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Abstract— The practical implementation of Model Predictive
Control (MPC) often presents challenges that remain unad-
dressed in theoretical formulations. Among these challenges,
the tuning of the receding horizon cost becomes particularly
intricate in the context of data-driven learning-based MPC,
where models exhibit partial uncertainty. This paper introduces
SelfMPC, a pioneering approach within a Gaussian process
learning framework, illustrating that a tracking MPC cost
can be formulated as the maximum likelihood estimation of
the reference output. This formulation provides automatic cost
shaping and effective regularization, eliminating the need for
manual tuning efforts. Moreover, the proposed formulation
provides a natural way to employ information from empiri-
cal experiments into the definition of the MPC optimization
problem for unknown systems. Empirical validation against
conventional weighting matrix selection methods confirms the
effectiveness of the proposed approach.

I. INTRODUCTION

For decades, Model Predictive Control (MPC) [1] has
been recognized as a versatile strategy applied across various
domains, including industrial processes [2], traffic man-
agement [3], [4], biomedical applications [5], and energy
management systems [6]. MPC optimizes complex systems
in real-time, enhancing performance, safety, and efficiency,
but its practical implementation faces significant challenges.

Acquiring an accurate system model for MPC implemen-
tation is a fundamental obstacle, with conventional methods
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sometimes inadequate [7]. Alternative techniques, such as
MPC-oriented model calibration [8], [9] or data-driven ap-
proaches [10], [11], address this challenge within the realm
of Data-driven Predictive Control (DDPC) [12]. Precisely
selecting hyperparameters, like weighting matrices and pre-
diction horizons, is also crucial for MPC’s effectiveness.
Balancing these parameters aligns the control strategy with
the given specifications. In scenarios with closed-loop control
datasets, inverse optimal control or inverse reinforcement
learning [13] can deduce controller preferences. Otherwise,
trial-and-error procedures [14] or black-box optimization
tools [15] can be used to improve calibration efficiency, but
the required closed-loop experiments may not be feasible due
to safety or cost concerns.

In this paper, we propose a novel approach for MPC
cost function design for reference tracking when the system
model is unknown. Leveraging Gaussian process regres-
sion [16], [17], we frame cost design as a Maximum Likeli-
hood (ML) Estimation Problem. This approach automatically
determines weighting matrices, considers model accuracy,
and eliminates the need for additional regularization terms,
distinguishing it from other methods like DeePC [18],
[19]. We demonstrate the efficacy of this approach, termed
SelfMPC, through benchmark simulations.

Organization: In Section II, we formally define the prob-
lem and outline the core concept, which is the transformation
of a tracking MPC task into a maximum likelihood prob-
lem. Section III is devoted to the method designed for the
stochastic linear time-invariant setting, while in Section IV,
we demonstrate its application within a Bayesian framework.
Subsequently, Section V showcases a simulation case study
along with a numerical comparison against the prevailing
state-of-the-art methods. Some concluding remarks are pro-
vided in Section VI.

Notations: We denote by R and N the set of real and nat-
ural numbers, respectively (0 ∈ N). Given n,m ∈ N, Rn×m

is the set of n × m matrices and Rn is the set of column
vectors of dimension n. Furthermore, 0n×m,1n×m ∈ Rn×m

are the zero and one matrices, respectively, and In ∈ Rn×n

is the identity matrix. Given n, i, j ∈ N and a sequence
x : N → Rn, xi ∈ Rn is the ith component of x and, if j ≥ i,
xi:j = (xh)

j
h=i ∈ Rn(j−i+1), otherwise xi:j is an empty

tuple. With a slight abuse of notation, we use tuples of real
numbers and column vectors interchangeably. The matrix
diag(M1,M2, . . . ,Mn) is a block diagonal matrix composed
of the matrices M1,M2, . . . ,Mn. Given two matrices A,B,
A⊗B is their Kronecker product. Given a symmetric positive
definite matrix Q ∈ Rn×n and x ∈ Rn, ∥x∥2Q = x⊤Qx
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and ∥x∥2 = x⊤x. For the sake of brevity, we denote with
“density” the probability density function. Given a random
variable x ∈ X with density π : X → [0,∞], we write
x ∼ π(·). Given p ∈ N, µ ∈ Rp and Σ ∈ Rp×p, N (· |µ,Σ)
denotes the density of the p-dimensional Normal distribution
with mean µ and covariance matrix Σ.

