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Abstract— MegAWES is a reference design and simulation
framework for ground-generation, fixed-wing airborne wind
energy systems with a nominal power output of 3MW. The
winch size of MegAWES is based on a smaller system and needs
to be scaled up because the current size leads to unrealistically
fast dynamics, which require saturation. However, there is no
available method to select an appropriate size for the winch.
Additionally, while it has been hypothesized that the size of the
winch has a significant effect on the dynamics of the overall
system for ground-generation concepts, this effect has not been
quantified. In this work, we first analyze the effects of the winch
size on the system dynamics using a linearized model. Second,
we present a method to find the upper bound for the size of
the winch based on a selected maximum tether force overshoot
during nominal operation. Third, we apply this method to find
an upper bound for the winch size for the MegAWES reference
design. Using the nonlinear MegAWES simulation framework,
we validated this upper bound. At the upper bound, the system
accurately tracked the reference tether force without overshoot
and when exceeding our upper bound, the tether force response
was oscillatory and overshot its ideal value.

I. INTRODUCTION

Wind is a great resource of renewable energy. The most
common method of capturing this energy is with horizontal-
axis wind turbines. The wind turbine design is continually
improving to increase performance, mostly through taller
towers and longer blades [1]. Higher towers generally reach
stronger and more constant winds [2] and longer blades can
sweep a larger area. This has increased the capacity and
capacity factor while lowering costs [1].

Airborne wind energy is a radical new approach to
harvesting wind energy that involves the use of tethered
flying devices. Loyd [3] first envisioned this concept and
calculated that multi-megawatts of power could be extracted
from higher altitude winds using this method. The flying
devices are attached to a ground station with a tether and
fly mostly perpendicular to the wind in circles or figures
of eight. There are four popular system concepts, as shown
in Fig. 1 [4]. In this work, ground-generation (ground-gen)
fixed wing systems are considered. Fixed wing refers to the
rigid materials used for the construction of the kite. Ground-
gen operation uses a ground-based generator and performs
pumping cycles with the kite that comprise two phases:
the traction phase (energy-generating) and the retraction
phase (energy-consuming). During the traction phase, the
pull exerted by the kite on the tether is converted into
electricity by rotating the ground-based winch and generator.
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Once the maximum length of the tether is reached, the kite is
retracted. Since the kite can be placed in an aerodynamically
favorable position during the retraction phase, it consumes
only a fraction of the energy produced in the traction phase
[5].

The systems currently in development range from tens to
hundreds of kilowatts. However, to get to utility-scale power
production, individual systems will need to be scaled up to
several MW’s per unit [6]. “MegAWES” is the first publicly
available, multi-megawatt, ground-gen, fixed-wing reference
model and simulation framework [7], [8]. It is intended for
cross-validation and benchmarking. It has a wing surface
area of 150m2 and a nominal power output of 3MW. The
winch design (defined by its radius and inertia) is based on a
smaller system and has not been scaled up yet, which leads
to tracking errors in the tether force and unrealistically fast
winch dynamics which often need saturation [7]. However,
there is no existing method to select an appropriate size of
the winch to ensure accurate tracking of the tether force.
Furthermore, while it has been hypothesized that the size of
the winch has a significant effect on the system dynamics
[9], we are not aware of any publications that systematically
investigate these effects.

This paper aims to address these challenges with the
following three contributions:

1) An analysis of the effects of the size of the winch on
the dynamics of the system,

2) A method to determine the upper bound on the winch
size,

3) A proposed upper bound on the winch size for the
MegAWES reference design.

The paper is structured as follows: In Section II, we derive
the linear system dynamics, analyze the effect of the winch
size, present a method to determine the upper bound for the
winch size, and explain the setup in the nonlinear MegAWES
simulation framework. The presented winch sizing method
is applied to the MegAWES reference design in Section III,
where it is also validated using the nonlinear MegAWES
simulation framework. Section IV concludes this work.

