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Abstract— In view of the advancements in microgrids tech-
nology, energy management plays an important role in optimiz-
ing energy resources and minimizing operational costs, however
including distributed energy resources in the microgrids makes
the system variability increase, then, an adequate control strat-
egy is necessary for exploiting these resources appropriately.
This study presents an intraday Energy Management System
employing a Scenario-Based Model Predictive Controller in
a multi-microgrid configuration. A hierarchical controller is
proposed to minimize the economic cost of the deviations with
respect to the day-ahead scheduling, in front of the uncertainty
in renewable generation. The formulation guarantees a preset
constraint violation probability, while simplifying the treatment
of uncertainty. The results demonstrate that the approach
outperforms the behavior of a deterministic Model Predictive
Controller, reducing the economic costs by 16%. Moreover, it
significantly reduces power deviations by up to 49%. This work
highlights the potential of Scenario-Based Model Predictive
Control as a promising tool for real-time multi-microgrid
management, offering effective management of the uncertainty
and guaranteeing probabilistic constraint satisfaction.

I. INTRODUCTION

Over the past few years, the global energy demand has had
a significant increase. Simultaneously, the adverse effects of
climate change have intensified, demanding the reduction of
our dependence on fossil fuels. The integration of renewable
energy sources has emerged as a promising solution to
address this pressing issue [1], and microgrids (MGs) have
become popular due to their compatibility with Distributed
Energy Resources (DERs). However, DERs introduce un-
certainty into the grid, leading to congestion and imbal-
ances. Consequently, the development of optimal Energy
Management Systems (EMS) has become indispensable for
effectively operating MGs. These systems play a crucial role
in reducing the operational costs in both Day-Ahead (DA)
and real-time [2].

Different approaches to optimal DA energy management
have been studied, where the main goal is to minimize the
cost of satisfying the energy demand, while guaranteeing
the feasibility of the operations. For example, [3] presents
a robust optimization framework to address DA operation
planning for unbalanced three-phase MGs in a centralized
way. Considering renewable energy systems uncertainties,
in [4] a stochastic optimization approach is presented for
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the DA schedule. [5] proposes a DA dispatch strategy for
a multi-microgrid system, offering centralized and ADMM
distributed solutions. However, despite advancements in fore-
casting technology, prediction errors persist, introducing un-
balances in intra-day operations. In fact, relying only on the
DA solution, which often employs deterministic optimization
methods, may prove suboptimal for real-time operations [6].

In modern EMS, a hierarchical structure is usually em-
ployed to minimize discrepancies between the scheduled
plan and real-time outcomes, especially when large uncer-
tainties are involved. [7] proposes a robust Model Predictive
Controller (MPC) approach that combines the advantages of
MPC and Robust Optimization (RO), allowing for the real-
time energy dispatch of the MG while ensuring a reliable op-
eration. [8] proposes an aggregator for optimally exploiting
the flexibility in Electric Vehicle (EV) charging processes, to
compensate for variations in Renewable sources. Likewise,
[9] presents an optimal controller for a MG that maximizes
the economic benefits while considering EV charge levels.
This is achieved by formulating the problem as a stochastic
chance-constrained optimization, which accounts for uncer-
tainties in demand/generation predictions, EV state of charge,
and connection/disconnection times.

Picking up on the hierarchical structure theme, a two-layer
control scheme was put forward in [10] where the higher
level optimizer runs at a slow timescale over a long time
horizon and the lower level stochastic MPC runs at a faster
pace, minimizing the difference between the planned energy
exchange and the real one. In a similar way [11] presents
a DA and intra-day multi-time scale model, using a light
robust optimization program and an MPC, respectively.

Building on the concept of addressing uncertainties in
optimization problems, [12] introduces a novel scenario-
based MPC method that optimizes control inputs over a
finite horizon while ensuring robust constraint satisfaction
against a finite number of random scenarios representing
the uncertainty and disturbances. Using the same concept,
[13] developed a scenario-based MPC algorithm to deal with
uncertainties in the energy planning of solar-thermal plants.
In the same line, [14] proposes a scenario-based stochastic
optimization model for determining the energy and flexibility
dispatch within a residential MG. These studies collectively
contribute to the ongoing exploration of effective strategies
for addressing uncertainties in EMS.

