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Abstract— A new method for UAV state estimation based
on high accuracy multi Round Trip Time measurements with
respect to multiple 5G base stations is presented. The proposed
algorithm employs interacting multiple model filtering, with the
nonlinear measurement equations handled by extended Kalman
filters. A hovering movement mode is introduced, and used
together with the normal flight modes such as straight line
motion and maneuvering. This approach enhances the state es-
timation for monitoring UAV traffic using cellular connectivity,
particularly in applications such as border surveillance and
safeguarding sensitive areas like airports. Simulations are used
to illustrate the performance of the algorithm.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly referred to
as drones have evolved in recent years. UAVs are today
used in a variety of applications including gathering of
information, disaster management, geographical mapping of
inaccessible terrain, and for search and rescue operations [1].
Modern drones have high maximum speeds and extended
flight endurance. By exploiting cellular connectivity they
can therefore travel long distances, far beyond visual range
[2]. Such new remote flight modes increase the risk for the
general public. In addition, uncoordinated flight increases the
risk of in-air collisions [3].

The unauthorized operation of so called rogue drones in
proximity to airports poses a potential hazard to commercial
aircraft. In 2018 such an incident occurred at Gatwick
International Airport, London, UK, resulting in the tempo-
rary suspension of the air traffic with multi-million dollar
consequences. It is also well known that UAVs are used for
illegal surveillance and drug trafficking close to and across
border regions. The need for wide area Air Traffic Control
(ATC) for drones is therefore widely discussed in e.g. [3]-[8].

An ATC system for UAVs is complicated. UAV tracking
functionality using data from cellular systems, as discussed
by this paper, has several advantages. As compared to pri-
mary radar, the identity of the cellular based radio measure-
ment is always available. This avoids the need for data asso-
ciation, track initiation and clutter suppression that are main
tasks in a radar tracking system [9], [10]. In the present paper
new Round Trip Time (RTT) measurements [11], [12], with
respect to multiple 5G base stations is the main source of
information. It can be noted that such measurements cannot
be disabled by the drone pilot, which means that the drone
tracking cannot be affected by a rogue pilot that exploits
cellular connectivity for flight. Another alternative is to base
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the tracking on measurements of Doppler frequencies, or to
use a combination of RTT and Doppler [13].

Several state estimators for air vehicles have been pro-
posed in the literature. The Interacting Multiple Model
(IMM) algorithm, [14]-[16], uses a Markov model to merge
an arbitrary number of movement modes, typically for-
mualted as dynamic state space models. In [17], particle
filters have been proposed for enhancing air target tracking,
However, it should be highlighted that particle filters, in
contrast to IMM filters, are more complex and require a
better measurement accuracy to deliver a significant perfor-
mance improvement. There are also state estimators more
simple than the IMM filter. For example, the Markov mode
probabilty model can be replaced by an ad-hoc maneuvre
detector [10]. However, the complexity advantage is small,
at the same time as a dual mode IMM filter has been shown
to give a performance comparable to ad-hoc algorithms with
10 times as many modes [13]-[16].

The main engineering contributions of the paper includes
range measurement based UAV state estimation using RTT
measurements from multiple 5G base stations to an UAV.
The state estimation is performed in Cartesian 3D position,
velocity and acceleration state coordinates of the UAV. More
advanced state estimation, like estimation of the attitude of
the UAV, is infeasible based on RTT ranging measurement.
The data fusion is performed by three Extended Kalman
Filters (EKFs) [9], that handle the nonlinear RTT measure-
ment models, within a three mode IMM framework [14]-
[16]. Technically, the movement mode includes an uncon-
ventional hovering mode, a constant velocity flight mode
and a maneuver flight mode. The proposed state estimation
technology also restricts direct switching between constant
velocity movement and hovering. The state and measurement
modeling exploits continuous time models that are sampled,
which allows for processing of irregular measurements.
This is a key feature for the application since the tracking
system performs data fusion of RTT measurements from
multiple, non-colocated base stations. This relaxes the real
time requirements significantly. Note that for a fair and easy
comparison of the results, the same notation as in [13] is
used.