II. METHODS

This section starts with an analytical derivation of the
winch dynamics. The equations are then linearized to analyze
the effect of the winch size on the system dynamics. This
analysis leads to a method for selecting an appropriate
winch size. Lastly, the simulation setup in the nonlinear
MegAWES simulation framework is explained which is used
for validation.
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Fig. 1. Visualization of the four most advanced airborne wind energy system concepts. From left to right: soft wing with ground-gen, fixed wing with
ground-gen, fixed wing with fly-gen, and the rotating kite concept. Figure obtained from [4].

The source code used for this section is available at [10].

A. Derivation of the Winch Dynamics

In this work, the winch refers to the drum on which
the tether spools, the drivetrain, and the generator. This is
modeled as a single rotating body with a given inertia J and
radius r, similar to [8] but without viscous friction. This is
done to simplify the equations later and is allowed because
the friction torque is much smaller than the tether force and
control torque. It is furthermore assumed that the radius is
constant despite the spooling of the tether. The spooling adds
small and slow changes in the radius so these dynamics are
negligible.

With these assumptions, two moments act on the winch:
the tether force multiplied by the radius of the winch and
the winch control torque, both of which are explained next.
The block diagram for this system is shown in Figure 2.

We use the quasi-steady model from [11] to calculate the
tether force. We assume that the wind speed is parallel to the
tether, thus neglecting cosine losses, and neglect the mass of
the kite. All these variables would affect the kite’s apparent
wind speed, in particular the course angle, since gravity
speeds the kite up when flying downwards and slows it
down when going upwards. Instead of modeling these effects
individually, we use the input “equivalent” wind speed of the
quasi-steady model as a proxy for all these effects. The tether
force is then given by [11]

Ft = C (vw − vr)
2,

where

C =
1

2
ρSCLE

2
eq

(
1 +

1

Eeq

) 3
2

,

(1)

winch
dynamics

kite
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Fig. 2. Block diagram describing the model with wind speed as input and
tether force and reel-out speed as outputs.

where Ft denotes the tether force, vw the equivalent wind
speed, vr the reel-out speed, ρ the air density, S the reference
wing area, CL the lift coefficient, Eeq the equivalent lift-to-
drag ratio (taking the tether drag into account). The constant
C is related to the performance and size of the kite.

The winch control torque is chosen with a feedback
strategy that aims to keep the system at its optimal reel-
out factor f∗, where f = vr/vw. An optimal reel-out factor
of 1⁄3 [3] is assumed. This is not optimal when considering
the reel-out and reel-in phase together [12]. However, this
is outside the scope of this work and would not change
our conclusions. The control law can then be formulated
by assuming steady-state reeling where the winch control
torque and the torque arising from the tether force are in
equilibrium when the optimal reel-out factor is reached, see
[11] for the derivation. This results in a winch control curve
where the optimal tether force can be calculated as a function
of reel-out speed, see Fig. 3. This curve is sometimes called
the ”optimal force-squared speed manifold” [13]. The control
torque is then simply the optimal tether force multiplied by
the radius:

τ = 4C v2r r, (2)

where τ denotes the winch control torque.
From these pieces, the closed-loop state equation for the

system is derived

Jω̇ =
∑

M

J
v̇r
r

= C (vw − vr)
2r − 4C v2r r

v̇r =
C

Kw
(v2w − 2vwvr − 3v2r ),

where

Kw =
J

r2
,

(3)

where ω denotes the rotation speed of the winch. Further-
more, the winch sizing parameter Kw is introduced, which
can be physically interpreted as being equal to the mass of
a thin-walled cylinder with radius r and inertia J . Since
friction was neglected, all parameters related to the size of
the winch can be collected in this single parameter, that only
appears once in the equations of motion.
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Fig. 3. Winch control curve, showing the optimal (quasi-steady) tether
force as a function of reel-out speed for a reel-out factor of 1/3.

B. Linearization of the the winch model

The nonlinear state equation (3) is linearized around a
trim point where the tether force and control torque are in
equilibrium and thus v̇r = 0. The optimal torque controller
is designed such that this equilibrium occurs at the optimal
reel-out factor. Thus at the trim condition

vr0 = f∗vw0 =
1

3
vw0 (4)

holds.
The linear state equation then simplifies to

v̇r ≈
C

Kw
(
4

3
vw0∆vw − 4vw0∆vr). (5)

Next, we take the Laplace transform to get the transfer
function from equivalent wind speed to reel-out speed:

Vr(s)

Vw(s)
=

4C vw0

3Kws+ 12C vw0
. (6)

This procedure is repeated for the output equation (1) for
the tether force, resulting in

Ft(s)

Vw(s)
=

12C vw0Kws+ 32C 2v2w0

9Kws+ 36C vw0
. (7)

The nonlinear system described by Fig 2 has now been
linearized to two transfer functions describing the reel-out
speed (6) and tether force (7) as a function of equivalent
wind speed.