In contrast to many existing approaches, including those
previously mentioned, the Scenario-Based MPC (SC-MPC)
strategy efficiently handles uncertainties, significantly re-
ducing the number of scenarios needed to ensure a pre-
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Fig. 1: Microgrid Scheme

defined constraint violation rate [12]. This paper presents
an intra-day energy management approach based on a day-
ahead schedule, employing SC-MPC methodology to manage
uncertainties across a network of interacting MGs. The
approach considers both economic cost deviations from the
day-ahead plan and the expected value of required balancing
power. The system comprises multiple MGs, each equipped
with a set of DERs and capable of energy trading with
the grid and other MGs, forming a multi-microgrid system.
The proposed approach uses a hierarchical scheme for intra-
day scheduling, employing a multi-objective optimization
problem to track the day-ahead energy schedule and optimize
balancing power requests, aiming to achieve robust behavior
and improve tracking and cost efficiency.The main contribu-
tions are:

• A multi-objective optimization problem that simultane-
ously deals with the economic cost of the operations
and the required balancing power.

• A framework to solve the proposed intra-day dispatch
with a Scenario MPC approach.

• An efficient solution for managing the impact of sources
uncertainty, enhancing the reliability and resilience of
the multi-microgrid.

The paper is organized as follows. In Section 2, the model of
the system is presented.The hierarchical scheme of the EMS
and the formulation of the Scenario-Based MPC approach
is described in section 3.Section 4 presents the analysis of
results, followed by the conclusions in section 5.

II. SYSTEM DYNAMICS AND CONSTRAINTS

This section briefly summarizes the multi-microgrid sys-
tem presented in [5], properly adapting the model for the
current analysis. The system configuration consists of multi-
ple MGs. Each MG includes PV and Wind sources, Battery
Energy Storage Systems (BESS), and uncontrollable loads,
as shown in Fig. 1. Each MG is equipped with bidirectional
meters (e.g., Mk) to monitor energy exchanges between
them. At the same time, the interactions with the main grid
are tracked by the meter Mg .

Each DER and load is linked to a predetermined forecast-
based DA schedule, which guides the power generation and
consumption profiles. In the models associated with the
problem, index k ∈ Ω = 1, 2, ..., N represent the agents
and the time index is given by t ∈ τ = 1, 2, ..., tend.

The optimization problem is subject to the following
technical and electrical constraints:

- Power balance for each agent k,

PGt
buyk + P t

ESDisk
+ P t

PV k
+ P t

WEk
+

N∑
j=1

P t
buyk,j

(1)

= PGt
sellk + P t

ESChk
+ P t

CLk
+

N∑
j=1

P t
sellk,j

where PGt
buyk

and PGt
sellk

are the power bought from and
sold to the main grid by agent k at instant t, P t

buyk,j
and

P t
sellk,j

are the power bought and sold by agent k to agent
j, P t

CLk
is the load forecast, P t

ESChk
and P t

ESDisk
are the

charge and discharge power of the BESS, P t
PV k

and P t
WEk

are the generated power from the PV and Wind sources,
considering that it is possible to perform power curtailments
if required.

- BESS dynamics,

SOCt+1
ESk

= SOCt
ESk

+ (
P t
ESChk

∗ ηESChk
∗∆t

Qmaxk

) (2)

−(
P t
ESDisk

∗∆t

ηESDisk
∗Qmaxk

)

SOCESmink
≤ SOCt

ESk
≤ SOCESmaxk (3)

where the evolution of the State Of Charge (SOC) is
considered with different charge and discharge efficiencies
ηESChk

and ηESDisk
.

- Power curtailment in the PV and Wind sources,

0 ≤ P t
PV k

≤ P̂ t
PV k

(4)

0 ≤ P t
WEk

≤ P̂ t
WEk

(5)
t ∈ τ, k, j ∈ Ω

which are limited by P̂ t
PV k

and P̂ t
WEk

respectively, that
represents the maximum available power predicted on each
system.

