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Abstract— The paper on hand considers the optimal control
of piecewise affine systems subject to polytopic constraints.
While this problem can be addressed by receding horizon con-
trol, the approach is known to be computationally demanding.
This paper considers the approximation of receding horizon
control laws by deep artificial feed-forward neural networks.
The concept of projecting inadmissible inputs onto regions
derived from feasible sets is extended to the considered problem
setup in order to achieve deterministic guarantees on feasibility
and constraint satisfaction. Two approaches are proposed and
illustrated in numerical examples.

I. INTRODUCTION

The optimal control of piecewise affine (PWA) systems
has been studied intensively, motivated by the ability of
PWA systems to approximate nonlinear systems and their
equivalence to many classes of hybrid systems [1], [2].
Receding horizon control (RHC) is an established approach:
at each sample time, the optimal input is either computed
by a mixed-integer optimization, or recovered from a lookup
table determined offline.

The paper on hand focuses on the often-considered class
of discrete-time, time-invariant, and finite-dimensional PWA
systems subject to polytopic input and state constraints. For
this non-smooth class of nonlinear systems, the optimization
problems solved by RHC may be formulated as mixed
integer linear programs (MILPs) or mixed integer quadratic
programs (MIQPs), given that the performance criteria are
based on linear or quadratic norms, respectively [3]. How-
ever, the computational demand for repeated online solutions
can be prohibitive due to the combinatorial nature of these
problems. With suitable assumptions, explicit solutions in
the form of time-varying PWA state-feedback control laws
exist. Mayne sketched a proof of this result in his plenary
presentation at the 2001 European Control Conference [4]. A
detailed exposition of the proof can be found in [5], including
a description of how the explicit PWA control laws can
be constructed by combining multiparametric and dynamic
programming. But even for the simple subclass of linear time
invariant (LTI) systems, the offline determination of the ex-
plicit RHC laws becomes computationally intractable rapidly
[6], and the demands for storage and online computation
often get excessive [7].

Recently, the approximation of RHC laws by deep feed-
forward neural networks (DNNs) has gained increased atten-
tion. In addition to their universal approximation property,
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DNNs can be stored and evaluated efficiently on low-cost
embedded systems [8]. However, DNNs are characterized
by a highly nonlinear structure, making it hard to provide
closed-loop guarantees even for simple LTI systems. One
approach for guaranteed constraint satisfaction is to project
inputs onto (state-dependent) sets of admissible inputs de-
rived from control invariant sets. This approach has been
proposed for LTI systems in [9] and extended to the class of
switched linear systems with externally forced switching in
[10], [11]. The approximation of RHC laws for PWA systems
by DNNs with rectified linear units (ReLUs) as activation
functions is considered in [12]. In that work, the authors
suggest an approach for learning Lyapunov functions, which
may be used to find inner approximations of the region
of attraction (ROA). In order to address hard constraints
on states and inputs, they further discuss an extension of
the method to projected DNN controllers for the particular
subclass of LTI systems. A crucial requirement for the
extension is that the projection relies on the solution of a
single quadratic program (QP).

The paper on hand studies the extension of the pro-
jection approach to the class of PWA systems (in which
the dynamics switch autonomously, which is different from
the externally forced switching in [11]). It is shown that
the state-dependent sets of admissible inputs derived from
feasible state sets are, in general, non-convex unions of
polytopes, which allows one to realize the projections by
solving multiple QPs. Polytopic feasible state sets constitute
an exception, in which case the projection requires only
the solution of a single QP. Motivated by the ambition to
reduce the computational demand, a method for computing
polytopic feasible sets is proposed.

The paper is organized such that Sec. II covers the pre-
liminaries and the problem formulation. The approximation
of RHC laws by DNNs with deterministic guarantees on
feasibility and constraint satisfaction is treated in Sec. III.
Numerical examples are considered in Sec. IV, before con-
clusions are provided in Sec. V.