II. PROBLEM STATEMENT AND MAIN IDEA

In this section, we lay down the main idea behind
SelfMPC for the tracking problem of a stochastic dynamical
model. In particular, we consider two cases: (a) when the
stochastic property of the system to control is known for
each time instant, and (b) when the system is not known and
need to be estimated from data. For both cases, we consider a
general discrete causal stochastic model with nu ∈ N inputs
and ny ∈ N outputs that maps control variable sequences
u : N → Rnu to measurements sequences y : N → Rny and
variable to control z : N → Rnz according to

∀t ∈ N, yt, zt
∣∣y0:t−1, u0:t, θ ∼ ψt

(
·
∣∣y0:t−1, u0:t, θ

)
, (1)

where nu ∈ N is the number of inputs, ny ∈ N is the
number of measurements, nz ∈ N is the number of variables
to control and θ ∈ Θ. In particular, for every t ∈ N, ψt :
Rny×Rnz×Rtny×R(t+1)nu×Θ → [0,∞] is the joint density
of the couple (yt, zt) conditioned on the past measurements
and inputs. Therefore, ψ0 : Rny ×Rnz ×Rnu ×Θ → [0,∞]
is the density of the initial values of the measurements and
control variables conditioned on the initial value of the input.
Additionally, θ is a parameter that describes the behavior
of the model. The availability of θ is the main difference
between Case (a) and (b). In particular, we assume that the
knowledge of θ is available only for Case (a). Instead, the
functions ψt are assumed to be known in both cases, for
every t ∈ N.

Given a time horizon m ∈ N, the aim of the paper is to
devise a procedure that, for every t ∈ N, selects the input
ut:t+m ∈ Rnu(m+1) in order to shape the control variable
trajectory zt+1:t+m ∈ Rnzm to be as close as possible to
a reference trajectory rt+1:t+m ∈ Rnzm. In particular, we
employ the receding horizon approach to track a certain
reference signal. Classical stochastic MPC approaches select
the input by minimizing the expected value of a loss function
subject to constraints that model the dynamic of the model
at each time instant. Instead, we propose to select the input
that maximizes the likelihood that the future trajectory of
the variable to control zt+1:t+m is equal to the reference
trajectory rt+1:t+m.

In Case (a), SelfMPC provides a way to automatically se-
lect the function to maximize. However, the main advantage
of the proposed method is the ability to be easily adapted to
the data-driven framework where the model is not known,
like in Case (b).

A. The case with a known system

Let us first consider the case where θ is known. Since
we aim to maximize the likelihood of the future variable
to control zt+1:t+m, for every t ∈ N, we need to define

its density conditioned on the known measurements and
parameters at time t. In particular, using the model defined
in (1), this density is defined as

Ψm|t
(
zt+1:t+m

∣∣y0:t, u0:t−1, ut:t+m, θ
)
:=∫

Rmny

t+m∏
τ=t+1

ψt

(
yτ , zτ

∣∣y0:τ−1, u0:τ , θ
)
dyt+1:t+m, (2)

for every m ∈ N \ {0} and t ∈ N. The function Ψm|t :
Rmnz×R(t+1)ny×Rtnu×R(m+1)nu×Θ → [0,∞] describes
the likelihood of the trajectory zt+1:t+m given

• y0:t ∈ R(t+1)ny , the measurements of the outputs
available after collecting the measurement at time t,

• u0:t−1 ∈ Rtnu , the control input variables available after
collecting the measurement at time t,

• ut:t+m ∈ R(m+1)nu , the trajectory of the inputs that is
applied between the current time t and the end of the
prediction window t+m,

• θ ∈ Θ, the known parameter that define the model.

Therefore, the SelfMPC tracking problem is solved by se-
lecting the input sequence ut:t+m that maximizes the density
defined in (2). More formally, the selected control variable
is the solution of

max
ut:t+m

Ψm|t
(
rt+1:t+m

∣∣y0:t, u0:t−1, ut:t+m, θ
)
.

