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Abstract— Utilizing demand-side flexibility provides a vi-
able, cost-efficient and low-carbon alternative to standard grid
reinforcement. Energy hubs can provide such a flexibility
by leveraging both electrical and thermal grids. This work
proposes a novel pricing model for distribution tariffs to fulfill
network-wide objectives, while incentivising energy hubs to
participate in a demand side flexibility scheme. In the first step,
we formulate the optimization of the hub network and propose
a novel approach to quantify the flexibility potential of the hubs.
The energy hubs then provide the operator with their projected
load and flexibility potential for the next day. Subsequently,
the operator designs day-ahead tariffs to utilize this flexibility.
The tariff incorporates the objectives of the network operator,
reduction of carbon emissions in this study, while minimizing
the energy costs. Finally, the energy hubs respond to the tariffs
using a receding horizon controller to minimize the energy cost
over the next day by exploiting building flexibility and both
grids. An extensive numerical study on an network of 3 hubs
with buildings of different sizes shows that the proposed pricing
model can significantly reduce the carbon emissions with a low
energy cost trade-off.

I. INTRODUCTION

The stringent global decarbonization targets are driving
a rapid integration of distributed energy resources (DERs)
at low voltage levels. DERs can also provide flexibility to
assist the system in accommodating more renewables while
ensuring reliable operation [1]. In particular, energy hubs
can leverage both electrical and thermal grids to enhance
this flexibility provision and support the distribution system
operators (DSOs) in fulfilling network-wide objectives, such
as carbon emission reduction. This enables an improved
utilization of the existing grid assets and a reduction of the
investment costs to reinforce the network equipment [2].

DSOs are responsible for operation, control and mainte-
nance of the distribution system to ensure security of supply.
They procure energy from the wholesale market and sell it
to end-users, setting the tariffs in accordance to the costs of
various energy sources, grid upkeep, taxes, etc. DSOs can use
these price signals to induce changes in the end-user’s energy
consumption, for example to reduce consumption during
peak hours [6]. Energy hubs do not individually participate
in energy service markets, but they generally respond to
electricity distribution tariffs aiming to minimizing their
energy costs. Therefore, when the distribution tariffs are
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designed to meet DER-specific objectives, the hubs indirectly
perform demand response [3].

The design of distribution tariffs is a critical task and has
been widely investigated in the literature. In [4], the authors
identify ten different design criteria for efficient tariffs. While
a highly granular tariff design would be more cost-reflective
as it calculates the impact of individual customers on the grid
cost, the higher granularity of the tariff would also result in
a lower acceptability. Moreover, since all the energy hubs
respond to the same price signal, this may lead to coordinated
actions and result in high peak loads [5]. Dynamic tariffs
have also recently been applied in practice by the Swiss DSO,
Group E, to reduce the demand during peak hours [6].

Similarly, there has been extensive research into the op-
eration of energy hubs that respond to distribution tariffs
and fully exploit the link between hubs through peer-to-peer
(P2P) energy trading to reduce energy costs. This can be
achieved with either a centralized or a distributed approach.
In the centralized approach, a central controller directly
communicates with all hubs aiming to optimize multiple
objectives [7], [8]. Here, the energy trading between the hubs
can be modelled as a nonlinear power flow problem [9].
However, this requires information sharing and high com-
putational effort, raising privacy and real-time infeasibility
concerns. Conversely, distributed approaches can preserve
the hubs’ privacy, but may not be able to achieve a global
optimum [10]. A centralized approach is used in this work.