The rest of the paper is organized as follows. Section
II-A defines the IMM and extended Kalman filters. The
UAV movement models, measurement models, mode switch
models and mode mixing for different dimension states are
presented in Sections II-B, II-C, II-D and II-E. Numerical
examples are given in Section III. Conclusions appear in
Section IV.
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Fig. 1. Block diagram of the IMM filter depicted for three movement models of the UAV.

II. UAV STATE ESTIMATION

A. IMM and Extended Kalman Filters

The IMM algorithm assumes that the system behaves
according to one of a finite number of models which repre-
sents one of several movement modes. The transition model
probability from one model to another model is governed by
the Markovian process. Fig. 1 shows the block diagram of
the IMM filter for UAV state estimation. At each time step
tk, the state estimate x̂j(tk|tk) and state covariance matrix
P̂j(tk|tk) are computed under each possible model using
three filters, with each filter using a different combination
of the state estimates at the previous update time, as initial
values.

The IMM algorithm is summarized below, cf. [9], [16]:
Step 1: Calculation of mixing probabilities. The mixing

probabilities µ(.) are defined as the probability of
mode j being in effect at time tk, given that mode i
was in effect at time tk−1, conditioned on the data
Z(k−1) up to time tk−1. Thus

µi|j(tk−1|tk−1) =
1

c̄j
pij(tk, tk−1)µi(tk−1), (1)

where pij is the transition model probability from
model i to model j where i, j = 1, 2, 3. The
normalizing constant c̄j is

c̄j =

r∑
i=1

pij(tk, tk−1)µi(tk−1). (2)

The mixed initial state and covariance are obtained
as

x̂oj(tk−1|tk−1)

=

r∑
i=1

µi|j(tk−1|tk−1)x̂
i(tk−1|tk−1), (3)

Poj(tk−1|tk−1)

=

r∑
i=1

µi|j(tk−1|tk−1)
(
Pi(tk−1|tk−1)

+(x̂i(tk−1|tk−1)− x̂oj(tk−1|tk−1))

×(x̂i(tk−1|tk−1)− x̂oj(tk−1|tk−1))
T
)
. (4)

Here × denotes multiplication.
Step 2: The mode-conditioned filtering is performed by

three EKFs. Each mode is modeled as a linear
stochastic difference equation, obtained by sam-
pling from a stochastic differential equation, and
a nonlinear measurement equation. Since the mea-
surement update requires a linearized measurement
matrix in case the EKF is used [9], the linearization
of the measurement equation around the predicted
state is needed.
The underlying stochastic difference equation of the
EKF is

xj(tk+1) = Aj(tk+1, tk)x
j(tk) +wj(tk) (5)

zj(tk) = hj(xj(tk)) + ej(tk), (6)

where x(tk) is the system state, Aj(tk+1, tk) is
the system matrix, and zj(tk) is the measurement
model. The process noise is denoted by wj(tk),
while ej(tk) denotes the measurement noise. The
corresponding covariance matrix and variance are
denoted Qj(tk, tk−1) and Rj(tk).
This results in the EKF iteration

x̂j(tk|tk−1) = Aj(tk, tk−1)x̂
j(tk−1|tk−1)

Pj(tk, tk−1) = Aj(tk, tk−1)P
j(tk−1|tk−1)

×
(
Aj(tk, tk−1)

)T
+Qj(tk, tk−1)
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ẑj(tk|tk−1) = hj(x̂j(tk|tk−1))

Hj(x̂j(tk|tk−1)) =
∂hj(x̂)

∂x̂ |x̂=x̂j(tk|tk−1)

εj(tk) = zj(tk)− ẑj(tk|tk−1)

Sj(tk) = Hj(x̂j(tk|tk−1))P
j(tk|tk−1)

×
(
Hj(x̂j(tk|tk−1))

)T
+Rj(tk)

Kj(tk) =
1

Sj(tk)
Pj(tk|tk−1)

