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Abstract— We propose a method to stabilise a solution to
equations describing the interface of thin liquid films falling
under gravity with a finite number of actuators and restricted
observations. As for many complex systems, full observation of
the system state is challenging in physical settings, so methods
able to take this into account are important. The Navier-Stokes
equations modelling the flow are a complex, highly nonlinear
set of PDEs, so standard control theoretical results are not ap-
plicable. Instead, we chain together a hierarchy of increasingly
idealised approximations, developing a control strategy for the
simplified model which is shown to be successfully applied to
simulations of the full system.

I. INTRODUCTION

The stabilisation of liquid film interfaces is a prototypical
example within a broader class of problems in which we
seek to enable observation and control of complex physical
systems, in this case the Navier-Stokes equations. Typical
interfaces exhibit a broad range of parameter-dependent
behaviours from travelling waves to chaos. Such flows have
received much attention, both from experimental [1] and
analytical perspectives. Most pertinent to this work are a
range of lower-dimensional long-wave models for the liquid-
gas interface. These thin-film models, where the height of
the film is assumed to be much smaller than its length,
are comprehensively described in a review by Craster and
Matar [2] and a book by Kalliadasis et al. [3]. More recent
work has included experimental validation [4] and additional
asymptotic work to expand the range of validity of such
models [5, 6].

Typical applications of these films include coating
flows [7] — requiring very flat interfaces — and narrow
channel micro-cooling [8], for which highly corrugated films
are more desirable. Control capabilities targeted towards
obtaining and maintaining different interfacial profiles are
thus of key importance.

Over the last ten years, progress has been made on produc-
ing feedback controllers for falling liquid films. Armaou and
Christofides [9, 10] and Gomes et al. [11] applied control
theoretical results from [12] to the Kuramoto-Sivashinsky
(KS) equation, the simplest of the thin-film models, gen-
erating both computational and analytical results. Work by
Thompson et al. showed that linear quadratic control (LQR)
techniques are also effective for more complex models such
as the Benney [14] and weighted-residual [15] systems.
Although Cimpeanu et al. [16] demonstrated that simple
proportional controls can successfully stabilise numerical
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Fig. 1. A thin-film with interface h under the influence of gravity g
flows down a plane inclined an an angle θ. Discrete actuators injecting and
removing fluid from the base (f ) are used to stabilise the interface.

simulations of the full Navier-Stokes equations, Holroyd
et al. [17] showed that a chain of increasingly accurate
models can allow LQR techniques to be extended to the
complete physical system, modelled by simulations of the
Navier-Stokes equations.

Previously we made the assumption of full observa-
tions [17], but here we introduce restrictions to a low-
dimensional observation space, thus making an additional
step towards physically realisable controls where interfacial
observations are challenging [18]. We describe a pair of
control methodologies, previously applied to simpler systems
in a study by Thompson et al. [13], where observation of the
interface is restricted to a finite number of discrete sites. We
show that the same hierarchical control framework continues
to permit successful stabilisation, albeit in a smaller subset
of the parameter space.

II. MATHEMATICAL MODELS

As shown in Fig. 1, we consider a thin film of fluid flowing
down a plane inclined at an angle θ relative to the horizontal.
The fluid is described in a rotated coordinate system, so that
y is normal to the base and x points downstream. On the
wall at y = 0 we assume a no slip boundary condition with
fluid injected and removed at a finite number of locations.
At the upper boundary with the gas there is a free surface at
y = h(x, t). For a film with mean height hN , the resulting
gravitationally-driven uniform flow with flat interface at h =
hN (known as the Nusselt solution [19]) has a parabolic
velocity profile with surface velocity UN . For all but the
most gentle regimes this solution is an unstable steady state,
and so a control law is required to stabilise the flat interface.