From now on, we will refer to this approach as SelfMPC.In
Section III, we analyze this method in the case of LTI models
with Gaussian noise.

B. The case with an estimated system (learning-based MPC)

In this section, we consider the case where the parameter θ
is not known, and the control input variable has to be decided
purely from the available data. In this case, we cannot rely
on the density Ψm|t defined in (2) since θ is not known.
Instead, we need to compute the density of the variable to
control given only the available data. Therefore, for every
m ∈ N \ {0} and t ∈ N, we consider

Ψ̂m|t
(
zt+1:t+m

∣∣y0:t, u0:t−1, ut:t+m

)
:=∫

Θ

Ψm|t
(
zt+1:t+m

∣∣y0:t, u0:t−1, ut:t+m, θ
)
·

· Φt

(
θ
∣∣y0:t, u0:t−1

)
dθ,

where Φt : Θ × R(m+1)ny × Rmny → R is the density of
the parameter θ given the available measurements at time
t, and Ψ̂m|t : Rmnz × R(t+1)ny × Rtnu × R(m+1)nu →
R is the density of the next m samples of the variable
to control given the available measurements at time t. In
particular, the density Φt is defined by the method used for
the identification of the parameter θ given the available data.
Note that the parameter θ is conditioned only on the past
measurements because we assumed that the system is causal.

Then, the tracking problem with unknown θ is solved
by selecting the input sequence as the one maximizing the
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conditional density of obtaining the desired output trajectory
given the available data. More formally, we have

max
ut:t+m

Ψ̂m|t(rt+1:t+m |y0:t, u0:t−1, ut:t+m)

From now on, we refer to this approach as the data-driven
SelfMPC. In Section IV, we illustrate the detailed imple-
mentation of SelfMPC in the case of a linear model with
unknown parameters and additive Gaussian noise.

III. SELFMPC FOR LINEAR SYSTEMS

In this section, we implement the proposed SelfMPC
method on a finite-dimensional LTI system with Gaussian
noise, given by

yt+1 = Ayt +But + Ewt, (3a)
zt = Cyt +Dut + Fwt, ∀t ∈ N (3b)

where A ∈ Rny×ny , B ∈ Rny×nu , E ∈ Rny×nw , C ∈
Rnz×ny , D ∈ Rnz×nu , F ∈ Rnz×nw , wt ∈ Rnw is the noise
vector that affect the system at time t, and nw ∈ N is the
number of noises affecting the system. Then we consider the
following stochastic assumption on the stochastic process w.

Assumption 1: The stochastic process w is a white process
and, for every t ∈ N, wt ∼ N

(
·
∣∣0nw×1,W

)
where W ∈

Rnw×nw is a positive definite matrix.
From this assumption, and the fact that a linear com-

bination of Normal random variables is a Normal random
variable, the measurements yt and the variables to control zt
are Normal random variables for every t ∈ N. Furthermore,
using the definition in (3), we obtain that the stack of m
future variable to control, for all t ∈ N, is given by

zt+1:t+m = Pmyt +Qmut:t+m +Rmwt:t+m (4)

where Pm ∈ Rmnz×ny , Qm ∈ Rmnz×(m+1)nu and Rm ∈
Rmnz×(m+1)nw are block matrices where the i-th block of
Pm is CAi for all i ∈ {1, . . . ,m} (j = 1). Moreover, the
(i, j)-th blocks of Qm and Rm are given by

(i, j)-th block of Qm ⇒


CAi−jB i ≥ j

D i+ 1 = j

0nz×nu i+ 1 < j

,

(i, j)-th block of Rm ⇒


CAi−jE i ≥ j

F i+ 1 = j

0nz×nw
i+ 1 < j

,

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,m+ 1}.

A. Prediction of the controlled variable
From (4), we notice that

zt+1:t+m

∣∣y0:t, u0:t−1, ut:t+m = zt+1:t+m

∣∣yt, ut:t+m.

