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Abstract— The increasing interest in hybridization and elec-
trification of racing cars is pushing towards the design of
dedicated energy storage systems. Among them, Hybrid Battery
Packs (HBPs) represent an interesting solution, especially in
racing, due to the joint presence of high-power and high-energy
requirements, needed to guarantee the desired race mileage
while maximizing performance. To realize a HBP, a real-time
control law, named Energy Management Strategy (EMS), is
pivotal to properly split the power while satisfying the driver’s
request. In this paper, we investigate whether the control
laws that emerged for traditional vehicles can be employed
in the racing scenario. Considering a Formula E case study,
the well-known Equivalent Consumption Minimization Strategy
(ECMS) and a classical filter-based approach are compared
to the race time-optimal implicit power distribution. Analyses
firstly evaluate the capability of each EMS in matching the
implicit solution, showing the superior performance of ECMS.
Then, explicitly including each real-time EMS in the time-
optimal problem, the race times are re-optimized to evaluate
the actual loss of performance. Finally, we highlight how the
combination of each EMS with a dedicated battery sizing
strategy can influence the overall performance, closing the gap
among the different power split solutions.

I. INTRODUCTION

The current hybridization and electrification trend in rac-
ing vehicles calls for an optimal battery design to push the
vehicle performance to its limit of handling [1]. In this
scenario, Hybrid Energy Storage Systems (HESSs) could
play an important role, starting from Hybrid Battery Packs
(HBPs), which can combine the advantages of high-power
and high-energy cells technologies [2]. Indeed, both aspects
are required in order to guarantee the mileage of a race and
to maximize performance at the same time.

The maximization of the performance in racing vehicles
is widely addressed in the literature as a global time-optimal
problem, knowing the entire lap or race trajectory. This
approach has been employed both for Formula 1 vehicles
[3] and for electric racing cars [4], with either a focus on
Formula E [1], [2] or endurance races [5]. The outcomes
of these approaches are multiple: from the optimal size of
the powertrain and energy storage system components to
the speed profile. In addition, for both hybrid powertrains
and energy storage systems, implicit Energy Management
Strategies (EMSs) are obtained, which optimally distribute
power among the different sources. Despite optimality, their
implicit formulation entails the need to develop explicit and
implementable logic, able to control the power flow in real-
time on the vehicle, to satisfy the driver’s request. In this
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scenario, different EMSs born for standard Hybrid Electric
Vehicles (HEVs) and HESSs can be exploited.

In the literature, EMSs – for either HEVs or HESSs – are
classified according to their level of optimality, expressed as
energy saving performance, and they range from heuristic
up to global optimal solutions. Starting from global optimal
approaches, dynamic programming or Pontryagin’s minimum
principle are employed to compute the implicit solution that
minimizes the energy consumption over a known driving-
cycle. Having the complete driving-cycle as input, these
solutions cannot be implemented in real-time applications;
hence, they are generally used to analyze the best energy
saving performance or to optimally design the powertrain
size [6]. To the other extreme, there are heuristic approaches,
which offer an easy real-time implementation on the vehicle
control unit, thanks to their simplified nature, often based on
explicit rules. In between, there is a broad range of policies,
which still solve an optimization problem: either over a finite
prediction horizon, e.g., in Model Predictive Control (MPC)
[7]; or in the current operating point, as for the widespread
Equivalent Consumption Minimization Strategy (ECMS) [8].

Concerning the racing scenario of electric cars with a
HBP, the global time-optimal problem has been already
deeply discussed in [2], computing the optimal speed profile,
the implicit EMS, and designing the optimal battery to
minimize the race time. The primary aim in racing is the pure
performance, i.e., the minimization of the race time, and,
differently from standard vehicles, the energy consumption
is not directly taken into consideration in the cost function.
However, it is intuitive that the two objectives are strictly
related. Indeed, given that performance maximization asks
for light and small battery packs capable of delivering
enough power and energy, efficient management of both
batteries is crucial, entailing that the obtained implicit EMS
must be optimal also in terms of energy saving.