II. PRELIMINARIES AND PROBLEM
FORMULATION

This work considers PWA systems described by:

xk+1 = fi(xk, uk) if xk ∈ Pi, i ∈ I, (1)

where I = {1, . . . , nI} is a finite index set, {Pi}i∈I a
polyhedral partition of the state space X ⊂ Rnx , xk ∈ X
the state at time k ∈ N0, and uk ∈ U the input selected from
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U ⊂ Rnu . The function fi denotes the state transition map
in mode i ∈ I defined by Ai, Bi, and ci:

fi(x, u) = Aix+Biu+ ci. (2)

The sets U and X are bounded polytopes with the origin in
their interior, and are defined by vectors hU , hX and matrices
HU , HX of appropriate dimensions:

U =
{
u | HUu ≤ hU} , X =

{
x | HXx ≤ hX} . (3)

Assumption 1. The PWA systems have the property that for
each x ∈ X there exists only one i ∈ I for which x ∈ Pi.

Remark 1. Assumption 1 is common in the literature
and ensures the uniqueness of the state sequence. From a
practical point of view, the property can be achieved by
introducing gaps with magnitudes close to machine precision
between the boundaries of any two polyhedra, as discussed
in more detail in [3].

The following algorithm formulates a typical implemen-
tation of RHC with weighting matrices P ⪰ 0, Q ⪰ 0, and
R ≻ 0, a finite time horizon N ∈ N0, a predicted input
sequence uk = {u0|k, . . . , uN−1|k}, a cost function:

JN (xk,uk) = ∥xN |k∥2P +

N−1∑
j=0

∥xj|k∥2Q + ∥uj|k∥2R, (4)

and a polytopic terminal region Xf ⊆ X .

Algorithm 1 (RHC). At each time instant k ∈ N0:
(i) Solve the optimization:

minimize
uk

JN (xk,uk)

subject to xj+1|k = fi(xj|k, uj|k) if xj|k ∈ Pi,

x0|k = xk, xN |k ∈ Xf ,

xj|k ∈ X , uj|k ∈ U .

(5)

(ii) Apply the control input uk = u∗
0|k from u∗

k =
{u∗

0|k, . . . , u
∗
N−1|k} as obtained from solving (5).

The set of states for which a feasible solution of (5) exists
is denoted by X0 and is recursively defined:

Xj = {x ∈ X | ∃u ∈ U , ∃i ∈ I such that
x ∈ Pi and fi(x, u) ∈ Xj+1},

XN = Xf , j ∈ {N − 1, . . . , 0}.
(6)

The terminal set Xf and the terminal weighting matrix P
are typically chosen to guarantee asymptotic stability of the
origin, e.g., by requiring the origin to be a cost-free state,
Xf to be a control-invariant set, 0 ∈ Xf , and p(x) = ∥x∥2P
to be a control Lyapunov function on Xf .

Assumption 2. The terminal set Xf is control-invariant, i.e.:

x ∈ Xf ⇒ ∃u ∈ U such that fi(x, u) ∈ Xf if x ∈ Pi.

Remark 2. If XN = Xf is control-invariant, then Xj+1 ⊆
Xj . This implies that X0 is also control-invariant and recur-
sive feasibility of Alg. 1 is ensured for each x0 ∈ X0. On the
other hand, the RHC law is infeasible for xk /∈ X0. In this

case, x0|k = xk cannot be transferred into the terminal set
within N steps, such that the constraint xN |k ∈ Xf cannot be
met. Consequently, an equivalent problem of (5) is obtained
when replacing the constraint xj|k ∈ X by xj|k ∈ X0, in
which case the RHC law remains unchanged (in Sec. III-
B, the substitution of xj|k ∈ X by xj|k ∈ X̃0 ⊆ X0 is
considered, leading to a potentially suboptimal RHC law).
The set X0 grows with increasing N until it becomes the
maximal stabilizable set within X .

