characterization of thermal parameters is carried out with a
test designed specifically to excite the temperature dynamics
of the elements under analysis. Finally, the set of differential
equations (2) can be simulated. The identification procedure,
with the relative tests, and the model parts enabled by the
two steps, are schematized in Fig.4.

A. OCV Curve Identification

The OCV curve is characterized by a C/10 discharge.
Indeeed, a galvanostatic discharge at very low current inten-
sity allows a good estimation of the the open-circuit voltage
[32], especially for low-resistance cells. After a complete
charge, the cell is completely discharged for about 10 hours
at room temperature. The coefficients of the OCV curve are
optimized by solving the following least squares problem,
which minimizes, in the SoC domain, the distance between
the polynomial formulation (4) and the measured voltage:

minimize
a1,a2,a3,a4

T∑
t=0

[
(VC10(SoC(t))− Vocv(SoC(t))

2
]

subject to (4), (5)

(6)

where T is the duration of the discharge and VC10 is the
measured voltage. For the reasons mentioned in Section II,
the optimal parameters are not discussed.

B. Thermal Parameters Identification

The thermal identification test is designed by interspers-
ing a current profile from a high-performance automotive
application, consisting of both discharge and regenerative
events, with relaxation periods. The latter are decisive for the
identification of the system parameters: in these time frames
the input variable does not influence the system’s dynamics
(I(t) = 0 ⇒ qgen(t) = 0) and the temperature trajectories
Tx(t) depend solely on the parameters Cx, Rxy and the state
of the system at the beginning of the relaxations. The initial
state of the system is controlled: the test is launched only
when (i) the cell and the fixture elements are at the same
equilibrium temperature, i.e., the set-point of the thermal
chamber, and (ii) the cell is at the pre-defined state of charge.

relaxation
excitation

heating trend

local dynamics

Fig. 5. Thermal identification test. From top to bottom: current (black) and
voltage (grey) profiles, heat computed with (3), temperatures of the three
objects (in the zoom: detail of the cell’s local temperature fluctuations). The
scale of the y-axis is hidden due to confidentiality constraints.

Current, voltage and simulated heat profile are shown,
together with the temperature evolutions, in Fig. 5. The
following features can be appreciated:

• cell’s temperature alternates between excitations and
relaxations, in accordance with the heat generated;

• during excitations, local temperature spikes, caused by
current pulses, are visible;

• the aluminum acts as a filter with respect to the cell.
The same is true with plexiglass, but it experiences a
milder temperature increment;

• the duration of relaxations is designed short enough to
cause overall warming of the setup.

Defining θ as the vector of unknown parameters:

θ = [Cc, Ca, Cp, Rca, Rap, Rpe] . (7)

The set of optimal thermal parameters P ∗ is found solving
the following nonlinear least squares problem (8), which
minimizes the error between the measured and model-
simulated temperature of the three objects:

minimize
θ

∑
x={c,a,p}

T∑
t=0

[
(Tmeas

x (t)− Tx(t))
2
]

subject to (2), (3), (4), (5)

(8)

where Tmeas
x is the measured temperature profile for the

object x and Tx is the simulated temperature profile. The
nonlinear problem is solved via MATLAB fmincon.
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Fig. 6. Values of the optimal thermal parameters within the equivalent
circuital representation in Fig.3.

The values of θ∗ are displayed in Fig.6. The thermal capacity
of the cell is found to be 690 J/K. This is the only parameter,
among those identified, that is independent of the fixture
device and pertains solely to the cell, and can therefore be
reused in different simulation frameworks. Aluminum and
plexiglass plates show higher thermal capacities (1970 J/K
and 4320 J/K respectively): considering their dimensions,
these values are consistent with the specific capacities of
the two materials. The resistances reveal significant thermal
contact between aluminum and cell (0.05 W/K), also due
to sandwich compression. Finally, considerable thermal
resistance is found between aluminum and plexiglass plates
(0.6 W/K), a symptom of thermal insulation due to the poor
conductivity of plexiglass.

The model shows an accurate prediction of the temperatures
over time: simulation and measures are compared in Fig. 7.
The satisfactory performance is confirmed by the evaluation
of RMSE between measurements and simulations (cell:
0.11◦C, aluminum: 0.06◦C, plexiglass: 0.08◦C).

Fig. 7. Thermal identification test. Top: measured temperatures (faded
lines) and corresponding simulated temperatures (sharp lines). Bottom:
zooms of the first excitement (left) and the fitting of the last relaxation
(right). The scale of the y-axis is hidden due to confidentiality constraints.

V. MODEL VALIDATION

The model is finally validated with a different current
profile. The input current and measured voltage, the com-
puted heat and the temperature trajectories (measured and
simulated) are displayed in Fig. 8. In contrast to the identifi-
cation profile, the cell is subjected to a continuous excitation
current with discharge and charge events, still taken from an
automotive application, programmed to avoid a crossing of
the maximum and minimum cell voltage limits and to ensure
that the state of charge is maintained within certain limits.
The following features can be noticed:

• both cell and aluminum temperatures exhibit a constant
heating trend, consistent with the imposed constant
excitation. ;

• small temperature ripples, given by current peaks, are
visible on the cell temperature;

• as in the identification test, aluminum blocks and plex-
iglass plates act as temperature filters.

For this validation profile, the model prediction shows a
slight drift from the measurement: after about 18 minutes
of heating, the model error reaches the value of 0.5◦C (cell).
In general, the performance of the model is confirmed to
be satisfactory with RMSE less than 0.4◦C. Specifically,
for the three objects, the RMSE is: 0.31◦C (cell), 0.22◦C
(aluminum) and 0.21◦C (plexiglass).

Fig. 8. Thermal model validation test. From top to bottom: measured
current (black) and voltage (grey) profiles; heat computed with (3); measured
(faded lines) and predicted (sharp lines) temperatures of the three objects.
The scale of the y-axis is hidden due to confidentiality constraints.
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VI. CONCLUSIONS

This paper presents a comprehensive analysis and ex-
perimental validation of a multi-element lumped-parameter
thermal model for pouch-type lithium-ion battery cells and
their containment assembly. The model is aimed at capturing
the heat transfer dynamics among various components in
the testing fixture, allowing for (i) the understanding of the
thermal impact of each element and (ii) the identification
of some cell-related parameters of interest, such as its
thermal capacity. The identified model showed its accuracy
and reliability in predicting temperature dynamics pouch
cells under compression fixture conditions. The proposed
approach, combining overpotential-driven heat generation
with a lumped-parameter thermal model, holds promise for
enhancing the efficiency and precision of thermal manage-
ment in pouch-type cells. These results contribute to the
broader goal of improving battery safety and performance,
which is crucial for the growing electric vehicle industry and
renewable energy applications.
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