- Finally, the complementarity constraints on the power
flows,

P t
sellk,j

− P t
buyj,k = 0 (6)

0 ≤ PGt
buyk ≤ PGbuymax ∗Bt

sbk (7)

0 ≤ PGt
sellk ≤ PGsellmax ∗ (1−Bt

sbk ) (8)

0 ≤ P t
buyk,j

≤ Pbuymax ∗Bt
sbk (9)

0 ≤ P t
sellk,j

≤ Psellmax ∗ (1−Bt
sbk ) (10)

0 ≤ P t
ESChk

≤ PESChmaxk ∗Bt
esk (11)

0 ≤ P t
ESDisk

≤ PESDismaxk ∗ (1−Bt
esk ) (12)

t ∈ τ, k ∈ Ω

where (6) guarantees that the energy exchanges between
MGs match, (7) to (10) prevent simultaneous energy selling
and purchasing, (11) and (12) avoid charging and discharging
the batteries at the same time. This is achieved through the
use of binary decision variables (Bt

sbk
and Bt

esk
).

III. INTRA-DAY ENERGY MANAGEMENT SYSTEM

This section outlines the hierarchical EMS scheme for
the system detailed in the preceding section, consisting
of three distinct levels. The hierarchical approach aims to
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Fig. 2: Hierarchical EMS Scheme

create a robust framework for interacting and coordinating
between the levels, ensuring the system’s adaptability to
changing conditions and effective performance optimization,
as depicted in Figure 2.

At the first level, DA scheduling generates hourly con-
sumption profiles for the entire day, informing subsequent
levels of the hierarchy. DA scheduling is based on historical
data or forecasted values of energy prices, power generation,
and consumption. Formulated as a Mixed Integer Linear Pro-
gramming (MILP) problem, it provides solutions with hourly
intervals for decision variables, including binary variables.
Further details on this optimization problem can be found in
[5].

The second level employs a Deterministic MPC (D-
MPC) approach, operating every fifteen minutes to adjust
the DA schedule with high-frequency updates. This fast
sampling rate enables dynamic responses, improving system
performance, responsiveness, and stability. An Autoregres-
sive (AR) model predicts the behavior of DERs affected
by uncertainties like weather conditions, demand variability,
price fluctuations, and load variations, leveraging historical
data availability.

As a third level is proposed a SC-MPC to handle not only
the dynamics but also uncertainties effectively, therefore it
is possible to make more accurate predictions about future
behaviors than in the D-MPC. This advanced approach not
only enhances accuracy but also empowers the system to
navigate uncertainties that might arise in real-time operation.

Both D-MPC and SC-MPC methods will be described
in detail in the next two sub-sections, considering that the
deviation economic cost is represented as the difference
between the planned power exchange with the main grid in
the DA and intra-day scheduling for each MGk, as

JDCk =

t+Thzn−1∑
t=tmpc

[(
PGt

buyk − PGt
buyk

)2

∗ Ct
buy

−
(
PGt

sellk − PGt
sellk

)2

∗ Ct
sell

]
∗∆t

(13)

Where PGt
buyk

, PGt
sellk

indicate the power exchanges
with the main grid by agent k at instant t planned by the
nominal DA schedule, and Ct

buy and Ct
sell are their unitary

prices.

A. Deterministic Model Predictive Controller
The D-MPC serves as an intermediary between the Day-

Ahead and the SC-MPC. It is formulated as a Mixed Integer

Quadratic Programming (MIQP) problem. It employs auto-
regressive models to predict the future behavior of DERs
generation and operates with a sample time of fifteen min-
utes, rather than one hour, and uses binary variables to deal
with the non-linearity of the problem. An AR model is used
to represent the behavior of each DER. These models are
estimated from historical information of each time-series and
assume a linear behavior of the generated/consumed power,
driven by white noise ε, i.e.,

Yτ =

I∑
i=1

Φi ∗ Yτ−i + ετ (14)

and I is the order of the model.
In the D-MPC, only the expected value of each uncertain

DER is considered, based on the zero-mean assumption for
ε, i.e., Ŷτ = E[Yτ ].

Considering that the aim of MPC is to optimize the system
performance by repeatedly solving an optimization problem
over a prediction horizon of N sample periods (N minutes
intervals), the optimization problem for the D-MPC is

minimize
PGt

buyk
,PGt

sellk
,

P t
sellk,j

,P t
buyj,k

,

P t
ESDisk

,P t
ESChk

,

P t
PV k

,P t
WEk

,

Bt
esk

,Bt
sbk

N∑
k=1

JDCk

subject to (1), (6), (7), (8), (9), (10), (11),
(12), (2), (3), (4), (5)

(15)

where the upper hat bounds in (4) and (5) are given by
the AR models (14), N is the number of agents,tmpc and
Thzn in (13) represent the current control interval time and
the prediction horizon time respectively.

