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Abstract— We consider control of uncertain linear time-
varying stochastic systems from the perspective of regret
minimization. Specifically, we focus on the problem of designing
a feedback controller that minimizes the loss relative to a
clairvoyant optimal policy that has foreknowledge of both the
system dynamics and the exogenous disturbances. In this com-
petitive framework, establishing robustness guarantees proves
challenging as, differently from the case where the model is
known, the clairvoyant optimal policy is not only inapplicable,
but also impossible to compute without knowledge of the
system parameters. To address this challenge, we embrace a
scenario optimization approach, and we propose minimizing
regret robustly over a finite set of randomly sampled system
parameters. We prove that this policy optimization problem
can be solved through semidefinite programming, and that
the corresponding solution retains strong probabilistic out-of-
sample regret guarantees in face of the uncertain dynamics.
Our method naturally extends to include satisfaction of safety
constraints with high probability. We validate our theoretical
results and showcase the potential of our approach by means
of numerical simulations.

I. INTRODUCTION

Inspired by online optimization and learning methods,
control of dynamical system has recently been studied
through the lens of regret minimization [1]. This emerging
paradigm aims at designing efficient control laws that min-
imize the worst-case loss relative to an optimal policy in
hindsight. Algorithms with provable regret certificates hence
offer attractive performance guarantees that – in contrast with
the stochastic and worst-case assumptions typical of H2 and
H∞ controllers [2] – hold independently of how disturbances
are generated.

Most prior work in this area employs gradient methods
to deal with adversarially chosen cost functions and pertur-
bations, and shows that the resulting control law achieves
sublinear regret against expressive policy classes [1], [3].
A parallel line of research, initiated by [4], [5], studies the
problem of competing against the optimal control actions se-
lected by a clairvoyant (noncausal) policy, without imposing
any parametric structure on this benchmark policy.

For the case of known cost functions, the formulation
of [4], [5] has received increasing interest thanks to: opti-
mality of the clairvoyant benchmark policy, possibility of
computing the regret-minimizing controller, and remarkable

A. Martin, L. Furieri, and G. Ferrari-Trecate are with the Institute of Me-
chanical Engineering, EPFL, Switzerland. E-mail addresses: {andrea.martin,
luca.furieri, giancarlo.ferraritrecate}@epfl.ch.

F. Dörfler and J. Lygeros are with the Department of Information
Technology and Electrical Engineering, ETH Zürich, Switzerland. E-mail
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performance reported in several applications, including lon-
gitudinal motion control of a helicopter and control of a wind
energy conversion system [6]. In particular, among recent
contributions, [7] and [8] proposed an efficient optimization-
based synthesis framework to incorporate safety constraints,
[9] established recursive feasibility and stability guarantees
for receding horizon regret optimal control, [10] and [6]
investigated the closely related metric of competitive ratio,
[5] and [11] considered state estimation problems, and [12]
studied connections with imitation learning.

Despite these advances, an important open challenge is
how to track the performance of the clairvoyant optimal
policy without knowledge of the underlying dynamics. In
fact, as the systems under control become increasingly com-
plex, assuming availability of precise mathematical models
appears more and more unrealistic. Nevertheless, to the
best of our knowledge, only [13] approached this problem,
showing that several iterative control algorithms that combine
system identification with gradient descent methods, e.g., [1],
[3], also achieve, asymptotically, near-optimal competitive
ratio relative to the clairvoyant optimal policy. However,
this result only holds asymptotically and does not allow
synthesizing control policies that, given a set of admissible
plants, guarantee that the regret relative to the clairvoyant
optimal policy is minimized robustly.

Towards addressing these issues, in this paper we present
a solution to the robust regret minimization problem based
on scenario optimization [14], [15], which is applicable to
uncertain stochastic linear time-varying systems affected by
a priori unknown but measurable disturbance processes.1 A
key challenge lies in handling the different impacts that para-
metric uncertainty has on the closed-loop behavior achieved
by the clairvoyant benchmark policy, on the one hand, and
by the causal controller to be designed on the other. In fact,
simultaneously accounting for these effects has not yet been
achieved following the analysis methods used in [17], [18]
to derive suboptimality and sample complexity bounds for
classical linear quadratic control problems.