Although the design of distributed tariffs and the optimal
operation of energy hubs have been widely investigated
individually, the integration of these two aspects remains a
crucial research gap. This work proposes a novel pricing
model for distribution tariffs which aims to address this gap.
The strategy is centered on DSO pricing framework that
accounts for the optimization of flexible energy hubs, and
the communication between the DSO and the energy hubs.
Network dynamics are neglected here as the formulation
falls outside the scope of the price optimization. More
specifically, we focus on building energy hubs as buildings
account for a third of the global energy consumption and
40% of the total energy demand in Switzerland [20]. The
key novelty of the proposed design is that it eliminates the
need of the typically used carbon taxes or cap-and-trade
programs as additional costs for the consumers to reduce
the carbon emissions [19], as the carbon intensity is directly
integrated into the electricity price. The design involves the
following steps: 1) the energy hubs provides the operator
with the projected load and the flexibility potential over the
next 24 hours. 2) The operator designs the tariff to exploit
this flexibility to meet its objectives. 3) A central receding
horizon controller of the energy hubs responds to the tariff
while minimizing the costs. An overview of the proposed
strategy is presented in Fig. 1(a). The key contribution is
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Fig. 1. (a) Overview of the physical connections between the distribution
system and the energy hub network as well as the information flow between
the DSO and the network controller under the proposed pricing scheme. (b)
Topology of a single energy hub in the network [13].

twofold: i) A novel distribution tariff design for energy
hubs that fulfills network-wide objectives, specifically carbon
emission reduction in this work, while minimizing costs for
each hub; ii) An analytical computation of the flexibility
potential of the energy hubs for the following day.

The proposed design was tested via extensive numerical
simulations on a 3-hub network, using realistic models of en-
ergy hubs and demand data. The performance was analysed
in terms of the trade-off between carbon emission reduction
and energy cost increase.

II. MODEL DESCRIPTION

We present the models used for the energy hub devices and
the building thermal dynamics. The system comprises of a
set of H = {1, . . . ,H} interconnected energy hubs, and each
energy hub supplies a set of buildings. Let T = {0, . . . , T −
1} where T is the length of the horizon considered.

A. Energy Hub dynamics
Energy hub provides the interface between the buildings

and the energy grids to serve the building electricity and
heating demands. As shown in Fig. 1 (b), the energy hubs
can include energy generation sources (e.g., photovoltaics)
combined with different conversion and storage devices (e.g.,
battery, heat pump, etc.). Each hub is connected to the
electricity and gas grid as well as to the local thermal grid.
The hubs can trade electrical and thermal energy with other
hubs via the electricity grid and the thermal grid, respectively.

Let Dn denote the set of devices controlled by the energy
hub n. The dynamics of each energy hub device i ∈ Dn can
be modelled as the following discrete time linear state space
system that describes the evolution of its energy xt+1,i [12]:

xt+1,i = Aixt,i +Bin
i uin

t,i +Bout
i uout

t,i +Didt,i,

xt,i ∈ Xt,i, uin
t,i ∈ U in

t,i, uout
t,i ∈ Uout

t,i ,

}
∀t ∈ T

(1)

where dt,i are the exogenous disturbances (e.g., solar radi-
ation). Here, uin

t,i and uout
t,i are the inputs and outputs for

device i, respectively, defined as

uin
t,i =

 ug,in
t,i

up,in
t,i

uq,in
t,i

 uout
t,i =

[
up,out
t,i

uq,out
t,i

]
∀t ∈ T

where ug,in
t,i , up,in

t,i and uq,in
t,i are the gas, electricity and

heating input to the device respectively, and up,out
t,i and

uq,out
t,i are the electricity and heating outputs from the device,

respectively. For more details on how energy conversion and
storage devices can be modelled in this framework, see [12].

There are three energy balancing constraints, one for each
energy carrier (electricity, heating, gas). For hub n, the
electricity energy balance constraint is

pout
t,n +

∑
i∈Dn

up,out
t,i +

∑
k∈H\{n}

ηknp
tr
t,kn =

pin
t,n +

∑
i∈Dn

up,in
t,i +

∑
k∈H\{n}

ptr
t,nk + Lp

t,n, ∀t ∈ T
(2a)

where pout
t,n ≥ 0 and pin

t,n ≥ 0 are the electricity purchased
from and sold to the electricity grid, respectively, and Lp

t,n is
the total electricity demand of the buildings connected to the
energy hub n at time step t. Here, ptr

t,nk is the energy traded
and transferred from hub n to hub k at time step t. The total
energy exported to all the hubs in the network from the hub
n is