B. Scenario-based Model Predictive Controller

SC-MPC is a powerful method for addressing uncertain-
ties in EMS, including factors such as power generation,
consumption, and pricing. In contrast to deterministic or
robust approaches, SC-MPC considers a set of possible
scenarios to optimize the MPC problem while ensuring a
desired bound on constraint violation probability, denoted as
ϵ. This flexibility simplifies uncertainty treatment, providing
robust solutions for real-time variations and disturbances in
dynamic environments, ensuring reliable and efficient energy
dispatch even amidst unexpected changes.

However, SC-MPC faces challenges in handling non-
convex optimization problems, in particular the non-linearity
introduced by integer variables. To manage this issue, the
D-MPC located in the second level which does not directly
handle uncertainties, plays an important role in fixing the
binary variables, and transforming the SC-MPC into a convex
Quadratic Programming (QP) problem, allowing the use of
the methodology. To formulate the SC-MPC problem in
the Intraday EMS, it is considered the stochasticity and
fluctuations of power generation from DERs. Where each
DER’s power P t

DERi
comprises a deterministic component

P t
DERi

and an uncertain variable P̃ t
DERi

.
By incorporating this term of uncertainty in the power

balance equation, the equality cannot be guaranteed for
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all the possible realizations of the stochastic components,
then, the balance equation should be relaxed to handle
unknown power contributions. A deviation bound δ is added
quantifying power balance deviations as

−δ ≤
∑
t

(P t
DERi

+ P̃ t
DERi

) ≥ δ (16)

where the summation is performed over all the DERs
in the MG, δ and a subset of the deterministic power
components P i

DER are decision variables. In addition, a
binary function Mt → {0, 1} is established to indicate the
probability of exceeding these unbalance constraints, and it
is established as a constraint as

P[ 1
T

T∑
t=1

Mt] ≤ ϵ (17)

limiting the expected time-average of constraint violations
until the specified desired violation parameter ϵ.Leveraging
these premises, the problem can be solved by scenarios
assuming that DERs uncertainty is generated independently
and identically distributed, so SC-MPC provides strong so-
lutions in a real-time, dynamic environment. Following [12],
the number of scenarios required to guarantee a violation
probability ϵ is,

Nscn = (
DecisionV ariables

ϵ
)− 1 (18)

where the number of scenarios is directly associated with
the dimension of the decision vector for the current sampling
interval, not to the entire prediction horizon. Each MPC it-
eration generates Nscn different scenarios for each uncertain
DER, each spanning Thzn future time steps. These scenarios
are created by simulating the AR model (14), where the
variance of the white noise is estimated from historical data.

Then, considering the previous premises, the constraints
related to the PV power source are reformulated as

0 ≤ P t
PV k

≤ ̂P t
PV k,scn

(19)

−δt ≤ PGt
buyk

+ P t
ESDisk

+ P t
PV k,scn+P t

WEk
+
∑N

j=1 P t
buyk,j

(20)

−PGt
sellk

− P t
ESChk

− P t
CLk

−
N∑

j=1

P t
sellk,j

≤ δt

δt ≥ 0 (21)

where the decision variable δt represents the balance
power deviation at instant t. The scn sub-index refers to
the scenario under consideration. Therefore, to mitigate the
balance power deviation associated with the variations in the
constraints, the balance power deviation cost component is
introduced in the optimization problem as

Jδ = ∥δt∥22 ∗∆t (22)

Finally, the optimization problem for the SC-MPC is defined
as

minimize
PGt

buyk
,PGt

sellk
,

P t
sellk,j

,P t
buyj,k

,

P t
ESDisk

,P t
ESChk

,

P t
PV k

,P t
WEk

,δt

Jδ +
N∑

k=1

JDCk

subject to (6), (7), (8), (9), (10), (11), (12), (2),
(3), (5), (19), (20), (21)

(23)
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Fig. 3: Daily PV power Generation vs Day-Ahead prediction
for Agent two

The resulting optimization problem is a QP problem, where
the number of decision variables for each MG and time
interval is related to the operation of local DERs, the
power exchange with the main grid and other MGs, and the
power balance deviations. On the other hand, the number of
constraints corresponds to the power balance and technical
limits of the DERs. The complexity of the problem grows
linearly with the prediction horizon Thzn, and the amount of
constraints grows linearly with the number of scenarios Nscn

required to guarantee a violation level ε in the stochastic
problem. Note that the problem is convex and well structured,
without binary variables, enabling it to scale with the number
of agents and required scenarios.