Additionally, zt+1:t+m is a linear combination of determin-
istic variables and random variables distributed according to
a Normal distribution. Thus, zt+1:t+m is a Normal variable
defined as

zt+1:t+m

∣∣yt, ut:t+m ∼
N
(
·
∣∣µm(yt, ut:t+m),Σm(yt, ut:t+m)

)
(5)

where the mean µm : Rny × R(m+1)nu → Rmnz×1 and
variance Σm : Rny ×R(m+1)nu → Rmnz×nz are determined
by the current measurement and the future input. Then,
from (4) and Assumptions 1, we obtain

µm(yt, ut:t+m) = Pmyt +Qmut:t+m, Σm = RmWmR
⊤
m,

where Wm := Im+1 ⊗ W ∈ R(m+1)nw×(m+1)nw . Note
that the variance matrix Σm is invariant with respect to the
current measurement yt or the future control input ut:t+m.
For this reason, and for simplicity, we omit its argument.

B. Maximum Likelihood Algorithm

In this part, we introduce the detailed algorithm by de-
ploying the SelfMPC approach in this case. Referring to
the general case analyzed in Section II-A and using (5), we
obtain that

Ψm|t(rt+1:t+m

∣∣y0:t, u0:t−1, ut:t+m, θ
)

= N
(
rt+1:t+m

∣∣µm(yt, ut:t+m),Σm

)
where rt+1:t+m represents the desired trajectory for the next
m time steps. Therefore, the optimization variable is selected
by solving the optimization problem

max
ut:t+m

N
(
rt+1:t+m

∣∣µm(yt, ut:t+m),Σm

)
.

However, for computational reason, it is convenient to equiv-
alently minimize its logarithm. Then, using (5), we obtain

min
ut:t+m

δ1(ut:t+m)
⊤
Σ−1

m δ1(ut:t+m)

with δ1(ut:t+m) := rt+1:t+m − µm(yt, ut:t+m).
Please observe that the cost function exhibits a structure

akin to conventional MPC. It consists of a reference matching
cost, along with a component that factors in the control
input’s aggressiveness. However, the crucial distinction lies
in the automatic selection of optimal weighting factors,
derived from the maximum likelihood approach, obviating
the need for arduous trial-and-error procedures. It is worth
noting that in real-world applications, these weight matrices
are typically constrained to be diagonal to minimize the
tuning effort, albeit at the cost of potentially suboptimal
results. In this case, such a constraint is not necessary.

IV. SELFMPC FOR DATA-DRIVEN FIR MODELS

In this section, we illustrate the implementation of
SelfMPC under a data-driven scenario. More specifically, we
consider the following finite impulse response (FIR) linear
system

yt+1 = fL
(
ut−ns+1:t

)
+ Ewt,

zt = Gyt +Hut +Kwt, ∀t ∈ N

where ns ∈ N, nw ∈ N, fL : Rnuns → Rn−y is a
linear mapping, E ∈ Rny×nw , G ∈ Rnz×ny , H ∈ Rnz×nu

and K ∈ Rnz×nw . In this scenario, the Assumption 1 is
preserved. Here, we assume that the function fL is unknown.
Instead, ns and the matrices G, H , K, E and W are
considered known. Furthermore, for every t ∈ N, we assume
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that there are T ∈ N measurements available with T ≥ ns.
In particular, we suppose to know the vectors yt−T+1:t and
ut−T−ns+1:t for every t ∈ N.

A. Prediction of the controlled variable

We adopt the finite impulse response description of the
system, which gives

y
iy
t =

ns∑
k=1

nu∑
iu=1

giy,iu,k u
iu
t−k + eiywt

where, for all t ∈ N, iu ∈ {1, . . . , nu} and iy ∈ {1, . . . , nu},
eiy ∈ R1×nw is the iy-th row of matrix E, yiyt ∈ R is
the iy-th element of yt, uiut−k is the iu-th element of ut
and (giy,iu,k)

ns

k=1 are unknown coefficients that defines the
linear function fL. Therefore, the relation between the last T
available data of the iy-th measurement Y iy

t := y
iy
(t−T+1):t ∈

RT , and the past inputs u(t−T−ns+1):(t−1) is given by

Y
iy
t = ϕtθ

iy + E
iy
T wt−T :t−1,

where Eiy
T = IT ⊗ eiy ∈ RT×Tnw ,

ϕt :=

u
⊤
t−T u⊤t−T−1 . . . u⊤t−T−ns+1
...