∑
k∈H\{n} p

tr
t,nk, while the energy imported from all

the hubs in the network is
∑

k∈H\{n} ηknp
tr
t,nk, where the

efficiency ηkn takes into account the energy loss between the
hubs. Similarly, the thermal energy balance constraint is∑

i∈Dn

uq,out
t,i +

∑
k∈H\{n}

γknq
tr
t,kn =

∑
i∈Dn

uq,in
t,i +

∑
k∈H\{n}

qtr
t,nk +Lq

t,n, ∀t ∈ T
(2b)

where Lq
t,n is the total thermal demand of the buildings

connected to the energy hub n at time step t and qtr
t,nk is

the total thermal energy transferred from hub n to hub k
at time step t. The total energy exported to all the hubs
in the network from the hub n is

∑
k∈H\{n} q

tr
t,nk, while

the energy imported from all the hubs in the network is∑
k∈H\{n} γknq

tr
t,nk, where the efficiency γkn takes into

account the energy loss between the hubs. We assume that
the efficiency is a function of the distance between the hubs
and decreases linearly as the distance increases [18]. Finally,
the gas energy balance constraint is given by

gout
t,n =

∑
i∈Dn

ug,in
t,i , ∀t ∈ T (2c)

Finally, we introduce a constraint that limits the electrical
and thermal energy traded between hubs,

0 ≤ ptr
t,nk ≤ κp

nk,

0 ≤ qtr
t,nk ≤ κq

nk.

}
∀k ∈ H\{n},∀t ∈ T (3)

Setting the limit κp
nk and κq

nk on the energy that can be
traded between the hubs n and k to zero can also be used to
define specific trading network topologies and specify if two
hubs are not connected or cannot trade with one another.
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B. Building Dynamics

Let Bn denote the set of buildings that are supplied by
energy hub n. Following [11], the thermal dynamics of the
building j ∈ Bn at time t ∈ T are modelled through a
simplified state space model:

xt+1,j = Ajxt,j +Bjut,j +Djdt,j

yt,j = Cjxt,j

}
∀t ∈ T (4a)

where xt,j are the states representing the temperatures of
the individual zones and may include the temperature of
walls, floors and ceiling layers of the building, yt,j are the
measured outputs (e.g., room temperatures, humidity), ut,j

are the controllable inputs and activation units (e.g., radiators,
air handling units), and dt,j are the disturbances that affect
the building (e.g., ambient temperature, solar radiation or
internal gains). Here, the state space matrices Aj , Bj , Dj ,
and Cj capture the building characteristics. In this work, the
measured outputs are the temperatures of all the zones in
the building. This is achieved by designing Cj to select only
the zone temperatures states from the state vector xt,j . We
also assume that the building management system has access
to perfect forecasts for the disturbances and the electrical
demand. While this assumption is unrealistic in practice, it
can easily be relaxed by introducing forecast uncertainty
and feedback policies [12][13]. Furthermore, the building
models are assumed to be linear as they only consider radiant
heating systems and do not have air-handling units (AHUs)
in accordance to buildings in Europe.

A number of constraints are introduced to model occupant
comfort and device limitations. Equation (4b) ensures that
the room temperatures stay within the time varying comfort
bounds and equation (4c) enforces the physical constraints
on the inputs to the building.

Tmin
r,t ≤ yt,j ≤ Tmax

r,t , ∀t ∈ T (4b)

umin
j ≤ ut,j ≤ umax

j , ∀t ∈ T (4c)

where umin
j and umax

j are the minimum and maximum limits
of the inputs respectively. We limit attention to commercial
buildings and set the minimum temperature, Tmin

r,t , and
maximum temperature, Tmax

r,t , to 18◦C and 26◦C respectively
between 22:00 and 6:00, and 21◦C and 23◦C otherwise.

