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Abstract— In this study, we simulate the automatic control
of an electric wheelchair for indoor Pac-Man-style navigation
using solely thought commands. We delve into the decision-
making mechanisms of an operational EEG-based brain com-
puter interface that employs a visual oddball paradigm. We
investigate strategies to enhance the efficiency of decision-
making processes, aiming to accelerate response times while
maintaining a defined error rate. Furthermore, we explore
methodologies to decrease the user’s cognitive load by reducing
the number of stimuli needed before an action.

Index Terms— Applications in neuroscience; Statistical learn-
ing; Emerging control applications

I. INTRODUCTION

Controlling a wheelchair via a Brain Computer Interface
(BCI) enables persons with limited motor skills to move
around freely. This provides greater autonomy and quality of
life to individuals with profound motor impairments, such as
individuals afflicted by locked-in syndrome [10]. Electroen-
cephalography (EEG) is one of the most popular methods
to record brain activity in BCIs, enabling the interpretation
of user intentions [7, pp. 15–25]. EEG has been used for
controlling a wheelchair in numerous studies, with a recent
advancement using a combination of EEG alongside other
input modalities, such as muscle and eye tracking, to provide
more dependable control options [6]. Another example uses
a camera to identify surrounding objects, allowing the user
to select their desired destination [11].

A few well-known patterns of brain activity, so-called BCI
paradigms, can be used in BCIs. One is the motor imaginary
(MI) paradigm, where the user imagines the movement of a
limb, such as the right hand. One is the steady-state visual
evoked potentials (SSVEP) paradigm, where the frequency of
attenuated flickering stimuli is identified. Another example is
the P300 paradigm, which relies on the brain’s spontaneous
response to anticipated and unanticipated stimuli, specifically
the detection of P300 signals. In this paper, we use the P300
paradigm. The scenario is such that when the user needs to
decide on a direction to turn, they are presented with arrows
symbolizing various choices, like continuing straight ahead
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Fig. 1: Block diagram of the control loop. The process
consists of the human user’s brain B, Analog to Digital Con-
version (ADC), EEG preprocessing, and a machine learning
feature map Φ, outputting the signal y corresponding to how
well this specific stimulus matches the user’s intention. The
pprior is used as input to the controller, and the pposterior is the
output, representing the probability for each possible choice.
Before the user decides, the number of choices and their ini-
tial probabilities pprior are estimated, either through historical
data or through situational analysis. The probabilities pposterior
are then improved by showing visual stimuli to the user, and
the user’s EEG response gives a hint of their preference.
When the error rate is low enough, the Action, decided by
pposterior, can be taken.

or turning left. The brain will involuntarily elicit a P300
signal when the target stimulus (the arrow representing the
user’s intended choice) is shown. This P300 signal can be
detected and used for identifying the target stimulus. The
difficulty lies in the fact that P300 signals are prone to
noise, and repeated measurements are needed to decode the
user’s intent. The cognitive load for reacting to stimuli for
a prolonged time is high, which is tiresome for the user.
This paper studies how to reduce the number of stimuli in
a BCI system that acts upon the measured signals, while
guaranteeing the performance of the system. In our setup,
the controller decodes the user’s intent, known as the target
stimuli, and determines which stimuli to present to the user,
referred to as the control signal. In this paper, we leverage the
stimuli selection algorithm presented in [12] by concentrating
on the performance assurances that such a controller can
give.
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The scope of this problem formulation extends beyond
wheelchair control. At its core, the challenge involves swiftly
identifying the user’s intent within a constrained time-
frame, minimizing the number of stimuli presented. How-
ever, wheelchair control is a concrete illustrative example
of the problem, which we will primarily focus on in this
paper. Furthermore, an autonomous wheelchair solves an
actual problem faced by persons with limited motor skills,
rendering it a pertinent example.

Given the critical importance of safety, most BCI-
controlled wheelchairs incorporate collision-avoidance sys-
tems based on sensors like infrared or ultrasonic rangefind-
ers. These systems override or correct the wheelchair’s path
to prevent a collision [10]. Sensors can also be used in a
corridor setting to detect upcoming turns that need a decision.
This situation could be compared to the 80’s arcade game
Pac-Man (パックマン) [9].