In this work, we take a step forward with respect to the
Minimum Race Time (MRT) and battery sizing problem
discussed in [2]. Indeed, the optimization in [2] returns an
implicit EMS control logic to optimally handle the power
split between the two batteries, calling for the development
of explicit implementable logic. Given this motivation, we
aim at evaluating the performance loss induced by an explicit
EMS with respect to this implicit global time-optimal policy.
As the main contribution, we develop a novel formulation
of the global MRT problem in [2], including an explicit
EMS through suitable additional constraints. Moreover, we
address two standard approaches for traditional vehicles with
a HESS: the ECMS and a filter-based heuristic solution
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employing a Complementary Filter (CF) [9], which are rep-
resentative respectively of optimization-based and heuristic
families.

Considering the Formula E case study, we investigate
whether the selected EMSs can be suitable also for the
racing scenario, following a three-step analysis. Firstly, we
compare their capabilities to mimic the power split of the
implicit global optimal solution that minimizes the race time.
Then, exploiting the proposed explicit-EMS formulation of
the MRT problem, we evaluate the impact of each EMS in
terms of race time. Finally, we address the sizing problem to
understand if a proper size for each EMS can improve the
performance to close the gap with the implicit MRT solution.

The paper continues with the review of ECMS and CF
approaches in Section II, followed, in Section III, by the
derivation of a modified MRT to take them into account.
Finally, the analyses are carried out on the Gen3 Formula
E case study in Section IV. The paper ends with some
concluding remarks.

II. ENERGY MANAGEMENT STRATEGIES FOR HESSS

In this section, we recall the ECMS and the CF before
their application in Section III.

Equivalent consumption minimization strategy. ECMS is
originally formulated for standard HEVs [8], where it min-
imizes at any time instant the equivalent fuel consumption,
expressed as the sum of the fuel power Pf and battery power
Pb consumption, weighted by the equivalence factor λ:

minPf(t) + λ(t)Pb(t) ∀t, (1)

subject to the powertrain operating limits. The equivalence
factor plays multiple roles in the optimization problem: 1)
optimality: it affects the energy saving performance of the
ECMS solution, which can be very close to the global
optimal one for a proper tuning [10]; 2) physical interpreta-
tion: in HEVs, it represents the efficiency encountered in
recharging the battery through the engine or regenerative
braking [11]; 3) practical interpretation: it can be used as
a tuning parameter to mimic the global optimal solution or
for additional purposes, like the battery charge level control
[12]. In the case of HBPs, the equivalent consumption in the
ECMS is the weighted sum of the power consumption Pbc,i

of each battery i = 1, 2:

minPbc,1(t) + λ(t)Pbc,2(t) ∀t, (2)

while satisfying the driver’s power request Pb and subject
to the battery operating limits. In the context of HESSs the
equivalence factor is often used as a tuning parameter, e.g.,
[13], [14]. It is interesting to highlight that, a constant value
of the equivalence factor can be optimal under some assump-
tions, and even when these conditions are not satisfied, a
constant value has been shown to return performance anyhow
close to the optimal solution in the HEVs scenario [10].

Complementary filter. The EMS based on a complemen-
tary filter [9] is expressed mathematically in Laplace domain,

using the Laplace operator p:

Pb,1 = H(p)Pb, Pb,2 = Pb − Pb,1, (3)

where Pb,i is the power at the terminals of the i-th battery,
H(p) is the filter transfer function used to split the driver’s
power request Pb, which is equal to the sum of Pb,1 and
Pb,2 by construction. Differently to the ECMS, this heuristic
solution is employed just for HESSs, because it has been
designed to mimic the global optimal solution when high
power energy storages are combined with high energy ones
[15].