Each building j has its own electrical and thermal demand
at each time step t, lpt,j and lqt,j , respectively. The total elec-
trical and thermal energy demand of the buildings connected
to energy hub n at time t is defined by

Lp
t,n =

∑
j∈Bn

lpt,j , Lq
t,n =

∑
j∈Bn

eTj ut,j︸ ︷︷ ︸
:=lqt,j

, ∀t ∈ T (5)

where ej selects the inputs from ut,j corresponding to the
thermal inputs to the radiators of the building.

Finally, the full constraint set for each energy hub n with
devices Dn and buildings Bn is:

EHn :=
{
pin
t,n, pout

t,n , Lp
t,n, Lq

t,n, ptr
t,nk, qtr

t,nk

}
t∈T

:

∃
{
uin
t,i,u

out
t,i

}
t∈T

s.t. (1, 2, 3) hold ∀i ∈ Dn

∃
{
ut,j

}
t∈T s.t. (4, 5) hold ∀j ∈ Bn


Note that the network dynamics are neglected here as the

formulation falls outside the scope of the price optimization.

III. OPTIMIZATION AND FLEXIBILITY QUANTIFICATION

The optimal operation of the energy hubs aims to minimize
the costs of purchasing electricity and gas from the grid, over
a finite horizon, while satisfying the comfort and operational
constraints in the system. The joint operation of the hubs
allows them to engage in P2P trading, resulting in increased
self-reliance, flexibility and utilisation of renewable gener-
ation and storage resources. We assume that the cost of
electricity and gas at time t, cpt and cgt respectively, is known
by the hub controller for the complete horizon T . The energy
hubs can also feed excess electricity into the grid with a
known constant feed-in tariff cft at time t. Furthermore, the
grid operator imposes an additional tariff, cftr, on the hubs
for the use of the electricity grid infrastructure, e.g. for
bilateral trades between them. The resulting optimization of
the energy hubs can be formulated as

min

T−1∑
t=0

(
H∑

n=1

(
gout
t,n · cgt + pout

t,n · cpt − pin
t,n · cft

+
∑

k∈H\{n} p
tr
t,nk · ctrt

))
s.t.
{
pin
t,n,p

out
t,n ,L

p
t,n,L

q
t,n,p

tr
t,nk, q

tr
t,nk

}
t∈T

∈ EHn, (6)

∀n ∈ H
The centralised controller solves the optimal control prob-

lem to compute the dispatch of all the devices in each of the
hubs, as well as the energy traded between hubs, using an
MPC strategy. At each time-step, the optimization determines
the optimal control inputs for the system over the full horizon
T , and applies only the first of these inputs to the system.
The process is then repeated at the next time step. The
receding horizon implementation brings feedback into the
process and allows the controller to continuously adapt to
new measurements, forecast information, and suppress the
effect of disturbances. Distributed control algorithms, such
as the strategy proposed in [10] based on consensus version
of ADMM, can be used to solve this problem, achieving
the optimal operation of the hubs, while mitigating concerns
over privacy and scalability. To ensure feasibility of the
optimization, an additional slack variable σt is added to the
comfort bounds in (4b) and the violation of the comfort
constraints is penalised in the cost function by adding a term
with this slack variable multiplied with a high penalty.

A. Quantifying the flexibility potential of energy hubs
One of the key factors affecting the optimal dispatch of the

hubs and the energy imported from the grid is the electricity
tariff, cpt , which drives the flexibility provision from the
different flexible devices in the buildings, including schedu-
lable loads such as washing machines and dishwashers, and
storage devices such as batteries and thermal storage tanks.

The flexibility that an energy hub provides for a set of
buildings, can be represented as an envelope and quantified
by computing the maximum and minimum energy demand
of the system over a horizon, within which the occupant’s
comfort and the operational constraints are satisfied [14]. The
baseline load of the system, which is the energy demand of
a reference case that represents the power usage in a locally
optimal situation, lies within such a consumption range. Fig.
2 illustrates the adopted definition of flexibility. The black
line is the baseline load. The blue line is the minimum load
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Fig. 2. Schematic of the flexibility potential of an energy hub. The solid
lines show the nominal flexibility of the hub. The dotted lines show the
potential flexibility of the same hub with the use of a storage device.

of the building and the blue area is the negative flexibility
provided by decreasing power consumption below the base-
line. Conversely, the red line is the maximum load and the
yellow area represents the positive flexibility provided by
increasing the power demand.