The PWA systems considered here can be rewritten as
mixed logical dynamical (MLD) systems [2]. MLD represen-
tations of (1) then allow to reformulate (5) as an MIQP [13].
The RHC law from Alg. 1 is a PWA state feedback control
law uk = µRHC(xk) defined on possibly non-convex regions.

This work uses the perspective that the online application
of RHC based on (i) the solution of an MIQP or (ii) the
evaluation of the explicit control law (by recovering the input
from a stored lookup table) is computationally intractable. It
is further supposed that the available computational resources
allow the offline generation of enough state-input pairs to
train a suitably chosen parametric function by supervised
learning to approximate the RHC law with satisfactory
quality. DNNs are used as parametric functions:

h(z; θ) = (hL ◦ hL−1 ◦ . . . ◦ h1)(z), (7)
hl(ηl−1) = ϕl(Wlηl−1 + bl), η0 = z, (8)

with input z ∈ Rs0 , layers l ∈ {1, . . . , L}, activation
functions ϕl : Rsl−1 → Rsl , and a parameter vector θ ∈ Rnθ

consisting of the elements of the weight matrices Wl and
bias vectors bl. The approximated RHC law is written as:

uk = µDNN(xk) = h(xk; θ). (9)

Due to the large and highly nonlinear structure of DNNs,
it is challenging to provide guarantees on feasibility and
constraint satisfaction. Addressing this challenge is the very
objective of this work.

III. PROJECTION TO FEASIBLE INPUTS

For a given state xk ∈ Pi at time k, the set of inputs
uk ∈ U for which xk+1 = fi(xk, uk) is an element of X0 is
given as U(xk) with:

U(x) = {u ∈ U | fi(x, u) ∈ X0 if x ∈ Pi} . (10)

The property of control-invariance of X0 implies that U(x) is
nonempty for all x ∈ X0. The following proposition follows
directly from the definitions above.

Proposition 1. The system (1) with x0 ∈ X0 and the
controller µDNN satisfy the constraints xk ∈ X and uk ∈ U
if µDNN(xk) ∈ U(xk) for all k ∈ N0.

In general, it is challenging to verify that µDNN(x) ∈ U(x)
for all x ∈ X0. Furthermore, it may be difficult to find a
parameter vector θ at all for which the condition above is
met. The problem gets even more involved if θ is determined
online (which is not considered in this paper).
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Let uDNN,k = µDNN(xk) be the output of the DNN
controller for state xk at time k. To obtain an input that
is guaranteed to be feasible and satisfies the constraints, the
following optimization is solved:

minimize
uPROJ,k

∥uPROJ,k − uDNN,k∥2

subject to uPROJ,k ∈ U(xk).
(11)

Its solution selects uk to be an element of U(xk) with
minimum Euclidean distance to uDNN,k, i.e., the latter is
projected onto the admissible input set. For uDNN,k ∈ U(xk),
of course uk = uDNN,k applies.

Remark 3. The projection defined in (11) is feasible if and
only if U(xk) is nonempty, which is given for all xk ∈ X0.
There may also be x /∈ X0 for which U(x) is nonempty, as
long as X0 is not the maximal stabilizable set in X . On the
contrary, the RHC law is only feasible on X0, such that the
domain of the RHC law is a subset of the domain of the
projected DNN controller.

Remark 4. The RHC law defined in Alg. 1 has the property
that µRHC(x) ∈ U(x) for all x ∈ X0, i.e., the capability of
the DNN to approximate the RHC law is not affected by
the projection (in other words, the output of a DNN is not
changed by the projection if it approximates the RHC law
with zero approximation error).

The following subsection intends to show that U(x) is
the union of polytopes for each state x ∈ X0 and that the
projection can be established by the solution of (in general
multiple) QPs. Sec. III-B is going to describe an approach to
compute polytopic control invariant sets X̃0 ⊆ X0, in which
case the projection relies only on the solution of a single QP.
The method proposed for computing the sets X̃0 is inspired
by the one suggested for switched systems with externally
forced switching in [11].