(
Hj(x̂j(tk|tk−1))

)T
x̂j(tk|tk) = x̂j(tk|tk−1) +Kj(tk)ε

j(tk)

Pj(tk|tk)

= Pj(tk|tk−1)−
1

Sj(tk)
Kj(tk)

(
Kj(tk)

)T
, (7)

where x̂(tk|tk−1) is the predicted state, ẑj(tk|tk−1)
the predicted measurement, εj(tk) denotes the pre-
diction error, and Kj(tk) is the Kalman gain.
Note that the above EKF processes each scalar
measurement separately, thereby avoiding a matrix
inversion step. This is natural for the nonuniformly
sampled EKF above, cf. [13].

Step 3: The mode probability evaluation requires the likeli-
hood of the latest measurement, z(tk), conditioned
on the mode and the initial state and covariance
matrices, i.e.,

Λj(tk) =
1√

2πSj(tk)
e
−

(z(tk)−hj(x̂oj(tk−1|tk−1)))2

2Sj(tk) ,

(8)
where Λj(tk) denotes the likelihood function for
mode j, and hj(x̂oj(tk−1|tk−1) is the nonlinear
measurement prediction at time tk, given the initial
state estimate. The corresponding predicted vari-
ance is given by

Sj(tk) = Hj(x̂oj(tk−1|tk−1))P
oj(tk−1|tk−1)

×
(
Hj(x̂oj(tk−1|tk−1))

)T
+Rj(tk). (9)

The mode probabilities become

c =

r∑
j=1

Λj(tk)c̄
j , (10)

µj(tk) = Λj(tk)c̄
j . (11)

Step 4: At the final step, the combination of the mode state
estimates and covariance matrix are obtained as

x̂(tk|tk) =
r∑

j=1

µj(tk)x̂
j(tk|tk), (12)

P(tk|tk) =
r∑

j=1

µj(tk)
(
Pj(tk|tk) + (x̂j(tk|tk)−

x̂(tk|tk))
(
x̂j(tk|tk)− x̂(tk|tk)

)T)
. (13)

B. UAV Movement Models

The new combination of movement modes include con-
stant velocity movement, constant acceleration movement
and hovering constant position movement which are detailed
in the following.

1) Constant velocity movement model: The states of the
constant velocity movement model are

x1 =
(
x1
1 x1

2 x1
3 ẋ1

1 ẋ1
2 ẋ1

3

)T
. (14)

The first three states represent the Cartesian position state
variables, with the third state representing altitude, the last
three state variables represent the corresponding velocity
components.

The stochastic differential equation for the constant veloc-
ity model is

dx1(t) = F1x1(t)dt+G1dw1(t), (15)

where the matrix F1 and the matrix G1 are [9]

F1 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (16)

G1 =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 . (17)

2) Constant acceleration movement model: The constant
acceleration model is defined using the states

x2 =
(
x2
1 x2

2 x2
3 ẋ2

1 ẋ2
2 ẋ2

3 ẍ2
1 ẍ2

2 ẍ2
3

)T
.

(18)
The model is:

dx2(t) = F2x2(t)dt+G2dw2(t), (19)

with

F2 =



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


, (20)
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G2 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


. (21)

3) Constant position model: The constant position hover-
ing model is defined by the states

x3 =
(
x3
1 x3

2 x3
3

)T
. (22)

The model is:

dx3(t) = F3x3(t)dt+G3dw3(t), (23)

where

F3 =

 0 0 0
0 0 0
0 0 0

 ,G3 =

 1 0 0
0 1 0
0 0 g

 . (24)

where parameter g in the process noise gain matrix G3 is
set to allow for more horizontal drift than vertical drift. The
process noise covariance for the three modes denoted by Mj

is defined as

Mj =

 qj1 0 0

0 qj2 0

0 0 qj3

 . (25)

The models (15), (19) and (23) need to be discretized for
IMM implementation, see [9] p. 192. A stochastic sampling
using Tk = tk − tk−1 as sampling interval, results in
the following system matrices and system noise covariance
matrices