For several control applications, including robotics, build-
ing energy management, and power grids, designing a single
state feedback policy that attains robust performance across
all admissible system dynamics can prove overly conserva-
tive. Instead, it is beneficial to optimize for a unique closed-
loop behavior – while allowing the state feedback law that
achieves it to vary – leveraging a posteriori measurements
of exogenous perturbations such as external forces, solar ra-

1These include but are not limited to the class of linear parameter-varying
systems – a middle ground between linear and nonlinear dynamics [16].
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diation, and electricity demands for control implementation.
Motivated as above, we show how convex optimization

and sampling techniques can be used to synthesize a dis-
turbance feedback robust control policy with provable regret
guarantees in spite of the uncertain dynamics. In particular,
building upon [14], [15], we propose constructing a scenario
problem by appropriately sampling over the space of un-
certain parameters. We prove that the policy that minimizes
regret robustly over the considered scenarios can be com-
puted via semidefinite programming, and that this solution
exhibits generalization capabilities – in the sense that the
resulting regret bound holds true for all but a small fraction
of uncertainty realizations whose probability is no larger
than a prespecified tolerance level. Our approach naturally
extends to include satisfaction of safety constraints with
high probability. The advantages of our probabilistic design
method are twofold. First, contrary to worst-case solutions,
which are known to be computationally hard to evaluate,
and coherently with the theory of scenario optimization,
our approach uses a finite number of randomly sampled
uncertainty realizations only, and thus calls for the solution
of a convex program – albeit with a size that increases with
the number of considered scenarios. Second, as opposed to
probabilistic solutions based on scenario optimization with
classical H∞ objectives, our method leverages the cost of the
optimal policy in hindsight to yield performance guarantees
that are tailored to the specific uncertainty and disturbance
realizations. In turn, as we validate by means of numerical
simulations, this often allows us to reduce conservatism of
H∞ methods by establishing tighter upper bounds on the
realized cost – which in turn translate into improved closed-
loop performance across all system dynamics for several
disturbance profiles of practical relevance.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Dynamics, control objective, and constraints

We consider an uncertain discrete-time linear time-varying
dynamical system described by the state-space equation

xt+1 = At(θt)xt +Bt(θt)ut + Et(θt)wt , (1)

where xt ∈ Rn, ut ∈ Rm, θt ∈ Rd and wt ∈ Rp are
the system state, the control input, a vector of uncertain
parameters that characterize the family of admissible plants,
and a measurable disturbance process, respectively. We focus
on optimizing the closed-loop behavior of this uncertain
system over a finite-time planning horizon of length T ∈ N,
and let x = (x0, x1, . . . , xT−1), u = (u0, u1, . . . , uT−1),
w = (x0, w0, . . . , wT−2), and θ = (θ0, θ1, . . . , θT−1) for
compactness. On the one hand, we do not make any assump-
tions about the statistical properties of the exogenous dis-
turbance process w, that can also be adversarially selected.
On the other hand, we assume that θ is drawn according
to a probability distribution Pθ with a possibly unknown
and unbounded support set Θ. This probability measure may
reflect a priori knowledge about the actual likelihood of
each realization of the system parameters, or may simply
encode the relative importance that we attribute to each

uncertainty instance. In particular, we do not require Pθ to
be known explicitly, but rely on a set D = {θ1, . . . ,θN} of
N ∈ N independent samples only. Finally, we assume that
the matrices Et(θt) are full column rank for all t ∈ IT =
{0, . . . , T − 1} and for all θt such that θ ∈ Θ.

Motivated by the regret optimal control framework
of [4], [5], we consider the problem of designing a
causal decision policy π = (π0, . . . , πT−1), with ut =
πt(x0, . . . , xt, w0, . . . , wt−1), that closely tracks the perfor-
mance of an ideal clairvoyant policy ψ = (ψ0, . . . , ψT−1).
Importantly, we allow the noncausal benchmark policy ψ
to select the control actions with foreknowledge of both
the exogenous disturbance w and the system dynamics θ,
i.e., ut = ψt(x0, . . . , xt, w0, . . . , wT−2, θ0, . . . , θT−1). More
specifically, for any fixed w and θ, let

J(π,w,θ) = x⊤Qx+ u⊤Ru , (2)

with Q ⪰ 0 and R ≻ 0, denote the control cost incurred by
playing the policy π, and define the per-instance regret of π
relative to ψ as:

R(π,ψ,w,θ) = J(π,w,θ)− J(ψ,w,θ) . (3)

Building upon ideas proposed in [4], [5] for the case where
the system dynamics (1) are perfectly known, we then
formulate the robust regret minimization problem as follows:

R⋆(ψ) = inf
π

sup
θ∈Θ

max
∥w∥2≤1

R(π,ψ,w,θ) . (4)

A solution π⋆ to (4), if any, guarantees that its cost is always
at most R⋆(ψ) higher than that of the ideal, yet inapplicable,
benchmark policy ψ(w,θ) that minimizes (2) – no matter
how w is generated and which θ realize.