A. Approximate RHC with non-convex feasible state set

The feasible set X0 is the union of (possibly overlapping)
polytopes and thus forms a non-convex set (see, e.g., [14]).
Subsequently, let ∪j∈JFj be a polytopic partition of the
feasible set X0 with finite index set J = {1, . . . , nJ }, i.e.:

X0 = ∪j∈JFj , (12)

Fj =
{
x | HFjx ≤ hFj

}
. (13)

Theorem 1. Given Assumption 2, the state-dependent set
U(x) of feasible inputs defined in (10) is the nonempty union
of polytopes for each x ∈ X0.

Proof. By inserting X0 = ∪j∈JFj into (10), the set U(x)
can be reformulated as the union:

U(x) = ∪j∈JU j(x), (14)

with U j(x) defined to:

U j(x) = {u ∈ U | fi(x, u) ∈ Fj if x ∈ Pi} . (15)

The sets U j(x) (depending on fi according to (2) and Fj

according to (13)) can be rewritten into:

U j(x) = {u ∈ U |HFjBiu ≤
hFj −HFj (Aix+ ci) if x ∈ Pi}.

(16)

By use of the half-space representation of U one eventually
obtains:

U j(x) = {u | HUj

i u ≤ h
Uj

i (x) if x ∈ Pi}, (17)

with matrices:

H
Uj

i =

[
HFjBi

HU

]
, h

Uj

i (x) =

[
hFj −HFj (Aix+ ci)

hU

]
.

Since U was defined polytopic, each nonempty set U j(x) is
polytopic, too. The fact that at least one U j(x) is nonempty
follows from the nonemptiness of U(x) for each x ∈ X0

(which is a consequence of the control invariance of X0 given
by Assumption 2).

For a given x ∈ X , let the set of indices j ∈ J with
nonempty U j(x) be denoted by:

J (x) =
{
j ∈ J | U j(x) ̸= ∅

}
. (18)

The set J (x) can be determined by solving the convex
feasibility problem:

find u subject to u ∈ Uj(x) (19)

for each j ∈ J . It follows from the proof of Theorem 1 that
J (x) is nonempty for all x ∈ X0.

Based on these aspects, the approximation of the RHC law
from Alg. 1 by a DNN controller with guaranteed feasibility
and constraint satisfaction is established by the following
algorithm.

Algorithm 2 (Approximate RHC). For each k ∈ N0:
(i) Compute uDNN,k = µDNN(xk) from (9) and determine

J (xk) by solving (19) for each j ∈ J .
(ii) Solve:

minimize
uPROJ,k

∥uPROJ,k − uDNN,k∥22

subject to uPROJ,k ∈ Uj(xk), j ∈ J (xk).
(20)

(iii) Apply the solution uk = u∗
PROJ,k of (20).

Remark 5. Problem (20) is equivalent to problem (11); its
solution can be obtained by first solving the QP:

minimize
u
(j)
PROJ,k

∥u(j)
PROJ,k − uDNN,k∥22

subject to u
(j)
PROJ,k ∈ Uj(xk)

(21)

for each j ∈ J (xk) and then selecting from the resulting
set of solutions Sk = {u(j)∗

PROJ,k}j∈J (xk) an element with
minimum Euclidean norm to the controller output:

u∗
PROJ,k ∈ argmin

u∈Sk

∥u− uDNN,k∥22. (22)

Remark 6. The computational demand of Alg. 2 grows
with the number nJ of indices j in J . Hence, a polytopic
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partition ∪j∈JFj of a non-convex X0 with the least possible
nJ is desirable. The problem of finding such a minimal
representation by merging polytopes is studied, e.g., in [15].
Example 1 shows that nJ can be significantly smaller than
the regions over which the explicit RHC law is defined (the
offline determination of the latter becomes computationally
intractable rapidly with increasing N ).