The presence of storage devices in the energy hub can
significantly increase the flexibility potential of the system.
However, this makes the quantification of the flexibility
potential more challenging. The amount of flexible energy
provided by the storage devices and how long it can be
provided for depends on the current state of charge (SoC), the
charging/discharging behaviours in the previous time step,
the power rating and the capacity of the installed storage
device. The dotted lines in Fig. 2 shows the flexibility
potential with the addition of a battery. If the battery is
sufficiently charged, the negative flexibility increases at the
next time instance as the battery may supply part of the
electrical energy load, decreasing the consumption from the
grid. Additionally, as long as the battery is not at maximum
capacity, it can still be charged increasing consumption from
the grid. Therefore, a fixed maximum and minimum load
would depend on when the battery is charged or discharged.

More precisely, in this study, we describe the flexibility
potential of energy hubs including storage devices for a
horizon of T hours using (a) the nominal flexibility when
no electrical or thermal storage devices are considered, and
(b) the capacity scap and the SoC of the installed storage
devices at midnight. The information (b) allows the DSO to
track the dynamics of the storage devices over the horizon
to exploit the flexibility they can provide while ensuring
a feasible operation. The nominal flexibility for the energy
hubs is quantified by computing the fixed baseline, maximum
and minimum energy demand, as described below:

• Minimum load curve (pmin): Solve Eq. (6) using con-
stant cpt = cp ≥ cft and excluding storage devices.

• Baseline load curve (pbase): Solve Eq. (6) to achieve a
reference temperature of 22◦C (Eq. (4b)) using constant
cpt = cp ≥ cft and excluding storage devices.

• Maximum load curve (pmax): Solve Eq. (6) to maximize
energy usage using constant negative cpt = cp and cft
and excluding storage devices where cp, cft ≤ 0.

The dynamics of the storage system are modelled using a
state space system which describes the evolution of SoC xs

t:

xs
t+1 = Asxs

t +Buuu
t −Bdud

t ,

xs
t ∈

[
smin, smax

]
, xs

0 = s0

uu
t ∈

[
0, umax · zt

]
,

ud
t ∈

[
0, umax · (1− zt)

]
, zt ∈ {0, 1}


∀t ∈ T (7)

where s0 is the initial SoC, smin and smax are the minimum
and maximum storage levels, uu

t and ud
t are the charged and

discharged, respectively, and umax is the maximum rate at
which the storage can be charged or discharged energy. The
binary value zt ensures that the storage is not simultaneously
charged and discharged.

Finally, the full constraint set to describe the flexibility
potential of the energy hub network is

FL :=



{
pprojt

}
t∈T

: ∃
{
uu
t ,u

d
t , zt

}
t∈T

such that

T−1∑
t=0

pprojt =
T−1∑
t=0

pbaset

pmin
t − ud

t ≤ pprojt ≤ pmax
t + uu

t , ∀t ∈ T ,

ud
t ≤ pmin

t , ∀t ∈ T , and (7) hold


where pproj is the projected load of the energy hubs. The

first constraint ensures that the total load still satisfies the
nominal demand over the complete horizon. This constraint
ensures that the projected load does not stick to the minimum
load when the energy cost is minimised, resulting in a nega-
tive flexibility for the entire following day, thereby ensuring
a more realistic load shift scenario. The second constraint
ensures that the load does not exceed the flexibility bounds at
any given time. The flexibility bounds, in particular, are time
varying depending on the current SoC of the installed storage
devices. Finally, the last constraint ensures non-negativity of
the lower bound.