A. Navier-Stokes Equations

For the incompressible fluids considered here, fluid flow
can be modelled with the 2D Navier-Stokes equations. We
assume that the density and viscosity ratios between the
liquid film and the gas are sufficiently high that the effect
of the gas flow on the liquid is negligible. This means that
we can restrict our model to the liquid alone, which is
parametrised by the Reynolds number Re, capillary number
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Ca, domain length L and inclination angle θ. The liquid
dynamics in the film is governed by the momentum equations

Re(ut + uux + vuy) = −px + 2 + uxx + uyy, (1)
Re(vt + uvx + vvy) = −py − 2 cot θ + vxx + vyy, (2)

where u and v are the (dimensionless) horizontal and vertical
velocity components and p the pressure, as well as the
continuity equation

ux + vy = 0. (3)

At the interface, y = h(x, t), we have the non-linear dynamic
stress balance [3]

(vx + uy)(1− h2
x) + 2hx(vy − ux) = 0, (4)

p− 2(vy + uxh
2
x − hx(vx + uy))

1 + h2
x

= − 1

Ca
hxx

(1 + h2
x)

3/2
,

(5)

and no-slip and fluid injection/removal at the wall

u = 0, v = f(x, t). (6)

Finally the system is completed by the kinematic boundary
condition

ht = v − uhx, (7)

and periodic boundaries in the x-direction.
Defining the down-slope flux by integrating over the height

of the film,

q(x, t) =

∫ h

0

u(x, y, t) dy, (8)

we combine Eqs. (3), (6) and (7) to get the mass conservation
equation

ht + qx = f. (9)

The full Navier-Stokes system Eqs. (1)–(7) cannot in
general be solved analytically, and so approximate solutions
are found using a volume-of-fluids approach implemented
by the free, open-source software Basilisk [20, 21]. All
simulations are performed in a domain of width L = 30
inclined at an angle θ = π/3 with Ca = 0.05.

B. Weighted-Residual Equations

Equations (1)–(7) are complex and highly nonlinear, thus
precluding the explicit construction of a control f . In order to
make further progress we use Ruyer-Quil and Manneville’s
improved weighted-residual methodology [15] which ap-
proximates u by a truncated sum of basis functions satisfying
no-slip at the wall and zero tangential stress at the interface.
Extended to include the forcing used here, the first-order
truncation [22] gives the following expression for the flux

2Re
5

h2qt + q =
h3

3

(
2− 2hx cot θ +

hxxx

Ca

)
+ Re

(
18q2hx

35
− 34hqqx

35
+

hqf

5

)
.

(10)

Combined with Eq. (9) this forms a 1D model for the
evolution of the thin film. This reduced-dimensional system
provides excellent agreement with the full Navier-Stokes
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Fig. 2. Fully evolved travelling waves for Navier solid-Stokes (in solid
black) and weighted-residual (in dashed red) for Re = 10. The weighted-
residual equations provide a reasonable approximation to the Navier-Stokes
interface, especially around the largest perturbation.

equations up to Re ≈ 5 [15], significantly better than al-
ternative models [23]. Equation (10) captures many features
of the Navier-Stokes systems including spontaneous back-
flow [24], and Fig. 2 shows that some larger features are
well-approximated at higher Reynolds numbers.

III. CONTROL STRATEGIES

To stabilise the Nusselt film, we focus on optimal feedback
controls, in which the control is a function of observations of
the interface. Denoting the system state (either (u, v, p, ĥ) or
(ĥ, q) — where ĥ = h−1 — for Navier-Stokes or weighted-
residual systems respectively) by ξ ∈ X , where X is an
appropriate Hilbert space (e.g. h ∈ L2(0, T ;H2(0, L)), q ∈
L2(0, T ;H1(0, L)) with periodic boundaries), we can write
the feedback control problem in an abstract sense:

ξ̇ = Aξ + Bη, ζ = Cξ, η = Kζ, (11)

where η ∈ RM is the control, ζ ∈ RP is some system
observation and A, B, C, and K are operators acting between
relevant spaces: the uncontrolled PDE operator, the control
actuator mechanism, the observation operator, and the gain
operator to be computed. This can be written in closed-loop
form

ξ̇ = (A+ BKC)ξ, (12)

which makes it clear that K must be chosen so that the oper-
ator A+BKC is stable. Finally, to quantify the performance
of a given gain operator K, we define the cost

κ =

∫ ∞

0

∫ L

0

βĥ(x)2 + (1− β)f2 dxdt. (13)