The computation of X0 gets more demanding with in-
creasing problem size, as does the determination of the
least possible nJ . Thus, the following subsection presents
a computationally less demanding procedure for computing
a polytopic control-invariant subset X̃0 of a non-convex X0,
with the property that the RHC law is recursively feasible
when substituting the constraint xj|k ∈ X in (5) by xj|k ∈
X̃0.

B. Approximate RHC with convex feasible state set

The paper on hand proposes the computation of polytopic
sets X̃0 ⊆ X0 by the recursion:

X̃j = X ∩

(⋂
i∈I

Prei(X̃j+1)

)
,

X̃N = Xf , j ∈ {0, . . . , N − 1},

(23)

where Prei(S) denotes the set of predecessors of states in
S ⊆ X according to:

Prei(S) = {x | ∃u ∈ U such that fi(x, u) ∈ S} . (24)

The following assumption ensures control-invariance of X̃0.

Assumption 3. The polytopic terminal set Xf ⊆ X is
control-invariant for all dynamics xk+1 = fi(xk, uk):

x ∈ Xf ⇒ ∀i ∈ I : ∃u ∈ U such that fi(x, u) ∈ Xf .

Theorem 2. Given Assumption 3, the state-dependent set

Ũ(x) =
{
u ∈ U | fi(x, u) ∈ X̃0 if x ∈ Pi

}
(25)

is a nonempty polytopic subset of U(x) for all x ∈ X̃0.

Proof. The set Prei(Xf ) consists of all states x ∈ X for
which at least one u ∈ U can be selected such that fi(x, u) ∈
Xf . Hence, Xf ⊆ Prei(Xf ) applies for all i ∈ I according
to Assumption 3. Thus, Xf ⊆ ∩i∈IPrei(X̃j+1) follows (this
property would not be given if Xf ̸⊆ Prei(Xf ) for at least
one i ∈ I). Moreover, Xf ⊆ X and X̃N = Xf holds, such
that X̃N ⊆ X̃N−1 = X ∩ (∩i∈IPrei(X̃N )). Consequently,
for each x ∈ X̃N−1 and i ∈ I, there exists at least one u
such that fi(x, u) ∈ X̃N ⊆ X̃N−1, i.e. X̃N−1 is, just as X̃N ,
control-invariant for all dynamics xk+1 = fi(xk, uk). The
property that X̃j+1 ⊆ X̃j for each j ∈ {0, 1, . . . , N − 1}
and the control-invariance of X̃j+1 for all dynamics xk+1 =
fi(xk, uk) follows by induction.

The nonemptiness of X̃N = Xf implies the nonemptiness
of X̃0 ⊇ X̃1 ⊇ . . . ⊇ X̃N . Hence, Ũ(x) is nonempty for all
x ∈ X̃0. The sets Prei(S) are the result of linear operations
on S and U : if S is a polytope, then Prei(S) is a polytope,

and the assumption of a polytopic terminal set Xf implies
that all X̃j are polytopic:

X̃j =
{
x | HX̃jx ≤ hX̃j

}
, j ∈ {0, 1, . . . , N}. (26)

By inserting the expression of the state transition map (2)
and the half-space representation of X̃0 into (25), the set
Ũ(x) can be rewritten as:

Ũ(x) =
{
u | H Ũ

i u ≤ h
Ũ
i (x) if x ∈ Pi

}
, (27)

with

H
Ũ
i =

[
HX̃0Bi

HU

]
, h

Ũ
i (x) =

[
hX̃0 −HX̃0(Aix+ ci)

hU

]
.

Hence, Ũ(x) is a nonempty polytope for all x ∈ X̃0.
The set X0, which is recursively defined in (6), consists

of all states x ∈ X that can be transferred into Xf within N
steps while satisfying the state and input constraints in (3).
It follows directly from the recursive definition of X̃0 in (23)
that for each xk ∈ X̃0 there exists at least one input sequence
{uk, uk+1, . . . , uk+N−1} such that uk+j ∈ U and xk+j+1 ∈
X̃j+1 for all j ∈ {0, 1, . . . , N − 1}. Thus, X̃0 ⊆ X0, and
it finally follows from the definition of U(x) in (10) that
Ũ(x) ⊆ U(x) for all x ∈ X̃0.