IV. DISTRIBUTION TARIFF PRICING MODEL

The objective of the distribution tariffs is to fulfil network-
wide objectives (here, carbon emission reduction) while
reducing the energy cost of the hubs. A naive approach is to
model the prices so that these two objectives are balanced.
Let α ∈ [0, 1] be a tuning parameter that enables the DSO to
set its priority and trade-off the two objectives, and consider
an electricity price given by

cpt =
(
α · cn.carbont + (1− α) · cn.costt

)
, ∀t ∈ T

where cn.costt and cn.carbont are the normalised cost of
energy and the normalised carbon intensity of electricity at
time t, respectively. While this strategy results in prices that
reflect the desired objective, the prices could be too high or
too low with respect to the actual energy costs. High prices
result in overcharging the energy hubs for their basic energy
usage, whereas low prices are insufficient in recovering the
DSO’s cost of procuring energy from the wholesale market
resulting in a loss. Hence, it is important to scale the price
curve in a suitable manner in line with expected costs of the
system.

In the proposed pricing model for distribution tariffs,
the true cost of the system is computed by taking into
account the demand and the flexibility potential of the energy
hub network. At midnight, the energy hubs compute their
flexibility for the following day and communicate pmin,
pbase and pmax to the DSO. Subsequently, the DSO can
compute the projected load of the hubs, pproj, assuming
that the SoC of all the energy hubs’ storage devices is 50%
at the start of the day, i.e. s0 = 0.5 · scap. This is viable
as it is assumed that the DSO has access to information
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about the installed capacity and operating limits of the
storages. This assumption is not unreasonable; for example,
this information must be communicated upon installation
under the current Swiss regulations [17]. The projected load
is computed by solving the following optimization under the
desired prices:

min

T−1∑
t=0

(
α · cn.carbont + (1− α) · cn.costt

)
· pprojt

s.t.
{
pprojt

}
t∈T

∈ FL

(8)

This is a multi-objective optimization wherein the cost
function balances the cost of energy and carbon intensity
of electricity based on the parameter α. The optimization
minimizes the cost of the hubs with the desired price curve
while ensuring that the projected load is within the flexibility
potential of the hubs. As a result, the computed projected
load provides a good estimate of the future load shifting of
the energy hubs. The distribution tariffs are finally given by:

cpt = R ·
(
α · cn.carbont + (1− α) · cn.costt

)
, ∀t ∈ T (9)

where R is a scaling factor calculated as the ratio of the
true energy costs incurred by the network operator (without
normalization) to the total costs obtained using the desired
prices:

R =

T−1∑
t=0

(
ccostt

)
· pprojt

T−1∑
t=0

(
α · cn.carbont + (1− α) · cn.costt

)
· pprojt

(10)

The designed tariffs are used by the energy hub networks
to compute the optimal control inputs over the next 24h by
solving (6) at every time step. The process is repeated at the
beginning of each day. Hence, the optimization of the energy
hubs is completely decoupled from the DSO and the hubs
communicate their flexibility once every day and receive
the prices from the DSO for the following day. Fig. 1(a)
illustrates the resulting process and the information structure.
The described pricing model can be used in a similar manner
for various network-wide objectives, not limited to two.

While the optimal dispatch problem of the energy hubs
can be solved in a distributed manner to handle scalability
concerns [10], the price optimization is solved centrally for
a single DSO using the information communicated by all the
hubs. This involves a limited number of decision variables
and constraints and needs to be solved only once every day.

V. NUMERICAL STUDY

We illustrate the proposed pricing model for distribution
tariffs on an energy hub network comprising three energy
hubs, each connected to a set of buildings. The energy
hubs and buildings were designed using the energy hub
modelling toolbox [15]. Hub 1 comprises solar PV, battery
energy storage, and a heat pump, Hub 2 comprises solar PV,
battery energy storage, a hot water storage tank and a heat
pump, and Hub 3 consists of a heat pump. The electricity
demand profiles of hubs are based on buildings located at the
ETH Zürich and Empa Dübendorf campuses in Switzerland.
We consider three sources of disturbances for the buildings:
ambient temperatures, solar radiation, and building internal

gains. The data for environmental disturbances were taken
from [13] for the city of Zürich and historical data was used
for the building internal gains. Data from [16] was used for
the cost of energy and the carbon intensity. The feed-in tariff
used was 0.12 CHF/kWh; note that no gas devices were
considered in this study. The performance of the proposed
strategy was evaluated for a simulation period of one week
in January 2018. The optimization was solved with a horizon
T = 24h with a sampling resolution of 1h.