As modern engineering systems often feature safety-
critical components, we include in the synthesis problem a
robust constraint satisfaction requirement. In particular, we
define a polytopic safe set in the space of state and input
trajectories as follows:

S(θ) = {(x,u) :Hx(θ)x+Hu(θ)u ≤ h(θ)} . (5)

Then, we consider the objective of solving (4) while ensuring
that (x,u) ∈ S(θ) robustly for all θ ∈ Θ and all w
belonging to a compact disturbance set W(θ) defined as

W(θ) = {w : w =Hw(θ)d , ∥d∥2 ≤ 1} . (6)

In particular, we note that (6) reduces to the bounded energy
constraint ∥w∥2 ≤ 1 used in (4) if Hw(θ) = I . Other values
of Hw(θ) instead allow considering different assumptions
on w for what concerns safety and performance, providing
extra design flexibility that one can exploit to strike a balance
between these two critical – yet often competing – aspects.

B. Linear disturbance feedback policy

In general, it is well-known that optimizing over the
function space of feedback policies is computationally in-
tractable. Therefore, as common in the control literature [19],
throughout this paper we restrict our attention to linear dis-
turbance feedback policies of the form u = Φuw, with Φu
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lower block-triangular to enforce causality. Note that linear
policies attain minimum regret against the optimal sequence
of control actions in hindsight if the system dynamics are
known and the safety constraints are not active [4], [5].

Let us define through diagonal concatenation of matrices
the operators A(θ) = blkdiag(A0(θ0), . . . , AT−1(θT−1)),
B(θ) = blkdiag(B0(θ0), . . . , BT−1(θT−1)), and E(θ) =
blkdiag(In, E0(θ0), . . . , ET−2(θT−2)). Further, let Z de-
note the block-downshift operator, namely, a matrix with
identity matrices along its first block sub-diagonal and zeros
elsewhere. With this notation in place, we observe that the
closed-loop state trajectory under the feedback law u =
Φuw can be expressed as a linear function of w as per:

x = ZA(θ)x+ZB(θ)u+E(θ)w , (7)

= (I −ZA(θ))−1(ZB(θ)Φu +E(θ))w := Φx(θ)w .

C. On the choice of the clairvoyant benchmark policy

We conclude our problem formulation by commenting on
the choice of the clairvoyant benchmark policy ψ. Extending
ideas from [4], [5] to the case where the model is uncertain,
a meaningful objective is that of competing against the best
sequence of control actions in hindsight, without imposing
any structure on ψ. In this case, it can be shown by adapting
the derivations of [2], [7] that:

ψ(w,θ) = −(R+F (θ)⊤QF (θ))−1F (θ)⊤QG(θ)w , (8)

where F (θ) = (I − ZA(θ))−1ZB(θ) and G(θ) =
(I −ZA(θ))−1E(θ) are the causal response operators that
encode the uncertain dynamics (1) as x = F (θ)u+G(θ)w.
Differently from the model-based setting considered in [4],
[5], however, the (nonlinear) dependence of ψ on the un-
certain system dynamics θ makes it impossible to compute
the actual benchmark policy – and hence also the policy
that minimizes regret against it. To get around this problem
without sacrificing the instance-wise optimality of ψ – as
would result, for instance, by constructing a benchmark
policy that achieves robust performance across all θ ∈ Θ –
in the next section we present a randomized approach based
on the scenario optimization framework [14], [15].

III. MAIN RESULTS

In this section, we show how a causal control policy with
probabilistic certificates of regret and safety can be efficiently
computed in spite of the uncertain dynamics. To do so, we
first construct a scenario approximation of the robust regret
minimization problem in (4) by restricting our focus to a
finite number of uncertainty instances only. Then, inspired by
[7], we prove that the policy that safely minimizes regret over
the considered scenarios can be expressed as the solution
of a semidefinite optimization problem. Finally, leveraging
results from the theory of uncertain convex programs [14],
[15], we derive strong guarantees on the probability of both
out-of-sample regret bound and safety constraint violation.
We collect all proofs in our technical report [20].