By restricting the set of admissible states to X̃0, a simpli-
fied algorithm can be formulated for approximating the RHC
law, see Algorithm 3 below.

Algorithm 3 (Approximate RHC with convex feasible set).
At each time instant k ∈ N0:

(i) Compute uDNN,k = µDNN(xk) by evaluating the DNN
control law (9).

(ii) Solve:

minimize
uPROJ,k

∥uPROJ,k − uDNN,k∥22

subject to uPROJ,k ∈ Ũ(xk).
(28)

(iii) Apply the solution uk = u∗
PROJ,k of (28).

Remark 7. Algorithm 3 requires only the solution of a
single QP for projection at the cost of potential suboptimality
due to the property that Ũ(x) ⊆ U(x) for x ∈ X̃0.
It is advisable to approximate RHC laws for which the
constraint xj|k ∈ X in (5) is substituted by xj|k ∈ X̃0.
Subsequently, these RHC laws are denoted as suboptimal
RHC laws. On the one hand, the suboptimal RHC laws have
the property that µRHC(x) ∈ Ũ(x) for all x ∈ X̃0, i.e.,
the capability of the DNNs to approximate the suboptimal
RHC laws is not affected by the projection. On the other
hand, recursive feasibility of the suboptimal RHC laws is
ensured for each x0 ∈ X̃0, as follows directly from the proof
of Theorem 2. Since the projection ensures that x0 ∈ X̃0

implies xk ∈ X̃0 for all k ∈ N0, there is always an input
sequence {uk, uk+1, . . . , uk+N−1} which transfers xk into
the terminal region Xf while satisfying the constraints in (3).
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Fig. 1. Example 1: Shaded areas illustrate the polyhedral partition
{Pi}i∈{1,2,3} of X . Solid blue lines represent the boundary of X0 and
dashed red lines the boundary of X̃0. The blue dotted line indicates that X0

can be partitioned into two polytopes.

IV. SIMULATION EXAMPLE

A. Example 1 - 2D System

Consider a PWA system (1) that is parameterized by:

A1 =

[
0 1
1 1

]
, A2 =

[
0 1
−1 2

]
, A3 =

[
0 1

−0.5 1

]
,

Bi =

[
0
1

]
, c1 =

[
0
0

]
, c2 =

[
0
0.1

]
, c3 =

[
0

−0.2

]
(i.e., B1 = B2 = B3 =

[
0 1

]⊤
) and is subject to:

xk ∈ X = {x | |xi| ≤ 1}, uk ∈ U = {u | |u| ≤ 0.5},

with polyhedral partition {Pi}i∈{1,2,3} of X as visualized
in Fig. 1 (some of the inequalities defining P1, P2, P3

are rendered to strict form to ensure compliance with As-
sumption 1). Further, consider an RHC setup with N = 20,
Xf = {02×1}, P = 02×2, Q = I2×2, and R = 1. The sets
X0 and X̃0 obtained for the chosen N are shown in Fig. 1
as well, with a blue dotted line indicating the subsequently
considered partition of X0 into polytopes F1 and F2.

The approximation of the RHC law by a DNN controller
µDNN according to Alg. 2 was carried out for L = 6 (number
of layers) and sl = 30, l ∈ {1, . . . , L − 1} (number of
hidden units). As activation functions, ReLUs were used,
except for the last layer, for which the identity function
was chosen. The DNN controller was trained offline by
state-input pairs {(x(q), u(q))}q∈Q, Q = {1, . . . , 104}; the
states x(q) were determined by gridding X0, while the inputs
u(q) = µRHC(x

(q)) were obtained by evaluating the RHC law
from Alg. 1. For these evaluations, problem (5) has been
reformulated and solved as MIQP. The offline computation
of an explicit RHC law was found to be intractable due to
storage requirements. Fig. 2 compares the state sequences
generated by Alg. 1 (left plot) and Alg. 2 (middle plot)

TABLE I
EXPLICIT RHC: GROWTH IN THE NUMBER OF REGIONS WITH

INCREASING PREDICTION HORIZON.