This paper is a feasibility study of how the number of
shown stimuli before an action correlates to the error rate
of the action where the controller’s task is to decode the
intent of the user and choose the next stimulus to show the
user (the control signal). The paper also studies how branch
prediction and threshold early completion could be used to
reduce the number of stimuli, i.e., shorten decision time and
thus reduce the user’s cognitive load. We assume that the
navigation system would be able to keep a steady course in
an indoor setting (using technologies like lidar, depth-sensing
cameras, and SLAM algorithms [4]) and detect upcoming
turns from a five-meter distance for a wheelchair moving at
1 m/s. We have chosen to show visual stimuli to the user
twice per second. This means that the controller could show
up to ten stimuli for the user before identifying the user’s
intention. If the user’s intention is not identified within those
ten stimuli, the wheelchair must stop or guess what the user
wants, resulting in a sub-par user experience. On the contrary,
if the BCI can identify the user’s intention in fewer than ten
stimuli, the wheelchair can move faster.

In our simulations, we use publicly available BCI data
from a P300 EEG experiment for target and nontarget stimuli
(see details in the next section). Even though the data
is not from a wheelchair setting, the brain’s response to
target and non-target stimuli is the same regardless of the
specific details of the stimuli [7, pp. 503–506]. Thus, it is
motivated to use our selected dataset. EEG data from other
BCI paradigms, such as SSVEP, have been in other studies
[6]. We chose to use the P300 paradigm since it allows all
users with a functioning vision to use the system and is
generally less tiresome than the SSVEP paradigm due to
the less intrusive way of presenting stimuli. Other types of
inputs, such as joystick movement or gaze tracking, could
also have been used to control the wheelchair but are not
considered in this paper as they are not pure BCI solutions.

II. METHODS

A. Control structure

The control structure for a BCI-controlled wheelchair can
be described with a block diagram as in Fig. 1, where the
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Fig. 2: Two feature maps Φ and their resulting PDFs, where
red is non-target and blue is target, in (a) a Riemannian
tangent space logistic regressor normalized with z-scoring,
and in (b) the distance to the hyperplane in a Support
Vector Machine (SVM). The Kullback-Leibler divergence
score, printed in the lower left corner of each plot, states
the degree of separation between the red non-target and blue
target areas, and a higher value means better separation.

internal flowchart of the process and controller is also visible.
Prior probabilities pprior go into our controller, which selects
a stimulus u, using Thompson sampling, to show the user.
The Thompson algorithm used for stimuli sequence selection
is discussed in [12]. Statistically, in our setup, the brain
is a highly non-linear function B(u), taking an image as
input u corresponding to a certain choice, producing a time
series of 500 ms of EEG data, represented as a matrix X
of size (channels, samples). We decimate the 512 Hz 16
channel X by a factor 10, bandpass filter 0.5-20 Hz, and
normalize the amplitude in the preprocessing block. The
feature map Φ is then applied, producing the feature map
value y ∈ R. This y is interpreted into a target probability
in the controller via a Gaussian mixture model (GMM), and
the posterior probabilities pposterior are then updated using
Bayesian statistics. The action the wheelchair takes is based
on pposterior.

B. Decoding the user intent from EEG data

As described above, the controller updates the probabilities
pposterior based on the feature map value y ∈ R which
is the EEG data mapped to y with a feature map Φ, as
described in [12]. Fig. 2 shows the data distribution of y
for target and non-target stimuli for two different feature
maps. In this paper, the SVM score feature map is used. The
target and non-target distributions’ separation can be rated
with the Kullback-Leibler divergence score [12]. Since the
distributions are overlapping, it is clear that only one sample
from the target/non-target choice may not always be enough
to decode the user intent. Showing more stimuli generally
means that the probability pposterior for the user’s intended
choice gets closer to one, and the probability for the other
choices goes to zero. The rate at which this will happen
corresponds to the Kullback-Leibler divergence score of the
PDF.
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C. Statistical distribution of feature maps

1) Bayes’ theorem: The formula for Bayes’ theorem is

pposterior =
p(y|x)pprior

p(y)
.

The controller uses this formula to update the estimated
probabilities p of the choices.

2) Gaussian mixture models: Mathematically, the GMM
can be represented as:

p(x) =

K∑
i=1

πiN (x|µi,Σi),

where K is the number of Gaussians in the mixture, πi de-
notes the mixing coefficient of the ith Gaussian (

∑K
i=1 πi =

1), µi is its mean, and Σi is its covariance matrix. We use the
expectation-maximization (EM) algorithm [2] to fit a two-
dimensional GMM with three Gaussian components for the
target and non-target data respectively [3, 8].