In what follows and by inspection of (7) and (8), we
let Ψu(θ) = −(R + F (θ)⊤QF (θ))−1F (θ)⊤QG(θ) and

Ψx(θ) = F (θ)Ψu(θ)+G(θ) denote the closed-loop system
responses that map w to the control actions selected by
ψ and to the corresponding state trajectory, respectively.
Further, with slight abuse of notation, we will often use
Φu and Ψu instead of π and ψ, respectively. We start by
introducing the following epigraphic form of the robust safe
regret minimization problem:

inf
Φu,γ

γ (9a)

subject to Φx(θ) = F (θ)Φu +G(θ) , (9b)
max

w∈W(θ)
Hx(θ)Φx(θ)w +Hu(θ)Φuw ≤ h(θ) , (9c)

max
∥w∥2≤1

R(Φu,Ψu(θ),w,θ) ≤ γ , ∀θ ∈ Θ ; (9d)

we denote the optimal value of (9) by R̄⋆(Ψu(θ)). Despite
we narrowed attention to linear disturbance feedback poli-
cies, (9) remains intractable if Θ has infinite cardinality. Be-
sides, strong duality results do not apply in a straightforward
way as Θ is not assumed to be connected, let alone convex.

Motivated by the scenario optimization framework [14],
[15], we therefore propose replacing the maximization over
Θ with a maximization over the finite set D = {θ1, . . . ,θN}
of randomly sampled uncertainty realizations only. In this
way, we approximate (9) with its scenario counterpart:

min
Φu,γ

γ (10a)

subject to Φx(θ
k) = F (θk)Φu +G(θk) , (10b)

max
w∈W(θk)

Hk
xΦx(θ

k)w +Hk
uΦuw ≤ hk , (10c)

max
∥w∥2≤1

R(Φu,Ψu(θ
k),w,θk) ≤ γ , ∀θk ∈ D , (10d)

with Hk
x = Hx(θ

k), Hk
u = Hu(θ

k), and hk = h(θk)
for brevity. In particular, note that the infimum in (10a) is
attained since only a finite number of uncertainty realizations
θk ∈ D are considered, and since, for every θk, R ≻ 0
implies that the regret (3) is radially unbounded with respect
to Φu. Building upon the reformulations proposed in [7], [8]
for the case of known system dynamics, the next proposition
shows that (10) can be solved by means of standard convex
optimization techniques.

Proposition 1: The scenario optimization problem (10) is
equivalent to the following semidefinite program:

min
Φu,γ

γ (11a)

subject to (10b) , ∀θk ∈ D , ∀i ∈ {1, . . . , S} ,∥∥(Hk
xΦx(θ

k) +Hk
uΦu)iH

k
w

∥∥
2
≤ hk , (11b)

I

[
Q

1
2Φx(θ

k)

R
1
2Φu

]
⋆ γI +

[
Q

1
2Ψx(θ

k)

R
1
2Ψu(θ

k)

]⊤ [
Q

1
2Ψx(θ

k)

R
1
2Ψu(θ

k)

]
 ⪰ 0 , (11c)

where Hk
w =Hw(θ

k), S is the number of constraints in (5),
and ⋆ denotes entries that can be inferred from symmetry.

We remark that the operators Ψx(θ
k) and Ψu(θ

k) in (11c)
are the noncausal system responses associated with a bench-
mark policy that is optimal for the specific realization θk of
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the uncertain system parameters. For each θk ∈ D, enforcing
(11c) hence requires to first evaluate the corresponding opti-
mal closed-loop behavior in hindsight using (8). Establishing
regret guarantees relative to the clairvoyant optimal policy
Ψu(θ

k), which is impossible to compute without knowledge
of θk, constitutes our main motivation towards adopting
sampling techniques in a competitive setting, shedding light
on an interesting application of scenario optimization beyond
those in stochastic model predictive control [21].

Remark 1: As the number of uncertainty samples in D in-
creases, solving (11) through semidefinite programming may
represent a major computational bottleneck. In Section IV,
we numerically show how imposing a Toeplitz block struc-
ture on Φu can substantially reduce this computational bur-
den, at the price of an only slight increase in conservativeness
in our regret bound. We refer the accompanying technical
report [20] for more detailed discussion on scalability.