N 2 3 4 5 6
nr 6 39 184 663 2135

for x0 =
[
−1 −1

]⊤
. Further, it compares the values

of µRHC(x(λ)) and µDNN(x(λ)) (right plot) along the line
segment from x(1) =

[
−1 −0.4

]⊤
to x(2) =

[
1 −0.4

]⊤
:

x(λ) = λx(1) + (1− λ)x(2), 0 ≤ λ ≤ 1.

In this example, X0 is equal to the maximal stabilizable
set in X , i.e. there is no admissible control law that transfers
xk /∈ X0 into Xf within a finite number of steps. Moreover,
X0 remains the same when further increasing N , such that
the partition of X0 into two polytopes F1 and F2 can be
maintained. Consequently, the evaluation of Alg. 2 only
requires, even for N > 20, the evaluation of a closed-
form expression (the DNN) and the solution of at most
two QPs for projection. On the contrary, the computational
complexity for evaluating Alg. 1 grows with an increasing
N . The rapid growth in the number nr of regions of the
explicit RHC law with increasing N is documented in Tab. I.
The approximation of the suboptimal RHC law by Alg. 3
leads to comparably close approximation results. However,
the solution of a single instead of at most two QPs does
not cause a significant increase in computational efficiency
in this particular example.

B. Example 2 - 3D System

Consider now a PWA system in R3 parameterized by:

A1 =

 0 1 0
0 0 2
1.8 1 1.6

 , A2 =

 0 1 0
0 0 2

−1.8 1 1.6

 ,

A3 =

 0 1 0
0 0 1.4

−1.4 2 0.6

 , A4 =

 0 1 0
0 0 −2

−1.4 0.8 0.6

 ,

Bi =

0 0
0 1
1 1

 , c1 =

00
0

 , c2 =

 0
0
0.1

 , c3/4 =

 0
−0.1
0.1

 ,

with states and inputs constrained to:

X = {x | |xi| ≤ 2}, U = {u | |u| ≤ 1},

and with a partition of X into:

P1 ⊆
{
x ∈ X |

[
0 −1 0
0 0 −1

]
x ≤

[
0.1
0.1

]}
,

P2 ⊆
{
x ∈ X |

[
0 −1 0
0 0 1

]
x ≤

[
0.1
−0.1

]}
,

P3 ⊆
{
x ∈ X |

[
0 1 0
0 0 1

]
x ≤

[
−0.1
−0.1

]}
,

P4 ⊆
{
x ∈ X |

[
0 1 0
0 0 −1

]
x ≤

[
−0.1
0.1

]}
,
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Fig. 2. Example 1: (Left) State sequence obtained from Alg. 1. (Middle) State sequence obtained from Alg. 2. (Right) Values µRHC(x(λ)) and µDNN(x(λ))

along the line segment x(λ) = λx(1) + (1− λ)x(2), 0 ≤ λ ≤ 1 from x(1) =
[
−1 −0.4

]⊤ to x(2) =
[
1 −0.4

]⊤.

Fig. 3. Example 2: Illustration of the polytopic and feasible set X̃0.

where some of the inequalities defining P1, P2, P3, and
P4 are rendered to strict form to ensure compliance with
Assumption 1. The RHC setup is chosen with N = 6, Xf =
{03×1}, P = 03×3, Q = I3×3, and R = I2×2. The prediction
horizon was chosen smaller than in the previous example to
also allow the computation of the explicit RHC law.