III. THE MRT PROBLEM WITH EXPLICIT EMS

In this section, we discuss the structure of the MRT
problem. Firstly, we summarize the baseline implicit-EMS
formulation in [2], where no explicit EMS is enforced. Then,
we show how it can be built up to derive an explicit-EMS
formulation, including a specific EMS in the optimization
problem. Finally, we detail how the CF and the ECMS can
be actually implemented.

A. The implicit-EMS MRT problem: recap

The baseline implicit-EMS MRT problem in [2] represents
the extension towards HESSs of the work in [1], where
a space-reformulation of vehicle and battery dynamics is
employed to optimize the overall race time along a circuit.
Reminding that a rigorous and complete formulation is
available in [2], we report here a lighter version to enhance
readability for the upcoming discussion:

min race time

s.t. vehicle dynamics & friction limits

batteries dynamics & limits

battery pack-vehicle coupling.

(4)

In more detail, batteries and vehicle dynamics are mod-
eled respectively through a static Equivalent Circuit Model
(ECM) and a point-mass model moving on a fixed raceline,
where the friction limit allows for linking and constraining
longitudinal and lateral dynamics. The coupling between
the battery pack and vehicle is highly simplified through a
constant average efficiency, which includes the presence of
electric motors and power-electronics devices. Finally, the
batteries limits prevent State-of-Charge (SoC), current, and
voltage from overcoming safety boundaries, and constrain
the total power at the terminals to comply with possible
limitations enforced by racing regulations. We stick with the
power electronics configuration employed in [2], character-
ized by the presence of a single ideal dc/dc converter coupled
with one of the two batteries. Albeit the dc/dc non-idealities
may slightly influence the results, this choice is instrumental
to solely evaluate the effect of the presence of an explicit
EMS with respect to the implicit one.

B. The explicit-EMS MRT problem: general formulation

From the perspective of the optimization problem, an EMS
can be simply seen as an additional constraint acting on the
power delivered by the two batteries as a function of the total
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power request and possibly other variables, like the SoC. We
recall that all the employed symbols are compliant with the
ECM battery model described in [2].

To introduce the EMS in the optimization problem, only
one additional constraint is required, e.g., on battery 1,
because, as in [2], we force the sum of the two battery
powers to be the total one, i.e., Pb = Pb,1 + Pb,2. As a
consequence, the optimization problem in (4) is built up to
include an explicit-EMS by adding the generic constraint

Pb,1 = fEMS (Pb, . . . ) , (5)

where fEMS (Pb, . . . ) is the explicit function describing the
EMS policy under study. We remark that, in the case of
a dynamic EMS, further additions to problem (4) may be
required, as exemplified by the CF example.

Complementary Filter implementation: As detailed in
Section II, the CF can be expressed via the equation

Pb,1 = H(p)Pb. (6)

In our formulation, we consider a first-order low-pass filter
H(p, flp) = 1

1+ p
2πflp

, parameterized by a fixed filter fre-

quency flp. Given the dynamic nature of the low-pass filter,
an additional state variable must be added to the dynamical
model employed in the optimization. We define Pb,lp as the
low-pass filtered version of the total battery power Pb, whose
dynamic equation in the space domain is obtained from a
state-space representation of (6):

dPb,lp

ds
=

1

v
(−2πflpPb,lp + 2πflpPb) (7)

Finally, the generic EMS constraint in (5) can be simply
expressed as:

Pb,1 = Pb,lp, (8)

recalling that the battery operating limits are already
included in (4).