C. Effect of the Winch Size on the Dynamics

The pole of this system is located at

s = −4C vw0

Kw
. (8)

As previously implied by [11], this shows that the op-
timal winch control law described by (2) results in an
asymptotically stable system because the parameters C , vw0,

and Kw are positive. The transfer function from equivalent
wind speed to reel-out speed (6) has a time constant of
Kw/(4C vw0) and dc-gain of 1/3. As expected, the time
constant is high for large winch sizing parameters and low
for smaller winch sizing parameters. Furthermore, the time
constant is highly dependent on the trim equivalent wind
speed, where at higher wind speeds, the system reacts faster.
This is because the winch control law (2) is more responsive
at high reel-out speeds because the slope on the winch
control curve (Fig. 3) is steeper there, thus leading to a larger
change in torque for a similar change in reel-out speed.

The transfer function of equivalent wind speed to tether
force (7) has a zero at

s =
8C vw0

3Kw
=

2

3
spole. (9)

Since the location of the zero is always closer to the origin
than the pole, an increase in tether force overshoot is un-
avoidable above certain input frequencies. This observation
will be used later when we present the winch sizing method.

The transfer functions of the reel-out speed (6) and tether
force (7) are normalized by dividing them by the steady-
state magnitude to a step response, which is computed using
the final value theorem. The steady-state magnitude for the
tether force to a step input on the equivalent wind speed is
equal to

Ft,final = lim
s→0

s
Ft(s)

Vw(s)

1

s
=

32C vw0

36
. (10)

This procedure is repeated for the state equation (6).
The Bode plot of these normalized transfer functions is

shown in Fig. 4. The numerical values used are summarized
in Table I. The values related to the MegAWES reference
design are obtained from [7].

From Fig. 4 it is observed that the tether force magni-
tude increases at high input frequencies, with up to 50%
overshoot (note that the y-axis uses absolute units instead
of decibels). This occurs because the winch cannot adapt its
reel-out speed sufficiently quickly, as indicated by its magni-
tude going towards zero and its phase going towards −90◦.
This tether force overshoot would increase the probability
of tether rupture or lead to more conservative operation and
should thus be avoided.

A second observation is that the reel-out speed and tether
force phases start to diverge above a certain input frequency.

TABLE I
PARAMETERS USED FOR ANALYSIS.

MegAWES parameters [7]
S 150.45m2

CL 1.8
Eeq 6.7
J 32 kgm2

r 0.4m2

environment
ρ 1.225 kg/m3

trim condition
vw0 10m/s
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Fig. 4. Bode plot of the normalized tether force and power output. As
the equivalent wind speed input frequency goes up, the reel-out speed starts
to lag and has a lower magnitude causing the tether force oscillation to
increase in magnitude, leading to tether force overshoot.

This causes the system to diverge from the optimal winch
control curve (previously shown in Fig. 3). This effect is
visualized by showing the time response of the linearized
system on the winch control curve for three different input
frequencies in Fig 5 by plotting the time response of the
reel-out speed on the x-axis and the time response of the
tether force on the y-axis. At low input frequencies, the
system closely follows the prescribed winch control curve.
However, as the input frequency increases, the response
oscillates around it, thus no longer correctly tracking the
prescribed curve. This situation should thus be avoided.

So, the system should have a sufficiently small time
constant to handle the fastest expected change in equivalent
wind speed. Then, the system would not experience a tether
force overshoot or poor tracking of the winch control curve.