Let Φ⋆
u(Ψu(θ),D) and R̄⋆N (Ψu(θ),D) denote the optimal

policy and the optimal value of (10), respectively. Since only
a finite subset of the constraints of (9) are considered in
(10), we have that R̄⋆N ≤ R̄⋆, that is, R̄⋆N is an optimistic
lower bound on the true minimax regret R̄⋆. Conversely,
thanks to Proposition 1 and exploiting key results in scenario
optimization, we now show that the solution of (10) is
approximately feasible for (9) – in the sense that the measure
of the set of original constraints that it violates rapidly
approaches zero as N increases. Before formalizing this
generalization property in the theorem below, we observe that
multiple optimal policies for (11) may exist, since the func-
tion λmax(·) is not strongly convex. In this case, uniqueness
of Φ⋆

u(Ψu(θ),D) can be enforced by designing a convex tie-
break rule, e.g., a lexicographic criterion [22]. Conversely, if
the safety constraints (10c) are overly restrictive, the scenario
problem (11) may become infeasible; if this were the case,
however, the original problem (9) would also certainly be
infeasible, and one would need to consider broader classes
of policies, or to relax the safety requirements, e.g., by
introducing slack variables in (10c).

Theorem 1: Fix any violation and confidence levels, say
ϵ and β, in the open interval (0, 1), and let δ and PN

θ denote
the number of optimization variables in (10) and the N -fold
product distribution Pθ×· · ·×Pθ with N terms, respectively.
If the scenario optimization problem (10) is feasible and N >
δ satisfies

∑δ−1
j=0

(
N
j

)
ϵj(1−ϵ)N−j ≤ β, then, with probability

of at least 1− β given a dataset D ∼ PN
θ , it holds that:

Pθ

(
max

∥w∥2≤1
R(Φ⋆

u,Ψu(θ),w,θ) ≤ R̄⋆N ,

and (x,u) ∈ S(θ) , ∀w ∈ W(θ)
)
≥ 1− ϵ . (12)

Theorem 1 presents an explicit sample complexity bound
that, given a priori specified ϵ and β, ensures that the safety
and regret guarantees extend to all but at most a fraction
ϵ of unseen dynamics θ ∈ Θ with probability 1 − β. As
well-known in the literature on scenario optimization, the
minimum number of scenarios N(ϵ, β) required to fulfill the
conditions of Theorem 1 grows linearly with ϵ−1, yet at most
logarithmically with β−1. Hence, even if a very small β is

selected – so that (12) holds with practical certainty – the
number of scenarios to be sampled remains manageable, see
also [21]. Further, we note that the condition on N given
in Theorem 1 is tight for fully-supported problems [15]; a
simpler, albeit not tight, sufficient condition on N is [14]:

N ≥ 2ϵ−1(δ + log(β−1)) . (13)

A. Comparison with worst-case oriented synthesis

Our main motivation towards embracing a scenario per-
spective is that randomized approaches allow us to explicitly
compute ψ(w,θ) by replacing the uncertain system dynam-
ics with their sampled counterparts. Regret bounds relative to
the instance-wise optimal benchmark ψ(w,θ) are attractive,
as they yield upper bounds on the closed-loop cost that adapt
to the realized dynamics θ and perturbation w. To illustrate
this point more thoroughly, let us consider an alternative
design based on a classical worst-case H∞ objective:

{Φ⋆
u,H, H̄

⋆
N} = argmin

Φu,γ
γ (14)

subject to (10b) , (10c) ,

max
∥w∥2≤1

J(Φu,w,θ
k) ≤ γ , ∀θk ∈ D .

Leaving safety concerns aside to ease the discussion, the
control policies Φ⋆

u and Φ⋆
u,H offer the following probabilistic

performance guarantees:

J(Φ⋆
u,w,θ)− J(Ψu(θ),w,θ) ≤ R̄⋆N , (15)

J(Φ⋆
u,H,w,θ) ≤ H̄⋆N , (16)

for any θ ∈ Θ and any w with ∥w∥2 ≤ 1. In particular,
while the H∞ solution provides a single pessimistic up-
per bound on the closed-loop cost as per (16), our regret
optimal policy gives a non-uniform certificate shaped by
J(Ψu(θ),w,θ) as per (15). Moreover, our upper bound on
J(Φ⋆

u,w,θ) is tighter than that on J(Φ⋆
u,H,w,θ) whenever

J(Ψu(θ),w,θ) ≤ H̄⋆N − R̄⋆N . (17)

As we will numerically show in the next section, (17) not
only holds consistently over several classes of disturbances,
but this tighter guarantee in terms of upper bounds often
translates into improved performance, that is, J(Φ⋆

u,w,θ) ≤
J(Φ⋆

u,H,w,θ), no matter which θ realizes. In this sense,
regret minimization can alleviate the conservatism of (14).