Thus far we have not restricted the form of our control
function f . However, arbitrary injection and removal of fluid
along a continuum of locations at the base is physically
unfeasible, and so we restrict our controls to a finite number
of injection sites {xi}Mi=1 (and so the control space is RM ),
i.e.

f(x, t) =

M∑
i=1

ηi(t)d(x− xi), (14)

where ηi(t) are the individual, time-dependent, control am-
plitudes, and d is a smooth, periodic approximation to the
Dirac-delta distribution

d(x) = α exp

[
cos(2πx/L)− 1

ω2

]
, (15)
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Fig. 3. Illustration of the chain of simplifications that permit the design of
stabilising controls for the full Navier-Stokes simulation of a falling liquid
film: by making a chain of increasingly abstracting simplifying assumptions
we eventually reach a system where we can apply established control
theoretic results. By projecting the full system to the space in which the
controls are designed and then reprojecting the controls back to the full
space we can attempt to stabilise solutions to the original problem.

where ω controls the width of the function, and α is chosen
so that

∫ L

0
d(x) dx = 1.

Despite the simplifying assumptions made to convert the
Navier-Stokes system to the weighted-residual system, the
model retains high-order derivatives and significant nonlin-
earities. For such a PDE, it is not yet possible to explicitly
compute the optimal K because of these nonlinearities. In
order to solve the problem, we must both linearise and
spatially discretise the problem so we are left with a system
of N linear ODEs (where N is the number of nodes in the
discretisation):

ξ̇ = (A+BKC)ξ. (16)

The cost κ is similarly discretised to give

c =

∫ ∞

0

ĥTUĥ+ ηTV η dt, (17)

where U = βL
N I ∈ RN×N and V = (1− β)I ∈ RM×M are

matrices whose entries are chosen as to form the discrete
analogue of the continuous cost Eq. (13).

The stabilisation of systems of linear ODEs is a well-
studied problem [12], and so progress can now be made in
computing the gain matrix K. Al Jamal and Morris [25]
proved that such discrete approximations converge to a sta-
bilising control for the KS equation. This ends the hierarchy
of simplifications required to stabilise the Nusselt solution
of the Navier-Stokes equations (summarised in Fig. 3). We
can test the methodology on direct numerical simulations of
the Navier-Stokes film: we choose a discretisation space and
compute the matrix K for the approximating linear system
Eq. (16), and, by applying it to observations projected into
the discretisation space, we can use it as a feedback operator
to compute the actuator strengths ηi, which can be applied
to observations of the Navier-Stokes simulation.

A. Full Observations (State Feedback LQR)
In the case of full observations, when C is the identity

and C = I ∈ RN×N finding the optimal K becomes

a state-feedback linear quadratic regulator (LQR) problem,
for which there is a wealth of literature [26, 27]. Holroyd
et al. [17] demonstrated that, in this case, such a hierarchi-
cal scheme provides a sufficiently robust approximation to
successfully control the film. Linear stability analysis and
numerical experiments suggest that a sufficient condition
for stabilisation was that M should be at least as large
as the number of unstable modes of the linearised system
with equidistantly placed actuators. We note that it is not a
necessary condition however — numerous cases where fewer
actuators are able to stabilise the uniform film were observed
(see Fig. 8 in [17]).

B. Restricted Observations (Output Feedback LQR)

The control scheme devised by Holroyd et al. [17] has
access to full information about the interface. However,
although this is trivial in a simulation, in reality it is
almost impossible to make real-time measurements of the
entire interface [18], rendering this method impractical for
experiments. It is more realistic to restrict the observations
of the interfacial height h to a finite-dimensional space
corresponding to discrete observations from P arbitrarily
placed observers, rather than the full state. This corresponds
to C ∈ RP×N .

In the periodic case here, when we are able to observe the
entire interface we can use the translational invariance of the
problem to argue that the optimal placement of the actuators
is evenly spaced throughout the domain [28]. The optimal
placement of observers and actuators for arbitrary pairs of
M and P is a complicated problem [28] and is left for future
work — here we evenly space both actuators and observers
around the centre of the domain.