ECMS implementation: starting from problem (2) in Sec-
tion II, the complete ECMS, including the static Equivalent
Circuit Model (ECM), is formulated as:

min
Pb,1,Pb,2

Poc,1 + λPoc,2

s.t. Poc,i = Voc,i(SoCi)Ib,i, i = 1, 2

Vb,i = Voc,i(SoCi)−Rb,iIb,i, i = 1, 2

Pb,i = Vb,iIb,i, i = 1, 2

Vmin,i ≤ Vb,i ≤ Vmax,i, i = 1, 2

Imin,i ≤ Ib,i ≤ Imax,i, i = 1, 2

Pb = Pb,1 + Pb,2,

(9)

where the battery consumption Pbc,i in (2) is modelled
through the open-circuit power Poc,i. Problem (9) cannot be
directly expressed through an explicit control policy, while,
the explicit-EMS MRT problem, implemented in CasADi
[16] via an interior-point algorithm (IPOPT), requires the
knowledge of analytic functions to compute gradients. As
a consequence, neither the optimization problem in (9) nor
its approximation through a look-up table can be employed,

entailing the need for an analytic approximation. To this
purpose, we employ Feed-Forward Neural Networks (FFNN)
[17] due to their well-known approximation capabilities.
Moreover, the risk of over-fitting is mitigated by the possibil-
ity of generating as many samples, i.e., solutions, as needed
from (9). To summarize, given each battery configuration,
a network described by function fffnn (Pb,SoC1,SoC2, λ)
is trained using (9) as data generator, and the generic EMS
constraint in (5) becomes:

Pb,1 = fffnn (Pb,SoC1,SoC2, λ) . (10)

An example of the selection of the FFNN structure, together
with its approximation performance, is provided in the case
study of Section IV.

IV. CASE STUDY: GEN3 FORMULA E

The case study in this section considers the Gen3 Formula
E and the 23 laps Rome 2021 ePrix. This is the same scenario
studied in [2], which is our starting point for the computation
of the implicit-EMS solution, used as benchmark. To sim-
plify, we consider only one technology for the High-Power
Battery (HPB) and one for the High-Energy Battery (HEB).
Specifically, we select the two technologies corresponding
to the optimal solution computed in [2], considering cells
illustrative of the current availability on the market. Indeed,
the HEB is representative of the high-energy cells by Kokam,
while the HPB represents the ultra high-power technology
developed by Saft. Their main parameters are summarized
in TABLE I, while all the vehicle parameters can be found
in [2]. In this paper, we addressed the problem considering
the power limit of 350 kW in traction, given by the current
rules of the Gen3 Formula E, and discrete values for the
number of cells in parallel Np,1 and Np,2, given that a real
battery pack is composed of an integer number of cells. We
recall that, as in [2], the size-dependent mass of the battery
pack is added to the vehicle one.

The optimal battery size concerning the implicit-EMS
MRT problem (4), i.e., the global optimal solution, is Np,1 =
17 and Np,2 = 1. The corresponding outcome is highlighted
in Fig. 1 in terms of SoCs and powers behaviors. It is visible
how the HEB battery has a full and constant, on average,
depletion of the SoC, while the SoC of HPB cycles around
a constant value, except for the very beginning and the end
of the race. Concerning the power of the two batteries, it is

TABLE I
HEB AND HPB CELLS PARAMETERS

HEB HPB units

energy density 257 60 Wh/kg

weight 42 180 g

capacity 3000 3000 mAh

resistance 4.4 0.8 mΩ

max c-rate in traction 10 228 C

max c-rate in regeneration 1.5 228 C

voltage range (2.5–4.2) V
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Fig. 1. The implicit-EMS Minimum Race Time: SoCs and power profiles
for the global optimal battery size (Np,1 = 17, Np,2 = 1).

evident how both play a significant role in traction, while the
HPB covers the high peaks during braking phases, thanks to
its high recharge limit (see also Tab. I). Starting from this
result, the first analysis consists of the tuning of both the
ECMS and the CF to emulate the behavior of the optimal
power distribution.