IV. NUMERICAL RESULTS

In this section, we first validate numerically the proba-
bilistic regret guarantee we have established in Theorem 1,
and we then show how this guarantee allows improving the
overall closed-loop performance in face of the uncertain sys-
tem dynamics. For our experiments, we consider a discrete-
time stochastic mass-spring-damper system described by the
uncertain linear dynamics:

xt+1 =

[
1 Ts

− (k+δk)Ts

m 1− (c+δc)Ts

m

]
xt +

[
0
Ts

m

]
ut + wt ,

with mass m = 1kg, nominal spring and damping constants
k = 1Nm−1 and c = 1Nm−1 s, respectively, and sampling
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time Ts = 1 s. This simple model is often used to describe
the behavior of several physical systems, including vibrating
structures, suspension systems, and mechanical oscillators;
the uncertain parameters θ =

[
δk δc

]⊤
can thus model

deviations from the nominal parameters arising in the mass
production process of these devices. We assume that θ is
constant over the control horizon T = 20, and that it is uni-
formly distributed, i.e., δk ∼ U[−0.2,0.2] and δc ∼ U[−0.2,0.2].
We define the control cost (2) by letting Q = I20 ⊗ I2
and R = I20, where ⊗ denotes the Kronecker product. For
simplicity and to focus on the advantages brought about by
regret minimization, we assume that no safety constraints are
imposed on the system.

To corroborate our main theoretical result in Theorem 1,
we repeatedly solve (11), each time considering a dataset
Di with an increasing number Ni of training scenarios. In
particular, for each θk ∈ Di, we use (8) to compute Ψu(θ

k)
as the closed-loop map associated with the unconstrained
optimal policy in hindsight; according to (7), we obtain the
corresponding Ψx(θ

k) by F (θk)Ψu(θ
k) + G(θk). Then,

given a set of 10000 independently sampled uncertainty in-
stances for validation, we estimate the probability in (12) by
recording how often the optimal policy Φ⋆

u(Ψu(θ),Di) fails
to comply with the associated regret bound R̄⋆Ni

(Ψu(θ),Di).
To showcase the effect of time-invariant controller struc-
ture discussed in Remark 1, we repeat these experiments
while including in (11) the additional constraint that the
solution Φ̂⋆

u(Ψu(θ),Di) has constant block diagonal terms.
We denote the regret bound associated to Φ̂⋆

u(Ψu(θ),Di)
by R̂⋆Ni

(Ψu(θ),Di) ≥ R̄⋆Ni
(Ψu(θ),Di). In Figure 1, we

plot the evolution of the empirical violation probabilities
V (Φ⋆

u,Ψu(θ),Di) := V̄N and V (Φ̂⋆
u,Ψu(θ),Di) := V̂N

associated with Φ⋆
u and Φ̂⋆

u, respectively, as a function
of the dataset size.2 For completeness, we also display
the (non-tight) theoretical upper bounds on the violation
probability ϵ given by (13) for β = 0.1. In Figure 2,
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Fig. 1. Comparison between empirical regret violation probability and
theoretical upper bound as a function of the number of sampled scenarios.

we compare the regret certificates R̄⋆N and R̂⋆N provided
by the control policies Φ⋆

u and Φ̂⋆
u, respectively, as well

as the computation times τ̄N and τ̂N required to evalu-

2The source code that reproduces our numerical examples is available at
https://github.com/DecodEPFL/ScenarioSafeMinRegret.
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Fig. 2. Evolution of the probabilistic worst-case regret bounds (denoted
by R̄⋆N and R̂⋆N on the left y-axis) and of the computation times (denoted
by τ̄N and τ̂N on the right y-axis) for the exact and approximate solutions
of (11), respectively, as a function of the number of considered scenarios.