D. Error rate

The error rate is used to evaluate the real-time decision-
making limitations for a BCI-controlled wheelchair. The
error rate states the ratio of wrong actions the controller
takes. In other words, an error rate of 10−3 means that one
time out of a thousand, the wheelchair will make a turn the
user did not intend to take. Due to the collision-avoidance
system the wheelchair will never crash into a wall but might
continue straight when the user wanted to turn. Which error
rate is considered acceptable is up for debate. In this paper,
we have chosen an error rate of 10−3 and 50000 Monte
Carlo simulations of the decision process to provide error
rate data. The decision process refers to the process of the
controller selecting a stimulus u, receiving input y from the
process, updating the probabilities pposterior, selecting a new
stimulus u, and so on. The number of choices for a decision
is denoted C. For example, if the user can choose to turn
left, right, or continue straight, C equals 3.

E. Branch prediction

If the controller knows how the user usually turns in an
intersection, this information can be used as prior knowledge
for the probabilities, pprior, meaning that fewer stimuli are
needed before identifying the target choice. This is done
with so-called branch prediction, a term borrowed from
computer architecture used for achieving high performance
in modern pipelined microprocessors. The simulations in
this paper for branch prediction are run with the condition
that one choice has 90 % probability and the remaining
choices have even probabilities. For instance, if C = 3, then
pprior = [0.9, 0.05, 0.05] and in the intersection where the
user’s office is to the left, pprior implies that the user turns
left into their office 90 % of the time, goes straight 5 % of
the time, and turns right 5 % of the time. These percentages
are illustrative examples utilized in this paper. In an actual
scenario, these figures are revised each time the user chooses
a direction at an intersection. Thus, each intersection has its
own pprior.

F. Threshold early completion

To improve user experience, as few stimuli as possible
should be shown. In other words, once the controller knows,
with a certain accuracy, which action to take, it should stop
showing stimuli. By choosing a certainty threshold, ϵ, for the
condition

1−max(p) < ϵ, (1)

where max(p) is the current highest probability for the
choices, the controller can stop showing stimuli when it
knows the target choice and the wheelchair can take the
corresponding action. Eq. (1) gives no guarantee that the
correct action is taken, but indicates when the controller can
consider being sufficiently sure of the user’s intended choice.

G. Simulations

The simulation in this paper takes some ten minutes to run
and uses roughly 3GB of downloaded EEG data and 6GB
of RAM.

1) Dataset: The Brain Invaders 2013 dataset from the
GIPSA-lab, [1], was used for empirical analysis. The dataset
contains EEG data from many users recorded when the
user was shown target and non-target stimuli from a Space
Invaders game. The MOABB Python package was used to
access the data [5].

2) Machine learning approach: In all simulations, we
have used subject #1 from the dataset. For training the feature
map Φ, sessions 1 and 2 have been used. For validating the
hyperparameters of the feature map Φ, sessions 3 and 4 have
been used. For creating the probability density functions,
seen in Fig. 2, which are used for the Bayesian probability
estimation in the controller, we have used session 5. To
be able to generate an unlimited amount of test data for
simulations, we augment data from session 6 by training a
GMM and creating test data by sampling from this GMM.
Using data from multiple users for transfer learning of the
feature maps is discussed in [12].

3) Source Code: The source code, MIT licensed, can be
downloaded from bci.lu.se/wheelchair

III. RESULTS

The results are generated from 50000 Monte Carlo simu-
lated user decisions based on real recorded EEG data, using
the controller and methods described above.

A. Error rate

Fig. 3 shows the error rate versus the number of shown
stimuli. The more choices C the user has, the harder it gets
to estimate the user’s intent. For example, if there are two
possible choices, C = 2, and we aim for an error rate of
10−3, five stimuli will be needed. If there are six choices,
C = 6, 13 stimuli will be needed. The required number of
Monte Carlo simulations depends on the desired accuracy,
especially for small error rates such as "one in 10,000", seen
below the dotted line in Fig. 3. Using fewer simulations
would make these lines deviate for higher error rates.
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Fig. 3: Error rate as a function of the number of shown
stimuli for different number of available choices, C. The error
rate shows the risk of the wheelchair taking the wrong action.
If more choices are available, more stimuli will need to be
shown to the user before reaching our selected error rate of
10−3 compared to when fewer choices are available.
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Fig. 4: Error rates when using branch prediction. The solid
lines correspond to the lines in Fig. 3, and the dashed lines
are the error rates using branch prediction, where the user
nine times out of ten makes the predicted choice.