A1(tk, tk−1) = A1(Tk)

=


1 0 0 Tk 0 0
0 1 0 0 Tk 0
0 0 1 0 0 Tk

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , (26)

A2(tk, tk−1) = A2(Tk)

=



1 0 0 Tk 0 0 0 0 0
0 1 0 0 Tk 0 0 0 0
0 0 1 0 0 Tk 0 0 0
0 0 0 1 0 0 Tk 0 0
0 0 0 0 1 0 0 Tk 0
0 0 0 0 0 1 0 0 Tk

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, (27)

A3(tk, tk−1) = A3(Tk) =

 1 0 0
0 1 0
0 0 1

 . (28)

Q1(tk, tk−1) = Q1(Tk) =

(
Q1

1(Tk) Q1
2(Tk)

Q1
2(Tk) Q1

3(Tk)

)
, (29)

where

Q1
1(Tk) =

 1
3q

1
1T

3
k 0 0

0 1
3q

1
2T

3
k 0

0 0 1
3q

1
3T

3
k

 , (30)

Q1
2(Tk) =

 1
2q

1
1T

2
k 0 0

0 1
2q

1
2T

2
k 0

0 0 1
2q

1
3T

2
k

 , (31)

Q1
3(Tk) =

 q11Tk 0 0
0 q12Tk 0
0 0 q13Tk

 , (32)

Q2(tk, tk−1) = Q2(Tk)

=

 Q2
11(Tk) Q2

12(Tk) Q2
13(Tk)

Q2
21(Tk) Q2

22(Tk) Q2
23(Tk)

Q2
31(Tk) Q2

32(Tk) Q2
33(Tk)

 , (33)

where Q2
12(Tk) = Q2

21(Tk), Q2
13(Tk) = Q2

31(Tk),
Q2

23(Tk) = Q2
31(Tk) and

Q2
11(Tk) =

 1
5q

2
1T

5
k 0 0

0 1
5q

2
2T

5
k 0

0 0 1
5q

2
3T

5
k

 , (34)

Q2
12(Tk) =

 1
4q

2
1T

4
k 0 0

0 1
4q

2
2T

4
k 0

0 0 1
4q

2
3T

4
k

 , (35)

Q2
13(Tk) = Q2

22(Tk) =

 1
3q

2
1T

3
k 0 0

0 1
3q

2
2T

3
k 0

0 0 1
3q

2
3T

3
k

 ,

(36)

Q2
23(Tk) =

 1
2q

2
1T

2
k 0 0

0 1
2q

2
2T

2
k 0

0 0 1
2q

2
3T

2
k

 , (37)

Q2
33(Tk) =

 q21Tk 0 0
0 q22Tk 0
0 0 q23Tk

 , (38)

Q3(tk, tk−1) = Q3(Tk)

=

 q31Tk 0 0
0 q32Tk 0
0 0 q33Tk

 . (39)
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C. Nonlinear Measurement Model

One way to measure range in cellular systems is to
measure the travel time of radio waves from a base station
to a mobile and back, i.e. perform an RTT measurement
[11], [12]. A radio frame is transmitted from the base station
to the UAV transceiver. The time between reception and
transmission in the UAV, denoted TRxTx, is recorded by the
UAV transceiver, and reported to the base station. The base
station computes the two way radio time of flight as

zRTT (tk) = TRTT = tRx − tTx − TRxTx. (40)

where tTx and tRx are transmission time and reception
time of the base station. In case of a Line-of-Sight (LOS)
transmission, the measurement can now be modeled in terms
of the states of the UAV and the speed of light c, which
results in

zj(tk) =
2

c
dj(x̂(tk|tk−1)) + eRTT (tk), (41)

Rj(tk) = E[eRTT (tk)]
2. (42)

dj(x̂(tk|tk−1)) =

((
x̂j
1(tk|tk−1)− xs

1

)2

+
(
x̂j
2(tk|tk−1)− xs

2

)2

+
(
x̂j
3(tk|tk−1)− xs

3

)2
) 1

2

, (43)

where the superscript s is a site number index. The measure-
ment equation is

hj(x̂j(tk|tk−1)) =
2

c
dj(x̂(tk|tk−1)). (44)