When P < N and C ̸= I , choosing the optimal K
to minimise Eq. (17) is much more challenging than the
basic LQR problem in Section III-A. Finding the matrix
necessitates solving the static output feedback problem

0 = AT
cQ+QAc + U + CTKTV KC, (18)

0 = AcS + SAT
c + I, (19)

0 = V KCSCT +BTQSCT (20)

for K (as well as Q and S), where Ac = A+BKC. In the
case when C = I Eqs. (18)–(20) collapse to the continuous
algebraic Riccati equation which can be solved directly [29],
but the general problem must be solved using expensive
iterative methods [30].

Even with restricted observations we are able to stabilise
the uniform film solution in some cases, as shown in Figs. 4
and 5. However, with observations restricted to RP , the
output feedback LQR control is no longer able to stabilise
the film for large values of Re when the more significant
inertial effects mean that the perturbations become harder to
control. For large Re the difference between Navier-Stokes
and weighted-residual equations is larger, and so sufficiently
large waves can develop in the gaps between observers so
as to make stabilisation impossible. In addition to this, in
many cases the iterative algorithm in [30] either fails to start
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Fig. 4. Interface h in solid black, controls f in dashed red for increasing
times after the actuators are switched on at t = 0 with Re = 11.29 and
M = P = 5. Once the controls are switched on at the uniform film h = 1
is stabilised.
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Fig. 5. Deviation of the interface from h = 1 for the regime in Fig. 4 (solid
line). The perturbations are exponentially damped with rate exceeding that
predicted by the linearised approximation to the dynamics (dashed line).

or fails to converge, likely due to the matrix problem being
ill-posed thanks to insufficient observation of the system.
Figure 6 shows how damping is possible for lower Re but for
larger values either the control fails or a stabilising K cannot
be found for Eq. (16). Nevertheless, it is worth remarking
that, as for static-output LQR [17], the framework functions
beyond the Reynolds numbers where the predictive capacity
of the weighted-residual model breaks down (albeit not as
far beyond this limit as for full state observations).

C. Luenberger Observer

Although the static output feedback law can stabilise the
uniform film as long as M and P are sufficiently large, it
does not make maximum use of the available information.
In the fully observed case, the observation at a given time t
fully describes the state of the system, but there are a number
of possible solutions that could be constructed to fit the P
observations. We can improve upon this by allowing the use
of past data to further our ability to construct the interface at
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Fig. 6. Successful (in black) and unsuccessful (in white) results for the
output-feedback LQR method applied to simulations of the Navier-Stokes
equations at various Re, number of actuators M , and numbers of observers
P . The groups of differently shaped points correspond to the values of M :
3, 5, 7, 9, and 11. Gaps occur when the iterative process to find K failed.

the current time. For example, since the interface is generally
convected downstream by the flux, it is reasonable to suggest
that, shortly after an observation at (t, xi), the interfacial
height at (t + δt, xi + δx) is likely to be similar. We can
formalise this ability to make predictions about the current
interface from past data and knowledge of the underlying
dynamics by introducing a dynamic estimator z, which
is continually updated with the observation data but also
allowed to evolve in time under its own separate dynamics.
The method is described by Luenberger [31] and has been
successfully applied directly to the KS equation [9], and
other models including the Benney equation [13]. Here we
use the same model, where we update our predictions with
both the linearised system dynamics and the observations,
but now as part of the hierarchical control framework.

While our controls are part of a system in real space, there
is no reason for the estimator to be. After transforming to
Fourier space (so ξ̃ = F ξ̂ where F is the Fourier transform),
we reorder the wavenumbers to separate stable and unstable
modes:

˙̃
ξ = Ãξ̃ + B̃K̃ξ̃ =

(
Ãu 0

0 Ãs

)
ξ̃ +

(
B̃u

B̃s

)
K̃ξ̃. (21)

Separating the unstable modes more explicitly, we write(
˙̃
ξu
˙̃
ξs

)
=

(
Ãu 0

0 Ãs

)(
ξ̃u
ξ̃s

)
+

(
B̃u

B̃s

)
K̃

(
ξ̃u
ξ̃s

)
=

(
Ãu + B̃uK̃ 0

B̃sK̃ Ãs

)(
ξ̃u
ξ̃s

)
,

(22)

and we see that, since the matrix on the right hand side is
block lower triangular, the controls leave the eigenvalues of
the stable modes unchanged, and so they remain stable. We
thus reduce the control problem to