In these examples, the excitation frequencies are rather
high. This is because the bandwidth of the MegAWES winch
is 1.54×103 rad/s at a trim equivalent wind speed of 10m/s.
As discussed by [14], the winch size had not been scaled up
from the smaller reference system on which the MegAWES
reference design is based, which led to tracking errors in
the tether force and unrealistically fast winch dynamics that
often needed saturation. So, the winch should be scaled up
to decrease its bandwidth. Thus, the winch sizing method
proposed in the next section aims to find an upper bound on
the size, achieving the lowest bandwidth that still satisfies
certain operational requirements.

D. Winch Sizing Method

To find suitable values for the winch sizing parameter, a
limit on the magnitude of the transfer function of the normal-
ized tether force is set at the highest expected frequency of
the equivalent wind speed. For airborne wind energy systems,
this frequency is related to the period of a circle or halve
the period of a figure-of-eight because at this frequency the
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Fig. 5. Response of the linearized system on the winch control curve
for different input frequencies. When the equivalent wind speed changes
slowly, the winch can follow the optimal winch control curve. The tracking
deteriorates as the input frequency goes up.

system will experience a change in apparent wind speed (due
to gravity). We denote this frequency by w0. The magnitude
of the transfer function for the normalized tether force at this
frequency is∥∥∥∥Ft,normalized(jw0)

Vw(jw0)

∥∥∥∥ =

√
9K2

ww
2
0 + 64C 2v2w0

4K2
ww

2
0 + 64C 2v2w0

. (11)

This equation can be rewritten to arrive at the following
closed-form solution for the winch sizing parameter:

Kw =
8C vw0

ω0

√
f2
F t − 1

9− 4f2
F t

where

fF t =

∥∥∥∥Ft,normalized(jw0)

Vw(jw0)

∥∥∥∥ ,
(12)

and denotes the desired maximum tether overshoot as a
fraction of the ideal tether force.

By setting a desired maximum tether force overshoot at
the highest expected frequency of the equivalent wind speed,
an upper bound on the size of the winch can be found. In the
next section, this method will be used to scale up the winch
of MegAWES, as recommended by [14]. Furthermore, these
analytical results will be verified in the nonlinear MegAWES
simulation framework, explained next.

E. Simulation Setup

The MegAWES simulation framework offers both 3DOF
(point-mass) and 6DOF dynamics. It is a nonlinear sim-
ulation using a lookup table for aerodynamic coefficients,
a high-stiffness tether model based on [15], and a winch
that is modeled similarly as in this work, but with viscous
friction. It uses a control architecture based on [16]. The
winch controller keeps the tether force constant when the
wind speed does not change. This is different than the control
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Fig. 6. Normalized tether force as a function of trim equivalent wind speed
and winch sizing parameter. The system has a low tether force overshoot at
high trim equivalent wind speeds and/or low winch sizing parameters.

law (2) assumed in this work and causes power fluctuations
[16] since the equivalent wind speed fluctuates for large-scale
systems. So, the control implementation from [17] is used,
which uses the same optimal torque control law assumed
in this work. Furthermore, they implemented a kite tether
force controller that limits peak power, allowing the system
to stay on the winch control curve when the tether force limit
is reached. This is currently only implemented for the 3DOF
dynamics at a wind speed of 22m/s, so that will be the test
condition for this work.

III. RESULTS AND DISCUSSION

This section starts with a calculation of the upper bound
for the winch sizing parameter for MegAWES. From this,
suitable values for the inertia and radius of the winch can
be calculated. This new winch size will then be tested in a
nonlinear 3DOF simulation of MegAWES and compared to
a winch size above the proposed upper bound.

A. Winch Sizing for MegAWES

MegAWES completes a figure-of-eight roughly once every
40 seconds [7]. So the apparent wind speed oscillates with a
period of 20 seconds, or at a frequency of 0.05Hz. To ensure
that the system can adapt to slightly faster variations than this
fundamental frequency, and account for model uncertainties,
the input frequency is multiplied by a factor of 3 and set at
0.15Hz.

At this frequency, the normalized tether force overshoot
is calculated for different trim equivalent wind speeds and
winch sizing parameters and is shown in Fig. 6. This
visualizes (11) for the MegAWES system. As discussed in
Section II, the figure shows that the system achieves low
overshoot at high trim equivalent wind speeds and/or small
winch sizing parameters.