The suboptimal RHC law was approximated by a DNN
controller with the same structure as before, using Alg. 3.
This time, the DNN controller was trained with state-input
pairs {(x(q), u(q))}q∈Q, Q = {1, . . . , 105}, obtained by
gridding the set X̃0 shown in Fig. 3. Table II shows average
online computation times for evaluating the RHC law from
Alg. 1 and its approximation by Alg. 3 for {x(q)}q∈Q
obtained from gridding X̃0. The computation times of Alg. 1
refer to (i) the evaluation based on the solutions of MIQPs
and (ii) the evaluations of an explicit expression of the
RHC law determined by the MPT toolbox [16]. The aver-
age evaluation time for the explicit expression is evidently
faster than the one obtained with the non-commercial MIQP
solver of YALMIP [17], but clearly slower than the one
obtained with the commercial MIQP solver implemented in
Gurobi [18]. On the other hand, the average computation
time for evaluating Alg. 3 with the DNN controller is more
than 10 times faster than the average computation time for
evaluating Alg. 1 with the MIQP solver in Gurobi. Finally,
Fig. 4 shows the state sequences generated by the RHC law

TABLE II
EXAMPLE 2 - AVERAGE ONLINE COMPUTATION TIMES FOR EVALUATING

THE LAW FROM ALG. 1 AND APPROXIMATION FROM ALG. 3

.

Control Law Average Computation Times

Alg. 1 (YALMIP - MIQP) 1120ms

Alg. 1 (Gurobi - MIQP) 93ms

Alg. 1 (Explicit - MPT) 410ms

Alg. 3 (DNN) 7ms

and its approximation for a selected x0.

V. CONCLUSION

This paper has addressed the approximation of RHC laws
for PWA systems by DNNs, and deterministic guarantees
on constraint satisfaction and feasibility have been obtained
by projecting the outputs of the DNNs onto sets of inputs
derived from feasible state sets. In contrast to LTI systems,
the convexity of feasible input sets is, in general, not given
for the broader class of PWA systems, to which the projection
approach has (to the best of the author’s knowledge) not been
extended before.

The first contributions of the paper were to show 1) that
the set of feasible inputs is obtained as the union of polytopes
and 2) that the projection can be realized by solving several
QPs whose number depends on the polytopic partition of the
feasible state set. In contrast to the projected DNN controller,
the demand for computing the RHC law grows with an
increasing prediction horizon and becomes computationally
intractable rapidly. Sec. IV-A provided an example for which
the projection required only the solution of two QPs for an
arbitrarily large prediction horizon. At the same time, the
offline computation of the explicit RHC law was found to
be intractable even for small prediction horizons.

Another contribution of the paper on hand was to present
a computationally less demanding procedure for determining
polytopic control-invariant subsets of feasible state sets, al-
lowing the realization of the projection - at the cost of poten-
tial suboptimality - by only solving a single QP. The benefits
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Fig. 4. Example 2: State sequences generated by the RHC law and its approximation for a selected initial state.

of this approach with respect to computational efficiency
compared to RHC evaluations have been demonstrated even
for small prediction horizons in Sec. IV-B.

The focus of this paper has been the guaranteed satis-
faction of constraints rather than the search for the most
suited DNN controllers. However, approximations of RHC
laws with high accuracy have been achieved without large
tuning effort in the simulation examples. Nevertheless, the
discontinuity of the RHC laws may motivate considering
other activation functions, network architectures, or classes
of approximators in subsequent research. As a matter of fact,
the projection approach can be used for any type of control
law. A point not addressed here is the efficient generation
of training data. Of course, the gridding of the state-space
suffers from the curse of dimensionality, but there is ongoing
research addressing this issue elsewhere, see e.g. [19]. The
analysis of stability was also out of the scope of this paper.
However, the proposed projection by a single QP seems to
allow a straightforward extension of the approach in [12]
from LTI to PWA systems to find inner approximations of
ROAs for projected DNN controllers.
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