Fig. 3 shows the nominal flexibility potential of the
network for a selected day (24h) within the whole simulation
period. The flexibility potential is higher at the beginning and
end of the day due to the wider temperature bounds. Less
heating is required to maintain the minimum temperature and
the higher upper temperature bound increases the positive
flexibility. During the day, the flexibility potential is much
narrower due to tighter comfort bounds and increased impact
of disturbances, such as solar radiation.
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Fig. 3. Nominal flexibility potential of the energy hub network for 24h.

In Fig. 4 (a), the hourly cost of procuring electricity, ccostt ,
and the hourly carbon intensity of the grid, ccarbont , are
compared to the electricity distribution tariff, cpt , computed
using two α values for a period of 24h within the whole
simulation period. A lower α = 0.3 resulted in a tariff that is
similar to the electricity prices as the DSO prioritizes energy
cost more than the carbon intensity. Conversely, α = 0.8
resulted in a tariff with a similar trend to the carbon intensity
prices, as the DSO’s main goal is to reduce carbon emissions.
Fig. 4(b) shows the resulting shift in the imported energy
from the grid for different α values in response to the change
in the tariff. For each α, the energy demand was higher when
the price was low and decreased when the price peaked.

Fig. 5 illustrates the trade-off between the total carbon
emissions and total cost of the energy hubs for different
α values for the whole simulation period of 7 days. As
α increased, the carbon emissions decreased drastically and
saturated for α = 0.6, beyond which no further decrease
was observed. Varying the value of α also resulted in a cost
increase; note, however that the cost increase is significantly
smaller than the decrease in emissions as a percentage .
For α = 0.6, the carbon emissions were reduced by 25%,
with a slight cost increase of 3.5%. Similarly, for α = 1,
the emissions decreased by 25% with a corresponding cost
increase of 7%. This suggests that the proposed pricing
model can help the DSO acheive network-wide objectives
without impacting the energy cost. The same trend was also
observed using different energy hub configurations, buildings
sizes and simulation data.

Finally, Table I compares the total energy cost and carbon
emissions both with and without P2P electrical and thermal
energy trading between the hubs for different α values. P2P
trading result in a lower cost and lower carbon emissions for
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all α values by exploit P2P trading to share resources. In the
absence of bilateral trading, the cost and carbon emissions
still follow the same trend for different α values.

With P2P Trading Without P2P Trading
α 0 0.3 0.8 1 0 0.3 0.8 1

Total Cost (CHF) 832 841 869 891 849 857 884 904
Total Emissions (kgCO2) 595 495 454 455 603 530 501 496

TABLE I
TOTAL EMISSIONS AND ENERGY COST OF THE HUB NETWORK OVER THE

WHOLE SIMULATION PERIOD FOR DIFFERENT α.

VI. CONCLUSION

Electricity distribution tariffs play a major role in de-
termining the energy demand and the optimal dispatch of
energy hubs. A novel pricing model was proposed for the de-
sign of distribution tariffs based on the desired network-wide
objectives, such as reduction of the grid carbon emissions,
while minimizing the cost of the energy hubs. The approach
relies on the analytical computation of the flexibility potential
of energy hubs for the following day. Numerical simulations
on a three-hub network demonstrates the price design mecha-
nism with different DSO’s priorities by varying the parameter
α. By choosing a reasonably high α, the carbon emission
of the hubs was significantly reduced with a negligible cost
increase. This is achieved by leveraging building flexibility

and bilateral trading using both the electrical and thermal
grid to shift the energy demand in response to the prices.
Future work aims to extend the proposed framework to a
distributed setting and other sectors beyond buildings, test
the strategy with an increasing number of hubs and under
different hub topologies, and finally compare it to existing
state-of-the-art approaches.
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