The upper limit is found at low trim equivalent wind
speeds, so the requirement on tether force overshoot is set
at 1% at a trim equivalent wind speed of 10m/s (the cut-in

wind speed of MegAWES [7]). Using (12), the upper bound
for the winch sizing parameter comes out to 4.2 × 104 kg.
This winch sizing parameter can be achieved with an infinite
number of combinations of radius and inertia. In this work,
we set the radius of the winch to 2.0m resulting in an inertia
of 1.7× 105 kgm2.

The radius is identical to a different 5MW reference
system from [18]. The inertia of the generator of the National
Renewable Energy Laboratory (NREL) 5MW reference
wind turbine is 534 kgm2 about the high-speed shaft [19].
When including the 97:1 gearbox, the apparent inertia of the
generator is 51 809 kgm2. This is below the inertia proposed
in this work for MegAWES. So the generator and gearbox
combination from the NREL 5MW turbine would satisfy the
tether force overshoot requirement when used in an airborne
wind energy system the size of MegAWES. This suggests
that wind turbine components could be used in airborne
wind energy systems without exceeding the winch sizing
parameter.

B. Validation

The MegAWES simulation framework with the control
architecture from [17] is used, as explained in Subsection
II-E. The effect of going over the upper bound of the winch
size will be shown by analyzing two test cases: One using
the proposed upper bound from this work and one with a
winch which is three times bigger than the proposed upper
bound, as summarized in Table II.

The response during the traction phase of the two cases is
plotted on the winch control curve and shown in Fig 7. When
using our proposed upper bound, the system follows the
ideal curve closely while being over the upper bound makes
the system oscillate around the ideal curve, as previously
predicted by the linear analysis, see Fig. 5. Selecting the
winch size parameter above the upper bound thus leads to an
overshoot in the tether force and poor tracking of the desired
winch control curve because the winch cannot respond fast
enough to changes in the equivalent wind speed.

Even though the presented method to set an upper bound
on the size of the winch used several simplifying assump-
tions, it correctly predicts the upper bound on winch size
when the performance starts to deteriorate in a nonlinear
3DOF simulation.

IV. CONCLUSION

The winch size is an important design parameter for
the dynamics of ground-generation airborne wind energy
systems. Using a linear model, a closed-form solution was
derived to find the upper bound for the winch sizing pa-
rameter (defined as J/r2) by defining a maximum tether

TABLE II
WINCH SIZE FOR THE TWO TEST CASES.

upper bound over upper bound
Kw (kg) 4.2× 104 12.6× 104

r (m) 2.0 2.0
J (kgm2) 1.7× 105 5.1× 105
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Fig. 7. Response using the 3DOF MegAWES simulation on the winch
control curve during the traction phase for the two test cases. At the upper
bound, the system follows the optimal winch control curve. The tracking
deteriorates when the inertia is increased, as predicted by the linear model.

force overshoot. The upper bound is found when the trim
equivalent wind speed is low, and the frequency of the change
in apparent wind speed is high, which can arise due to
speed variations over the flown trajectory. For MegAWES,
the winch sizing parameter has an upper bound of 4.2 ×
104 kg when setting the maximum tether force overshoot
to 1.0% at a trim wind speed of 10m/s (the cut-in wind
speed of MegAWES) at an equivalent wind speed frequency
of 1.5Hz (three times the apparent wind speed frequency
experienced by MegAWES in simulation). This winch sizing
parameter can be realized with a radius of 2.0m and inertia
of 1.7× 105 kgm2. This new winch size was tested using a
nonlinear 3DOF simulation. With the selected winch size, the
system tracks the winch control curve well. When increasing
the winch inertia by a factor of three, the response showed
an oscillatory behavior around the winch control curve, as
predicted by the linear analysis. In addition, its peak tether
force was much higher, validating the presented winch sizing
method.

In future work, other inputs besides the main oscillation
in apparent wind speed, such as turbulence and operational
requirements around the transitions between traction and
retraction, should be analyzed. This could further reduce the
upper bound on the winch size. Alternatively to this control
strategy, the lag of the winch can be compensated for with an
additional control loop. However, this controller would come
with additional control effort which would increase power
fluctuations. Future research could investigate this trade-off.
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