A. EMS tuning on the implicit-EMS optimal profile

To mimic how the battery power has been split by the
implicit-EMS, as in Fig. 1, the two EMSs have been tuned
in order to minimize their mismatch with respect to such a
power distribution. Given that the total power is constrained
to be equal to the one obtained by the MRT problem,
a mismatch on Pb,1 equally reflects on Pb,2, so that the
resulting optimization problem can be expressed only in
terms of the HEB mismatch:

min
θ(s)

srace∑
s=0

(
Pb,1(s, θ)− P free

b,1 (s)
)2

s.t. Pb,1(s, θ) + Pb,2(s, θ) = P free
b (s) ∀s,

(11)

where s is the discretization index along the race, and θ
represents the tuning parameters, i.e., the frequency flp of
the CF along with its initial condition Pb,lp(0), and, for the
ECMS, a varying equivalence factor λ(s) in (2).

Starting from the ECMS, Fig. 2 shows that the distribution
of the equivalence factor λ(s) has mean value λ̄ = 0.979
with a very limited variance, suggesting that a constant
value could be able to mimic the optimal solution. We
highlight that this result is in agreement with those obtained
for HEVs, e.g., see [10]. Indeed, forcing λ(s) = λ∗ ∀s in
(11), the optimization problem returns a value very close
to the mean one: λ∗ = 0.981 ≈ λ̄. It is also interesting
to notice that this value is very close to 1, meaning that
both batteries are equally weighted in the ECMS. Looking
at Fig. 1, the absence of power exchange between the two
batteries motivates this last result, since the equivalence
factor represents, in classical HEVs, the efficiency chain in
recharging one energy source (battery) through the other one
(fuel).

The same procedure has been carried out also for the
CF, even if there is no a-priori expectation of high mimic

Fig. 2. Tuning on implicit-EMS: distribution of ECMS λ(t).

Fig. 3. Tuning on implicit-EMS: optimization of complementary frequency
flp and initial condition Pb,lp(0).

capability. Indeed, even just by looking at the power profiles
of Fig. 1, we can grasp that no frequency separation between
the two batteries is present. Looking at Fig. 3, the optimal
CF frequency results to be f∗

lp = 10 Hz, independently of
the initial condition, because the Root Mean Square Error
(RMSE) of the power split mismatch is sensitive to it just
for extremely low-pass filtering action.

Comparing the two approaches in Fig. 4, we can see how
the distribution of the error is significantly closer to 0 for
the ECMS, as also numerically evaluated by the RMSE of
16.5 kW for the ECMS and 73.37 kW for the CF. The
good matching of the ECMS with respect to the CF can
be visualized also in space domain in Fig. 5. Given the poor
performance of the CF, the next discussion aims at evaluating
the performance in terms of race time, when both the optimal
speed profile and the total battery power request explicitly
consider the EMS control policy.

Fig. 4. Tuning on implicit-EMS: distribution of the power split mismatch,
and ranking between ECMS and CF.

B. The explicit-EMS MRT: fixed battery size

Considering the optimal size of the battery pack computed
with the implicit-EMS, the race time is recomputed forcing
the two selected EMSs via the explicit-EMS MRT problem
described in Section III-B. Starting from the ECMS, in
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Fig. 5. Tuning on implicit-EMS: HEB power output comparison.

this case study, we exploit a two-layer FFNN with 20
neurons each, implementing respectively sigmoid and relu
activation functions, the latter useful to model saturations.
The approximation performance of the employed network
has been tested a-posteriori, compared with the true ECMS
(9), on the achieved optimal profile, resulting in an average
error of about -2.81 kW with a standard deviation of 7.26
kW. Moreover, driven by the previous results, we stuck with
the assumption of a constant value of λ to be optimized.
As expected from the capability of the ECMS in emulating
the optimal solution, the constant value of the equivalence
factor that minimizes the race time does not show significant
changes, indeed, λopt = 0.978 ≈ λ̄ ≈ λ∗. On the contrary,
the optimal tuning of the CF to minimize the race time
reveals a completely different scenario. Indeed, Fig. 6 shows
that the best CF tuning coincides with extremely low-pass
filtering actions. Moreover, there is a significant change in
the performance when the settling time of the low-pass filter
is longer than the race itself. This means that practically the
CF makes the HEB apply a constant power value. Looking
at Fig. 7, we can see that all the solutions have a similar
trend in terms of SoCs: the HEB is fully depleted during the
race and the HPB acts as a power buffer. Considering the
HEB and HPB powers, ECMS is very close to the implicit-
EMS solution, while the CF has a higher power amplitude in
the HPB, due to the constant power applied by the HPB. To
summarize, the performance of each policy is shown in Fig.
8: ECMS has a speed profile and a race time much closer
to the optimal one, while CF exhibits a slower race time,
motivated by the lower top speed and the increased coasting.
However, if on the one hand the CF could be considered a
useless solution to mimic the implicit optimal one, on the
other hand, this second analysis shows that it can achieve
competitive performance if properly tuned. Given the very
different behavior of the CF, it is natural to investigate if the
race time can be further reduced with proper battery sizing.