IV. ANALYSIS AND RESULTS

This section evaluates the performance of the intra-day
EMS discussed in the previous section, using a configuration
with three MGs, each one subject to different DER profiles.
The operational parameters, data sets, and system character-
istics are those presented in [5]. Nevertheless, taking into
account that the objective is to assess the impact of uncer-
tainty on the performance of the scenario MPC approach
within the context of MG operation, this research introduces
different data for the PV power sources and forecast models,
considering that SC-MPC will deal only with the uncertainty
in the PV power source.

For developing the AR model for the PV sources, his-
torical data on PV generation in Bogotá, Colombia, was
used. The data set was recorded with a sampling time of
2 seconds and averaged at 15-minute intervals, containing
the information on PV generation for the year 2014 (35040
samples). Fig. 3 displays some daily power profiles and
also the considered day-ahead prediction for agent 2. It
is important to mention that Bogotá has almost the same
sunlight throughout the year.

The AR model that represents the PV system’s dynamic
response, derived from the data set mentioned before, is
given by

Mpv(τ + 1) = 0.42 ∗Mpv(τ) + 0.11 ∗Mpv(τ − 1) (24)
+0.15 ∗Mpv(τ − 2) + 0.05 ∗Mpv(τ − 3)

+0.04 ∗Mpv(τ − 4) + εMpv .

where the variance of the white noise εMpv
driving the

uncertainty model is 972kW 2. It is to generate the scenarios
in the SC-MPC.

Given the 15-minute sampling rate of the data, both D-
MPC and SC-MPC are configured to operate with 96 steps
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Fig. 4: Evolution of SOC of agent two for DA (blue), D-
MPC (red) and SC-MPC (yellow) solutions.

per day. Moreover, when analyzing the behavior of the
PV data, a prediction horizon time Thzn of five hours is
employed, equivalent to 20 MPC steps. The desired limit
on the constraint violation probability ϵ is set as 0.1. The
D-MPC and SC-MPC approaches, as formulated in (15)
and (23), were implemented and simulated using MATLAB
in conjunction with the YALMIP optimization modeling
toolbox [15]. The optimization problems were solved using
the CPLEX solver.

Since D-MPC acts as an intermediary to set the binary
variables, it manages the energy exchange status between
agents. This process supports the principle of complementar-
ity, ensuring that the energy exchange between agents fulfills
the system’s operational constraints.

The behavior of the BESS State-of-Charge (SOC) serves
as an indicator of the proper management of the MGs across
DA, D-MPC, and SC-MPC. Figure 4 illustrates the SOC
evolution for agent two, showing similar waveforms across
all methods. However, by analyzing the statistical mean
values, see Table I, SC-MPC exhibits the biggest deviation
from DA, attributed to uncertainty handling. This highlights
the methodology’s capability to leverage BESS flexibility for
real-time MGs performance optimization.

TABLE I: SOC - Performance measures for DA,
D-MPC and SC-MPC solutions

DA[SOC%] D −MPC[SOC%] SC −MPC[SOC%]
Agent
One 0.82 0.81 0.73

Agent
Two 0.83 0.79 0.69

Agent
Three 0.83 0.71 0.67

Fig. 5 compares the hourly DA nominal cost with the
effective economic cost of D-MPC and SC-MPC, excluding
power deviation costs. The MPC solutions are consistent with
respect to the DA. While controllers react to real-time data,
an increase in economic cost is expected, although limited.
Table I provides mean dispatch economic cost values for the
three approaches, with D-MPC costs around 18% higher than
DA. However, with SC-MPC incorporation, the increment is
just 2.2%. These findings indicate that combining D-MPC
and SC-MPC outperforms a single deterministic control
strategy.