˙̃
ξu = Ãuξ̃u + B̃uK̃ξ̃u, (23)
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Fig. 7. The Luenberger estimator captures the most important modes of
the interface, enabling the controls to stabilise the uniform film solution.
Interface h in black, estimator z in dotted blue, controls f in dashed red.
Re = 11.29, M = P = 5.

for which we select an optimal K̃ using the LQR algorithm.
Since we are unable to directly measure ξ̃u, we replace it
with the estimator z:

˙̃
ξu = Ãuξ̃u + B̃uK̃z. (24)

We note that there is an implicit assumption here that M —
the dimension of z — must equal (or exceed) the number
of unstable modes for the system to be controllable, and the
same is true for P and observability.

The dynamics of the estimator are governed by the same
linearised dynamics as ξ̃u, with an additional forcing term
to push the system to match the observations. This gives us
a set of M ODEs,

ż = (Ãu + B̃uK̃)z + L(Cξ − CF−1
u z), (25)

where F−1
u is the inverse Fourier transform mapping the M

estimated modes to N real values.
If we define the error e = ξ̃u − z, by substituting in

Eqs. (24) and (25) and noting that h = F−1
u ξ̃u + F−1

s ξ̃s
we obtain

ė = (Ãu − LCF−1
u )e− LCF−1

s ξ̃s. (26)

The stable terms will decay on their own and so all that
remains is to choose L so that Ãu−LCF−1

u is stable (i.e. all
its eigenvalues have negative real part). We do this by noting
that eigenvalues are invariant under transposition and use the
LQR algorithm on (Ãu − LCF−1

u )T = ÃT
u − (CF−1

u )TLT.
As we can see in Figs. 7 and 8, accurate information about

the precise shape of the interface is not always necessary; it
is sufficient to be able to observe the most unstable modes
of the system.

Comparing Fig. 5 and Fig. 8 we can see that the Luen-
berger observer control appears to be outperformed by the

−40 −20 0 20 40 60 80 100

10−2

10−1

100

t

∥h
−

1
∥,

∥ ∥ ∥h−
F

−
1

u
z
∥ ∥ ∥

Fig. 8. Once the controls are activated, both the interfacial perturbations
and estimator error (solid black and dotted blue respectively) decay expo-
nentially. Parameters as for Fig. 7.
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Fig. 9. Successful (in black) and unsuccessful (in white) results for the
Luenberger observer method applied to simulations of the Navier-Stokes
equations at various Re, number of actuators M , and numbers of observers
P . The groups of differently shaped points correspond to the values of M :
3, 5, 7, 9, and 11.

output feedback control, despite the fact that the former is
permitted both current and historical observations and the
latter only current observations. This is because the objective
of the controls is to minimise the cost Eq. (17) rather than
flatten the film fastest. Comparing t = 0 we can clearly
see that the output feedback controls are significantly larger,
resulting in a larger cost: ∼ 11.60 versus ∼ 7.39.

Although the Luenberger observer control is an obvious
improvement over the output feedback control (as can be
seen by comparing Figs. 6 and 9), unsurprisingly is unable
to match the case of full observations at larger Reynolds
numbers, although we again see stabilisation above Re ≈ 5.
As for the output feedback LQR problem, as Re grows the
nonlinear effects become more important, and so restricting
information neglects the energy transferred from large to
small modes, which the observer is unable to resolve.

IV. CONCLUSION

We demonstrate a pair of techniques to extend a hier-
archical control scheme for the Navier-Stokes equations to
cases with restricted observations. We find that although such
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restrictions have a significant impact on the regimes where
stabilisation is achievable, the methods are nonetheless able
to stabilise a uniform film in a region including and at times
exceeding the range of predictive capacity of the underlying
simplified models. We note that the Luenberger observer
has two major advantages over the output feedback case: it
requires significantly simpler and more stable algorithms to
compute the controls, which are subsequently able to achieve
the same stabilisation results at a lower cost.
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