Straightforward differentiation of (44) for the three move-
ment modes gives

∂h1(x̂1)

∂x̂1
i |x̂1=x̂1(tk|tk−1)

=
(

∂h1(x̂1)
∂x̂1

1

∂h1(x̂1)
∂x̂1

2

∂h1(x̂1)
∂x̂1

3
0 0 0

)T

, (45)

∂h1(x̂1)

∂x̂1
i |x̂1=x̂1(tk|tk−1)

=
2

c

(
x̂1
i (tk|tk−1)− xs

i

)
d1(x̂(tk|tk−1))

, i = 1, 2, 3,

(46)

∂h1(x̂1)

∂x̂1
i

= 0, i = 4, 5, 6. (47)

∂h2(x̂2)

∂x̂2
i |x̂2=x̂2(tk|tk−1)

=
(

∂h2(x̂2)
∂x̂2

1

∂h2(x̂2)
∂x̂2

2

∂h2(x̂2)
∂x̂2

3
0 0 0 0 0 0

)T

,

(48)

∂h2(x̂2)

∂x̂1
i |x̂2=x̂2(tk|tk−1)

=
2

c

(
x̂2
i (tk|tk−1)− xs

i

)
d2(x̂(tk|tk−1))

, i = 1, 2, 3,

(49)

∂h2(x̂2)

∂x̂2
i |x̂2=x̂2(tk|tk−1)

= 0, i = 4, ..., 9. (50)

∂h3(x̂3)

∂x̂3
i |x̂3=x̂3(tk|tk−1)

=
(

∂h3(x̂3)
∂x̂3

1

∂h3(x̂3)
∂x̂3

2

∂h3(x̂3)
∂x̂3

3

)T

, (51)

∂h3(x̂3)

∂x̂3
i |x̂3=x̂3(tk|tk−1)

=
2

c

(
x̂3
i (tk|tk−1)− xs

i

)
d3(x̂(tk|tk−1))

, i = 1, 2, 3.

(52)

D. Mode Switching Model

The mode transition probability matrix of the IMM filter
in (1) is selected as

pij =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 . (53)

A new restricting transition probability model is used, related
to the physics of the UAV movement. When the UAV is in
constant velocity movement, an immediate stop is not possi-
ble. This means that the sequence of mode transitions is from
the straight line movement mode, over the maneuver flight
mode, to the hovering mode. The direct mode transmission
from the first mode to the third mode is therefore forbidden.
This is reflected by new constraints in the mode transition
probability matrix (52) as

p13 ≤ ϵ13, p31 ≤ ϵ31, (54)

where ϵ13 and ϵ31 are both much smaller than 1.

E. Mode Mixing for Different Dimension States

Since the state vectors of the three movement models have
different dimensions, the mode mixing of the state and cor-
responding covariance matrix cannot be done in the standard
way. A simple approach is to augment the constant velocity
movement mode and constant position movement mode state
vectors and covariances to match the dimension of the state
vector and covariance matrix in the constant acceleration
movement model, cf. [18]. Therefore, the augmented first
and third mode state estimate vectors become

x̂(1,a) =
(
x̂1
1 x̂1

2 x̂1
3 x̂1

4 x̂1
5 x̂1

6 0 0 0
)T

,
(55)

x̂(3,a) =
(
x̂3
1 x̂3

2 x̂3
3 0 0 0 0 0 0

)T
. (56)

The corresponding augmented covariance matrices be-
come

P(j,a)(tk|tk) =
(

Pj(tk|tk) 0
0 0

)
, (57)

where j = 1, 3. The augmented zeros in (57) are selected
to match the dimension of the covariance of the constant
acceleration movement model.
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Fig. 2. Estimated drone trajectory (red) and true trajectory (blue).