B. Branch prediction

Fig. 4 shows the error rate over the number of stimuli
when using branch prediction. Regardless of the number of
choices available, branch prediction leads to fewer needed
stimuli to achieve the same error rate. For example, with six
choices, C = 6, and no branch prediction, 13 stimuli are
needed to reach an error rate of 10−3. However, if branch
prediction is used, only 11 stimuli are needed.

C. Threshold early completion

Fig. 5 shows 1−max(p) versus the number of stimuli for
C = 3. The red points show simulations where a non-target
choice has the highest probability, meaning that if an action
were to be taken, the wheelchair would make a wrong turn.
However, the certainty threshold ϵ is chosen such that few
enough red points are below the threshold, thus preserving
the chosen error rate. The colored areas show how the action
is decided. If the user’s intent is not identified after seven
shown stimuli, an action will be taken based on the fact that
for C = 3 seven stimuli is enough to guarantee an error

Fig. 5: Simulations of threshold early completion for C = 3.
The y-axis is 1−max(p) plotted against the number of shown
stimuli. The red dots are simulations where the estimation
of the user’s intended choice is currently wrong, and the
blue dots are simulations where the estimation is correct. The
horizontal black dotted line is our chosen certainty threshold
ϵ. The points in the top-left white area represent simulations
where the controller is not yet sure about the user’s intended
choice, the points in the green area where the controller
is sure of the user’s intended choice based on the threshold
early completion method, and finally, the points in the yellow
area where the controller is forced to make a decision by
running out of time, leading to the specified error rate.
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Fig. 6: Percentage of simulations early ending at each time
step with threshold early completion and C = 3.

rate of 10−3. However, if the user’s intent can be identified
earlier, based on the certainty threshold ϵ in the green lower-
left area, the action can be taken sooner.

Fig. 6 shows the percentage of early completions after
each stimulus for C = 3. For example, in about 8 % of
the cases, the user’s intent is known after the first stimuli.
From the error rate analysis above, we know that seven
stimuli are needed to guarantee an error rate of 10−3 when
C = 3. However, using the method for early completion, the
target choice is identified before seven stimuli in the majority
of cases, and the user’s cognitive load is thus significantly
reduced.

D. Branch prediction and threshold early completion com-
bined

Fig. 7 shows the percentage of early completions, similar
to Fig. 6, but when both branch prediction and threshold
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Fig. 7: Percentage of simulations early ending at each time
step with threshold early completion, using branch prediction
and C = 3.

early completion are used. As can be seen, in more than
40 % of cases, the user’s intention is identified after the first
stimuli. Compared to the seven stimuli required to guarantee
the error rate of 10−3 when C = 3, the target choice is
identified in the vast majority of cases, reducing the user’s
cognitive load even further.

E. Results in numbers

Table I summarizes the number of needed stimuli to reach
the specified error rate when branch prediction is used versus
not used and shows the advantage of using threshold early
completion. From the table, it can be seen that using only
branch prediction means that fewer stimuli are needed to
guarantee the specified error rate. It can also be seen that
using threshold early completion reduces the number of
stimuli by 55-58 % when no branch prediction is used and
65-83 % when branch prediction is used. In either case,
threshold early completion significantly reduces the user’s
cognitive load regardless of the number of choices C.

IV. DISCUSSION

In a BCI-controlled wheelchair, various user experience
factors must be taken into account. Among these is the level
of stimuli presented, with fewer stimuli reducing cognitive
load and enhancing user experience. This paper examines the
necessary number of stimuli for wheelchair performance and
techniques to maintain performance while reducing stimuli.

A. Ethical Considerations

When dealing with BCIs, addressing ethical issues like
user privacy is crucial. The system discussed in this paper
must store the feature map for determining user’s indended
targets, along with the parameters of target and non-target
GMMs. Historical navigation choices may also be stored if
branch prediction is employed. The feature map and GMM
parameters could potentially identify individuals if EEG data
is accessible, though no EEG data is retained in the system.

B. Error rate

The performance of the BCI wheelchair is measured by
the error rate, as described previously. Fig. 3 can be used to
determine the time it takes for the controller to understand

the user’s intent. For example, if the user gets three choices,
C = 3, up to seven stimuli might be needed to guarantee
the specified error rate. We choose to show two stimuli per
second, thus the wheelchair should start showing stimuli at
least 3.5 seconds before the decision is needed.