...
. . .

...
u⊤t−1 u⊤t−2 . . . u⊤t−ns

 ∈ RT×nuns ,

θiy :=
[
giy,1,1, . . . , giy,1,nu , giy,2,1, . . . , giy,snu

]⊤ ∈ Rnuns .

Then, the relation between all the past T measurements
y
1:ny

t−T+1:t with the past inputs u(t−T−ns+1):(t−1) is given by
Yt = Φtθ + ETwt where

Yt :=
[(
Y 1
t

)⊤
,
(
Y 2
t

)⊤
, . . . ,

(
Y

ny

t

)⊤]⊤ ∈ RTny ,

Φt := Iny
⊗ ϕt ∈ RTny×nsnuny ,

θ :=
[(
θ1
)⊤
,
(
θ2
)⊤
, . . . ,

(
θny
)⊤]⊤ ∈ Rnsnuny×1,

ET := diag
(
E1

T , E
2
T , . . . , E

ny

T

)
∈ RTny×Tnwny ,

wt := 11×ny ⊗ wt−T :t−1 ∈ RTnwny×ny .

Similarly, the relation between the future measurements in
the time window considered by the controller and the input
variable is given by

Ŷt = Φ̂t(ut:t+m−1)θ + Emŵt (6)

where

Ŷt :=

[(
Ŷ 1
t

)⊤
,
(
Ŷ 2
t

)⊤
, . . . ,

(
Ŷ

ny

t

)⊤]⊤
∈ Rmny ,

Φ̂t := Iny
⊗ ϕ̂t ∈ Rmny×nsnuny ,

Em := diag
(
Im ⊗ e1, . . . , Im ⊗ eny

)
∈ Rmny×mnwny ,

ŵt := 11×ny
⊗ wt:t+m−1 ∈ Rmnwny×ny ,

in which, for every iy ∈ {1, . . . , ny}, Ŷ iy
t := y

iy
t+1:t+m ∈ RT

and ϕ̂t ∈ Rm×nuns is the matrix whose (i, j)th element is

ut+j−i. Note that Φ̂t is a function of ut:t+m−1. By defining
Ẑt := zt+1:t+m, from (6), we write

Ẑt = GmΓŶt +Hmut+1:t+m +Kmŵt

= GmΓΦ̂tθ +GmΓEmŵt +Hmut+1:t+m +Kmŵt

where Gm := Im⊗G, Hm := Im⊗H , Km := Im⊗K, and
Γ denotes the permutation matrix, such that ΓŶt = yt+1:t+m.

We employ a Bayesian approach to derive the cost function
to maximize. Therefore, we consider a prior on the unknown
vector θ. In particular, we assume θ ∼ N

(
·
∣∣0nsnuny×1,Σθ

)
where Σθ ∈ Rnsnuny×nsnuny is a valid covariance matrix.
The selection of Σθ is extensively studied in the litera-
ture [16], and multiple interesting choices are available, i.a.
stable splines [20], [21] or DC kernel [22].

To formulate the density of the parameters given the
data available, we first note that, according to Assump-
tion 1, we have wt ∼ N

(
·
∣∣0Tnynw×1,WT

)
and ŵt ∼

N
(
·
∣∣0mnynw×1,Wm

)
where WT := ITny

⊗W and Wm :=
Imny

⊗ W . Now, we can write the joint density between
the available measurements Yt and the variable to control
Ẑt marginalizing θ. Using the properties of the Normal
distribution, we obtain[

Yt
Ẑt

]
∼ N

(
·

∣∣∣∣∣
[
µYt

µẐt

]
,

[
ΣYt

ΣYtẐt

Σ⊤
YtẐt

ΣẐt

])
where

µYt
:= 0Tny×1, µẐt

:= Hmut+1:t+m,

ΣYt
:= ΦtΣθΦ

⊤
t + ETWTE

⊤
T , ΣYtẐt

:= ΦtΣθΦ̂
⊤
t Γ

⊤G⊤
m,

ΣẐt
:= GmΓΦ̂tΣθΦ̂

⊤
t Γ

⊤G⊤
m +KmWmK

⊤
m

+GmΓEmWmE
⊤
mΓ⊤G⊤

m.