C. The explicit-EMS MRT: battery size optimization

This last analysis extends the previous ones approach-
ing the general sizing problem with an explicit EMS. We
highlight that, for the ECMS, we employed the same FFNN
architecture of the previous analysis, re-optimized for each
dedicated battery size. The results are shown in Fig. 9, where
the implicit-EMS surface relates to the results discussed in
the introduction of Section IV: the ECMS again reveals to
be very close in terms of race time to the optimal sizing

Fig. 6. The explicit-EMS MRT: CF frequency sensitivity for the global
optimal battery size (Np,1 = 17 and Np,2 = 1).

Fig. 7. The explicit-EMS MRT (Np,1 = 17, Np,2 = 1): SoCs and powers
comparison of ECMS and CF respect to the implicit-EMS solution.

Fig. 8. The explicit-EMS MRT (Np,1 = 17, Np,2 = 1): speed profiles
comparison and lap time ranking between implicit-EMS, ECMS, and CF.

for any couple of number of cells in parallel in the HEB
and HPB. Given the small mismatch between the ECMS
and the implicit-EMS experienced in previous analyses, the
optimal sizing configuration does not change either. On
the other side, considering the CF, we have shown in the
previous section that, when optimized, it outputs a very
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different power distribution with respect to the other two
approaches. As a consequence, the optimal size changes
when the CF is employed, as highlighted in Fig. 9. Looking
at the whole surface, we appreciate that all the solutions
become closer, in terms of race time, when the battery
pack size increases. Intuitively, this pattern is motivated by
the reduced impact of the different levels of efficiency of
each EMS on the vehicle performance, when applied to
higher capacity battery packs. Finally, results revealed that
the optimal equivalence factor and the optimal frequency of
the CF are not that sensitive to the size of the battery, at
least for the considered sizes. The final comparison in Fig.
10 shows that when the sizing strategy considers the EMSs,
the optimal size changes, almost closing the gap between
the different solutions. Indeed, with respect to Fig. 8, it is
possible to see that the speed profiles and the race time are
closer when a dedicated sizing for each EMS is considered.

Fig. 9. Sizing surfaces comparison among the implicit-EMS solution and
explicit-EMS MRT for ECMS and CF.

Fig. 10. The explicit-EMS MRT with optimal sizing: speed profiles
comparison and lap time ranking between implicit-EMS, ECMS, and CF.

V. CONCLUSIONS

In this work, the impact on the race time of real-time
EMSs for electric racing cars with a HBP has been analyzed.
Towards this aim, the original implicit-EMS MRT problem
has been properly modified to include explicit EMSs taken
from the available literature on standard cars.
Results shown on the Gen3 Formula E case study are two-
fold: i) the ECMS turns out to be an accurate approximation

of the global optimal power distribution, confirming its
optimality properties; ii) the CF strategy represents a viable
heuristic solution despite its inadequacy in approximating the
global optimum. Moreover, we showed that its performance
gap with respect to ECMS can be further reduced if a
dedicated sizing is selected.
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