ate them via semidefinite optimization.3 Besides validating
our theoretical results, these figures allow us to draw the
following observations. First, the approximate solution Φ̂⋆

u

with constant block diagonal terms guarantees regret at most
9% higher than Φ⋆

u with high probability, yet its evaluation
requires a computation time τ̂N that is lower than τ̄N by
an entire order of magnitude. Second, consistently with the
intuition that simpler models are less prone to overfit, we
observe that Φ̂⋆

u achieves better generalization than Φ⋆
u,

as the out-of-sample empirical violation probability V̂N is
consistently smaller than V̄N . Third, the quantities V̂N and
R̂⋆N rapidly converge to their corresponding limit values as N
increases, suggesting that the minimax solution to (9) could
be practically approximated by sampling a limited number of
uncertainty instances only. Motivated by these considerations
and with the aim of further reducing the computational
complexity of our scheme, we plan to study the possible
application of wait-and-judge [22] and constraint removal
[23] approaches in future work.

Next, to illustrate the potential of our method, we com-
pare the performance of the policies πR and πH computed
solving (11) and (14), respectively, using N = 5000 random
samples of δk and δc. For several classes of disturbances w
often encountered in practice, we evaluate the control costs
J(πR,w,θ), J(πH,w,θ) and J(ψ,w,θ) for 20 different
values of θ. In Figure 3a, we plot J(Ψu(θ),w,θ) and
compare it with H̄⋆N − R̄⋆N to verify, according to (17), when
(15) yields tighter upper bounds than (16) on the realized
performance. In Figure 3b, we instead display the percentage
increase in the cost due to using πH instead of πR, that is,4

∆J̄(w,θ) =
J(πH,w,θ)− J(πR,w,θ)

J(πR,w,θ)
:= ∆J̄ .

As already observed in previous work for perfectly known
systems [4], [5], [7], Figure 3 shows that regret minimization
constitutes a viable control design strategy for improving
the closed-loop performance when the disturbances do not
match classical design assumptions – in terms of both
lower upper bounds (Figure 3a) and lower realized costs

3All optimization problems have been solved using MOSEK on a standard
laptop computer with a 2.3 GHz Intel Core i9 CPU.

4For stochastic disturbances, results are averaged over 104 realizations.
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(a) Control cost J(Ψu(θ),w,θ) incurred by the clairvoyant optimal policy.

Uncertain system realizations
-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

"
7 J

Gaussian Uniform Ramp Constant Stairs Worst

(b) Average percentage increase in the cost incurred by πH relative to πR.

Fig. 3. Closed-loop comparison between πH and our πR: a priori performance guarantees and realized control cost for different disturbance profiles and
different realizations of the uncertain system dynamics. Points in the green shaded area denote instances where the proposed regret minimization approach
yields an advantage in terms of lower upper bound (Figure 3a) and realized performance (Figure 3b). We refer to our source code for a precise definition
of the considered disturbance profiles.

(Figure 3b). Most importantly, our results show that re-
gret optimal policies continue to offer these performance
advantages consistently in face of the uncertain dynamics.
Interestingly, we further observe that the policy πR often
outperforms πH even for the worst-case disturbancew. While
this may seem counterintuitive, we note that πH ensures
minimum cost on a single pair of worst-case disturbances and
parameters (wworst,θworst) only. Conversely, for randomly
sampled instances of the uncertain parameters θ ̸= θworst,
the policy πH retains no optimality guarantee on the cost that
it incurs under the most averse perturbation w for that θ.

V. CONCLUSION

We have presented a novel method for convex synthesis
of robust control policies with provable regret and safety
guarantees in face of the uncertain stochastic dynamics.
As the clairvoyant optimal policy we compete against is
unknown in this setting, we have proposed sampling the
space of parameters that characterize the system dynamics.
Leveraging results from the theory of scenario optimization,
we have shown that the policy that minimizes regret robustly
over these randomly drawn uncertainty instances retains
strong probabilistic out-of-samples guarantees. Finally, we
have presented numerical experiments to corroborate our
theoretical results, and to highlight the potential of regret
minimization in adapting to heterogeneous dynamics and dis-
turbance sequences. Interesting directions for future research
encompass studying infinite-horizon control problems, ad-
dressing computational complexity challenges for real-time
implementation, and extending the theory of this emerging
competitive framework to systems with nonlinear dynamics.
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