Once the dispatch economic costs are compared, the
subsequent analysis examines the impact of power deviation.
This parameter reflects the difference between the energy
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Fig. 5: Dispatch economic cost of DA (blue), D-MPC (red)
and SC-MPC (yellow) approaches

TABLE II: DA, D-MPC and SC-MPC Dispatch Cost
Comparison

DA [k$] D −MPC [k$] SC −MPC [k$]
327.56 386.48 334.75

generated and consumed at a specific time, given by (20).
After obtaining the results, the value of the balance power
deviation bound (δtR) for each approach DA, D-MPC, and
SC-MPC is evaluated, given the real PV consumption. Fig. 6
describes the behavior of δtR through the day showing fewer
power deviations with MPC approaches. Table III presents
mean δtR values for each approach, where it is appreciated
that as the hierarchical scheme is going forward, the val-
ues are showing a progressive decrease as the hierarchical
scheme advances. This reduction signifies a positive outcome
for intra-day EMS performance. With the D-MPC approach,
power deviation decreased by 7.7%, and incorporating SC-
MPC reduced up to 49% in the studied case.
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Fig. 6: Power Deviation Comparison DA (blue), D-MPC
(red) and SC-MPC (yellow)

TABLE III: Mean power balance deviations for DA, D-
MPC and SC-MPC solutions

DA [kW] D −MPC [kW] SC −MPC [kW]
50.17 46.30 25.58

To validate SC-MPC effectiveness and its performance
in intra-day EMS, predicted power balance deviations (δt)
generated from (20) for each step are compared with actual
deviations (δtR) mentioned previously. The simulation is
conducted 100 times to evaluate the SC-MPC accuracy as
the primary tool in intra-day EMS. The sample mean of Mt

is evaluated to analyze the statistical performance, taking
into account the different white noise realizations in the PV
source scenarios.

Fig. 7 displays the simulation results, each subfigure repre-
sents a different MG. The Y-axis represents the frequency of
each constraint violation level, while the X-axis from (17)
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Fig. 7: Violated Constraints Percentage (%), (a) MG1 (b)
MG2 (c) MG3

depicts the sample probability of the constraint violation.
As expected, all simulations consistently remained below
the imposed 10% constraint violation limit, demonstrating
effective constraint management with SC-MPC methodology.

In the hierarchical scheme with DA, D-MPC, and SC-
MPC, each strategy enhances the capabilities of the preced-
ing one, leading to improved performances. Among these,
SC-MPC stands out for its capability in managing random
power deviations within the MGs, by using multiple sce-
narios in an efficient convex optimization framework, which
enables it to effectively handle unpredictable fluctuations in
power sources.

V. CONCLUSIONS

This work presented a hierarchical scheme for intra-day
management in multi-microgrid energy systems, employing
the Scenario-Based Model Predictive Control (SC-MPC)
approach. The controller incorporates two concurrent MPC
strategies: deterministic MPC for binary decision variables
and scenario-based MPC for handling uncertainty from non-
controllable DERs.

A simulation using real PV generation data is used to
evaluate the performance and capabilities of the solution,
demonstrating the promising potential of SC-MPC for op-
timizing real-time multi-microgrid operations. Performance
evaluation involved three distinct MGs with varying DER
profiles and dynamic conditions, comparing hourly dispatch
economic costs among DA, D-MPC, and SC-MPC, as well as
power deviation management. SC-MPC significantly reduces
dispatch economic costs by up to 16% compared to the
deterministic case.

Furthermore, the SC-MPC significantly reduces power
deviations by up to 49% with the validation data, highlighting
its potential as a real-time MG management tool for handling
uncertainty, optimizing operations, and ensuring stability.

SC-MPC consistently maintains constraint violations below
the requested 10% threshold, further enhancing system relia-
bility. In summary, SC-MPC offers a promising solution for
optimizing MG operations, delivering cost savings, improved
power deviation management, and robust constraint compli-
ance. In future research, a sensitivity analysis will evaluate
the impact of uncertainties associated with different DERs
and the influence of seasonality on dynamic models. Ad-
ditionally, exploring the feasibility of a distributed solution
to parallelize scenario analysis with the aim of enhancing
efficiency.
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