C. Branch prediction

Branch prediction is our method to reduce the required
number of stimuli to reach a certain error rate, as seen in
Fig. 4. Branch prediction works best when the user’s usual
behavior is known, i.e., an accurate estimate for pprior is
known, but an initial estimate can be made based on the room
layout, for instance. If the wheelchair speed is 1 m/s, giving
the user three choices roughly corresponds to start showing
stimuli to the user 4 meters ahead. As seen in the first row
of Table I, when using our suggested branch prediction, the
number of required stimuli is reduced, decisions can be made
12 % to 17 % faster, and the wheelchair can potentially run
faster.

D. Threshold early completion

Threshold early completion is our method to reduce the
cognitive load of the user by reducing of the number of
shown stimuli, thus improving the user experience. The
certainty threshold, ϵ, is the limit for when the controller
is sufficiently sure of the user’s intended choice. Raising ϵ
leads to making decisions based on less accurate probability
estimates, meaning fewer stimuli are needed, but more errors
will be made. A too-high ϵ means more actions will be
incorrect, and the error rate increases. Lowering ϵ leads to
fewer errors but requires more stimuli. In Fig. 5 increasing
the certainty threshold means raising the dotted line, which
would mean more incorrect actions. For the results presented
in Fig. 6 and Table I ϵ = 10−3 was used.

Returning to the required stimuli to reach a specific
error rate as discussed in the two previous sections, that
corresponds to the cutoff for the yellow area. If the error
rate was to be reduced, more stimuli would be needed to
reach that error rate (see Figs. 3 and 4). For Fig. 5 that
would mean that the yellow border is moved further to the
right.

E. Branch prediction and threshold early completion com-
bined

The threshold early completion gets more effective when
combined with branch prediction as seen in Fig. 7. The
controller can take action on the user’s intent after the first
stimuli in more than 40 % of the cases. This is attributed
to branch prediction, which increases the likelihood of pre-
senting the stimuli aligned with the user’s intention as the
first stimulus. If the feature map output y ends up in a non-
overlapping area, the target choice is identified directly. In
contrast, if a non-target stimulus is shown, the controller can
be sure that this stimulus is not the target but doesn’t know
which of the other stimuli is the target and thus needs to show
more stimuli before reaching a conclusion. Branch prediction
increases the probability of showing a target stimulus first,
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TABLE I: Numerical results. The number of available choices is C. The first row is the number of required stimuli to
guarantee the specified error rate, gotten from the intersection between the error rate and the lines in Figs. 3 and 4. The
second row is the number of required stimuli on average before an action, using threshold early completion. This is the
weighted sum of the bars in Figs. 6 and 7. The last row is the percentual reduction of required stimuli in a practical setting
when threshold early completion is used compared to when neither threshold early completion nor branch prediction is used.

C = 2 C = 3 C = 4 C = 5 C = 6

Branch prediction No Yes No Yes No Yes No Yes No Yes

#Stimuli required for desired error rate, non-threshold 5 4 7 6 9 7 11 9 13 11

Average #Stimuli using threshold early completion 2.1 1.7 3.2 2.0 4.0 2.1 4.7 2.2 5.5 2.2

% reduced stimuli vs. non-threshold no branch prediction 58 65 55 72 56 77 57 80 58 83

which, in turn, increases the chance of identifying the user’s
intended choice immediately.

F. Takeaways

This paper’s key finding is that our techniques decrease
the number of stimuli displayed, enhancing user experience.
Table I numbers serve as motivation for method usability
rather than precise improvement indicators. We demon-
strate EEG data utilization for simulating BCI wheelchair
performance and propose branch prediction and threshold
early completion to cut stimuli. These methods constitute a
significant contribution to enhancing user experience in BCI-
controlled applications like wheelchairs.

V. CONCLUSION

This paper simulates the decision process for a brain-
computer interface controlled wheelchair. We analyze how
long time prior to the wheelchair’s action, the decision-
making process should be initialized to guarantee a prede-
fined error rate for the actions of the wheelchair. We in-
troduce branch prediction and threshold early completion as
methods to reduce the time for the decision-making process
and thus improve the user experience. Through our proposed
methods, the time required for the user to make decisions can
be reduced by half. Our approach is a step towards ready-to-
use brain-computer interfaces with the potential of expanding
the boundaries of BCI appliances and research.
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