Hence, from the properties of the Normal distribution, we
can derive the density of the future variable to control
Ẑt conditioned on the collected past measurements Yt. In
particular, we have Ẑt

∣∣Yt ∼ N
(
·
∣∣µẐt|Yt

,ΣẐt|Yt

)
where

µẐt|Yt
:= µẐt

+Σ⊤
YtẐt

Σ−1
Yt
Yt,

ΣẐt|Yt
:= ΣẐt

− Σ⊤
YtẐt

Σ⊤
Yt
ΣYtẐt

.

Both µẐt|Yt
and ΣẐt|Yt

depend on Φ̂t that is a function
of ut:t+m. Therefore, the control variable has the effect to
modify both the expected value and the variance of the
density of the prediction of the future variables to control.

B. Maximum Likelihood Algorithm

Similar to the formulation in Section III-B, we solve the
following optimization problem

min
ut:t+m

δ2(ut:t+m)
⊤
(
ΣẐt|Yt

(ut:t+m−1)
)−1

δ2(ut:t+m)

+ log det
(
ΣẐt|Yt

(ut:t+m−1)
)

where δ2(ut:t+m) := rt+1:t+m − µẐt|Yt
(ut:t+m).

The data-driven SelfMPC cost function comprises two
terms. The first minimizes the expected prediction to match
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the desired trajectory, weighted by the inverse prediction
variance. Instead, The second acts as a regularizer, penalizing
high-variance input sequences to avoid uncertain model be-
havior. Importantly, this cost function, like the one discussed
in Section III-B, requires no additional tuning.

V. NUMERICAL EXAMPLE

In this section, we conduct a comprehensive performance
analysis of the proposed SelfMPC method on a benchmark
numerical example originally introduced in [23, Sec. 7.1].
In addition, we consider the controlled variable zt to be a
linear transformation of the measurements, resulting in the
following dynamic system model:

yt+1 =

[
0.7326 −0.0861
0.1722 0.9909

]
︸ ︷︷ ︸

A

yk +

[
0.0609
0.0064

]
︸ ︷︷ ︸

B

uk + wt (7a)

zt =
[
1 1

]︸ ︷︷ ︸
C

yt +
[
0.5 0.5

]︸ ︷︷ ︸
F

wt (7b)

where the stochastic influence wt is represented by a Gaus-
sian noise vector, with each of its elements having a standard
deviation of 5× 10−2.

We proceed by evaluating the performance of the SelfMPC
strategy under two distinct scenarios. First, we assume
a perfect knowledge of the system model and compare
its performance against conventional MPC using manually
tuned control gains. This comparison serves to highlight
the efficacy of our proposed approach at automatically se-
lecting the cost function. Subsequently, we implement the
SelfMPC within a data-driven framework and compare its
control performance with that of the regularized DeePC (r-
DeePC) method [24]. This comparison is instrumental in
demonstrating the advantages inherent in our designed data-
driven control strategy.

Scenario 1 (Known model): In this scenario, we assume
the designer possesses full knowledge of the model param-
eters. To compare our proposed SelfMPC with conventional
Model Predictive Control (MPC), we seek the solution to the
following optimization problem at each time step t:

min
u0:m−1

∥z̄m − rk+m∥2 +
m−1∑
k=1

∥z̄k − rk+t∥2Q + ∥uk∥2R

s.t. z̄k = Cȳk k ∈ {1, 2, . . . ,m}
ȳk+1 = Aȳk +Buk k ∈ {0, 2, . . . ,m− 1}
−5 ≤ uk ≤ 5 k ∈ {0, 1, . . . ,m− 1}
ȳ0 = yt

Here, we set the prediction horizon m = 10, and the gains are
manually tuned as Q = P = 1 and R = 0.01. We consider a
constant reference of rt = 1, for every t ∈ N. Subsequently,
we implement the SelfMPC as described in Section III,
which autonomously generates the control gains. With an
identical prediction horizon, m, and input variable bounds
we compare the performance of these two control strategies
using the performance index T−1∥zt − rt∥2. Through the
examination of 100 different realizations, the performance

1 1.2 1.4 1.6 1.8 2

KM-2
KM-1

Fig. 1. Box plots of the control performance index on the controlled
variable zt over 100 Monte Carlo simulations in Scenario 1.

of both methods is illustrated in Fig. 1 where the examined
methods are listed as
KM-1. Conventional MPC with tuned gains.
KM-2. SelfMPC with automatically generated gains.
The analysis presented in Fig. 1 reveals that SelfMPC ex-
hibits a marginally superior control performance in compar-
ison to conventional MPC with manually tuned gains. This
advantage arises from the automatic selection of gains by the
SelfMPC approach, thereby eliminating the requirements for
extensive experimentation on the system.