III. NUMERICAL RESULTS

The operation and performance of the UAV state es-
timation algorithm are illustrated in this section. The
UAV movement profile was selected to obtain a mix of
three modes over time. It starts with an initial posi-
tion (x̂1(t0|t−1) x̂2(t0|t−1) x̂3(t0|t−1))

T = (0 0 0)Tm
and initial velocity (x̂4(t0|t−1) x̂5(t0|t−1) x̂6(t0|t−1))

T
=

(0 0 0)T m/s. The UAV movement profile includes constant
acceleration (increasing velocity), coordinated turns (to the
left and right), decreasing velocity and hovering. The base
stations locations are selected as:

s1 =
(

200 100 5
)T

m

s2 =
(

100 -100 30
)T

m

s3 =
(

600 -50 50
)T

m

s4 =
(

500 50 40
)T

m

s5 =
(

30 0 100
)T

m

s6 =
(

400 20 120
)T

m.

These locations are selected for illustration purposes. The
reason is that real base station locations are typically classi-
fied, which prevents the use of a live simulation scenario.

The RTT measurements are generated with a mean mea-
surement sampling period of 1.0 s. The process noise gain
matrix parameter in (24) is selected as g = 0.001. Process
noise standard deviation for constant velocity, acceleration
and hovering modes are q11 = q12 = q13 = 0.001 m2s−3, q21 =
q22 = q23 = 1.0 m2s−5 and q31 = q32 = q33 = 0.01 m2s−1.
The measurement noise standard deviation is set to 10 m.

The mode transition probability matrix is set to

pij =

 0.98 0.05 0.001
0.5 0.8 0.05
0.1 0.06 0.95

 . (58)

The initial covariance matrices for the three modes are cho-
sen diagonal, with P1(t0|t−1) diagonal elements as p111 =
p122 = p133 = 100 m2, p144 = p155 = p166 = 4 m2/s2,
P2(t0|t−1) diagonal elements as p211 = p222 = p233 =
100 m2, p244 = p255 = p266 = 4 m2/s2, p344 = p355 = p366 =
1 m2/s4, and P3(t0|t−1) as p311 = p322 = p333 = 100 m2.

Fig. 2 shows the estimated position trajectory of the UAV.
The trajectory estimated by the IMM filter is very accurate,
given the challenging nonlinear estimation problem. Esti-
mated mode probabilities for the three movement models are
shown in 3. It can be seen that estimated mode probabilities
behave as expected and contribute to the high performance
of the algorithm.

The main sources of error are the RTT measurement
errors. These errors are a combination of the measurement
errors in the UAV and in the base station, together with
the resolution (quantization) of the RTT measurements, cf.
(40). Referring to [11] and [12] that report the measurement
inaccuracy for 3G, it is expected that 5G measurement errors
should be at least 10 times better.

Additional potential impairments include clock offsets
between measurement sites as well as signaling delays of
measured information between the measuring and state es-
timation nodes. However, neither of these are significant.
This is due to the processing of time tagged and irregularly
sampled RTT measurements, meaning that signaling delays
of a few milliseconds are negligible. The time tagging is
typically significantly better than 1 millisecond in 5G.

The geometry of the measurement sites is another very
significant factor that impacts the tracking inaccuracy. This is
discussed at length in [13]. As compared to the results of [13]
that combine RTT with Doppler, the accuracy is better in the
present paper. The main reason is that more sites contribute
to reduce the estimation errors here.
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Fig. 3. Estimated mode probabilities.

IV. CONCLUSIONS

The paper considered state estimation of UAVs using
an IMM algorithm in 5G cellular networks. The proposed
approach employs irregularly sampled RTT measurements
from multiple base stations to estimate the position, velocity
and acceleration of the UAV. The IMM algorithm is designed
with three movement modes, a straight line movement mode,
a maneuvering flight mode and an unconventional hovering
mode with nonlinear measurement equations processed by
EKFs. A new restricting transition probability model was
introduced. The performance of the algorithm was illustrated
using a numerical example. The estimated trajectory was
found to be highly accurately, exploiting all three movement
modes as desired.
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