Scenario 2 (Data-driven): In this scenario, we address the
case where the designer lacks prior knowledge of the model
parameters. Here, we compare the proposed approach with
the regularized DeePC (r-DeePC) method [25] that was
recently developed to handle similar problems. For the sake
of comparison, we implement r-DeePC with both a set of
randomly selected gains and a set of manually tuned gains.

For the data-driven SelfMPC method, we follow the al-
gorithm as described in Section IV-B. The matrix Σθ is
the symmetric semi-positive definite matrix whose (i, j)-
th element is exp(−βmax(i, j)) where β ∈ [0,∞) is a
parameter to tune. Since both methods rely on a previously
collected set of data, we collect N = 80 measurements
from the plant fed with a white noise uniformly distributed
between −5 and 5. The collected dataset is influenced by
additive noise, as stipulated in (7). Regarding the proposed
method, the noise variance W ∈ [0,∞) and β ∈ [0,∞) are
tuned using the empirical Bayes approach [26, Sec. 5.4.1]
using the T data available at time 0.

Furthermore, we investigate the impact of different predic-
tion horizons, considering both a shorter horizon (m = 10)
and a longer horizon (m = 20). As a reference point, we
include the performance of the Oracle MPC, as defined in
Scenario 1 with manually tuned gains, under the assumption
of perfect knowledge of the system model. The compre-
hensive evaluation of the controlled variable performance,
measured using the index used in Scenario 1, is visualized
in Fig. 2 where the examined methods with different settings
are listed as
DD-1. Oracle MPC given model with the tuned gains.
DD-2. r-DeePC with random gains and m = 10.
DD-3. r-DeePC with tuned gains and m = 20.
DD-4. r-DeePC with tuned gains and m = 10.
DD-5. Data-driven SelfMPC with m = 10.
DD-6. Data-driven SelfMPC with m = 20.
From the results presented in Fig. 2, we observe that the
performance of r-DeePC is significantly influenced by the
choice of gain values. The distinction between properly
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Fig. 2. Box plots (logarithm x-axis) of the control performance index on
the controlled variable zt over 100 Monte Carlo simulations in Scenario 2.
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Fig. 3. Box plots of the variance of the input variable ut over 100 Monte
Carlo simulations in Scenario 2.

tuned gains and randomly selected gains is quite evident.
In contrast, the data-driven SelfMPC method demonstrates
a performance level comparable to r-DeePC with manually
tuned gains, while avoiding the need for experimentation on
the system. Notably, the performance of r-DeePC deteriorates
as the prediction horizon increases, whereas the data-driven
SelfMPC remains resilient to this parameter change. Another
interesting property of the proposed SelfMPC is the behavior
of the selected control variable. In Fig. 3, we plot the
variance of the control variables in the considered cases.
Here, we can note that the input sequence generated by r-
DeePC exhibits higher variance, indicating significant input
oscillations. Conversely, the input sequence produced by the
data-driven SelfMPC is notably smoother, a characteristic
particularly advantageous for the actuator usage in real-world
applications.

VI. CONCLUSIONS

MPC, a powerful control method, spans diverse fields
but faces challenges in precise system modeling, hyperpa-
rameter selection, and complex calibration. To address the
above issues, we introduce SelfMPC, which selects control
variables by maximizing the likelihood of obtaining the
desired reference. This approach automatically tunes the
cost function and enables data-driven control via Gaussian
process regression for model learning, eliminating additional
regularization tuning and the need of closed-loop experi-
ments.

Future work involves extending SelfMPC to nonlinear
plant control and exploring real-world applications.
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