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Abstract— This article addresses the computation of station-
ary and transient solutions of the Fokker-Planck equation for
nonlinear stochastic processes. We extend a Galerkin-method,
which was previously used to compute stationary solutions for
nonlinear mechanical systems, by a generalized formulation of
the test function space, including the original approach as a
limit. The use of weighted test functions improves the perfor-
mance in the stationary setting and enables the computation
of transient solutions. The properties of the resulting linear
system of equations are discussed, and results for stationary
and transient probability density functions for nonlinear 1D-,
2D- and 4D-systems are presented.

I. INTRODUCTION

The ability to assess the probabilistic behaviour of dy-
namical systems under uncertainty is essential for the safe
operation of modern technical systems. Example applications
of uncertainty propagation include, but are not limited to,
stochastic optimal control [1], [2], model predictive control
[3], [4], probabilistic model validation [5] and nonlinear
filtering [6]–[8].

Many stochastic dynamical systems can be modeled by
diffusion processes (DPs), for which the probability density
function (pdf) can be computed via the Fokker-Planck equa-
tion (FPE), a partial differential equation in the pdf [9]. The
example of nonlinear filtering illustrates how solutions of the
FPE have the potential to fill a gap among the most com-
monly used techniques for nonlinear stochastic systems. One
important class of filters builds on parametric representations
of the pdf, most prominently using its first- and second-order
moments, as in nonlinear extensions of the Kalman-Filter
(KF). Advanced filters also track higher-order moments, but
linearization errors and over-simplification can result in filter
inconsistency and divergence [7]. Sequential Monte-Carlo
methods represent a non-parametric alternative for complex
pdfs and highly nonlinear systems [8]. Particle filters (PFs)
are broadly applicable, even for high-dimensional systems,
and are the de-facto standard where KF extensions are
insufficient. However, the point-wise pdf representation gives
rise to sample empoverishment and degeneracy for many PF
implementations [10].

Solving the FPE in practice is still a fundamental chal-
lenge, and various numerical computation methods exist in
the literature. In [11] a simple Finite-Difference method
(FDM) is used to propagate the pdf between measurements,
whereas [12] demonstrates the use of a meshless partition-
of-unity Finite-Element method (FEM). [13] uses proximal

1Both authors are with Delft Center for Systems and Control, TUDelft,
Netherlands {w.martens,r.ferrari}@tudelft.nl

recursion to transform the problem to a smooth convex
optimization, avoiding discretization of the state space. Other
numerical FPE solution methods include cell-to-cell mapping
[14] and the path-integral method [15].

This article builds on a Galerkin-method that expands
initial pdf approximations in a finite-dimensional function
space [16], [17]. Extensions and technical applications of
this approach were discussed in [18], [19], but only for
stationary FPE solutions. Unlike FEM, another instance
of the Galerkin-method, our approach avoids state space
discretization and supports infinite supports, rather than
assuming a finite domain outside of which the pdf is zero.
Furthermore, it is possible, but not necessary, to include prior
knowledge about the exact pdf.

The main contributions are the following. We propose
a generalization of the test function space by means of
additional weighting functions, including [18] as a limit. The
structure and characteristic properties of the resulting linear
system are discussed for a specific class of basis functions.
We propose a hyperbolic index truncation (HIT) scheme, as
previously applied in Polynomial Chaos expansion [20]–[22],
to manage the computational cost for higher-dimensional
systems. Results are presented for stationary and transient
FPE solutions, with an improved performance over [18].

The paper is structured as follows. Section II discusses
the Galerkin-method and the generalized formulation of the
test function space for 1D-systems. Section III examines the
resulting linear system, which is extended in Section IV to
the multivariate case. Section V presents results for 1D-,
2D- and 4D-systems, using exact solutions and Monte-Carlo
simulation (MCS) as reference. Finally, Section VI provides
a summary of our contributions and a discussion.

II. GENERAL CONCEPT

A 1D-DP is used to outline the general concept of the
approach in [18] and our proposed extensions.

Notation: We use non-bold letters for scalar expressions,
and bold-face letters for vectors (lower-case) and matrices
(upper-case). Random variables are denoted by upper-case
upright letters.

A. Diffusion process and FPE

Definition 1 (1D-diffusion process): The stochastic differ-
ential equation in Itô-form

dXt = f(t,Xt)dt+ g(t,Xt)dWt, (1)

describes a 1D-diffusion process Xt, where dWt denotes the
increment of a 1D-Wiener process.
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Definition 2 (1D-Fokker-Planck equation): The joint pdf
p(t, x) of Xt is described by the 1D-FPE [9]

ṗ(t, x) = − (f(t, x)p(t, x))
′
+

1

2
(b(t, x)p(t, x))

′′
, (2)

where b(t, x) = g(t, x)2, and (̇) and ()′, ()′′ denote partial
derivatives with respect to t and x, respectively.

Assumption 1 (Polynomial drift and diffusion):
Throughout the paper, we assume time-invariant, polynomial
drift and diffusion terms, f(t, x) = f(x) =

∑Nf

i=0 a
f
i x

i and
b(t, x) = b(x) =

∑Nb

i=0 a
b
ix

i.

B. Approximate solution and weak FPE formulation

Exact solutions p(t, x) of (2) are known only for very
limited classes of problems (some of which will be used
as reference solutions in this paper). Hence, for realistic
applications one should resort to numerical FPE solutions.

Our approach considers approximations p̃(t, x) of the form

p̃(t, x) =

N∑
n=0

cn(t)un(x) = u(x)T c(t), (3)

where u(x) = [u0(x), · · · , uN (x)]
T is a basis of an (N+1)-

dimensional function space U in the state variable x. For
constant cn(t) = cn, (3) reduces to the approach in [18].

Definition 3 (FPE Residual): The FPE residual for the
approximate solution reads R(p̃) = − ˙̃p− (fp̃)

′
+ 1

2 (bp̃)
′′.

The expansion coefficients c(t) are determined in the
sense of a Galerkin-method, where R(p̃) is required to be
orthogonal to an (N+1)-dimensional test function space V .
Assuming that v(x) = [v0(x), · · · , vN (x)]

T is a basis of V ,
we can write

⟨v, R(p̃)⟩L2
=

∫
R
v(x)R(p̃(x))dx = 0. (4)

If we further select u(x),v(x), such that ⟨vm, un⟩ = δmn,
where δmn denotes the Kronecker symbol, we get

ċ(t) =

(
Hf +

1

2
Hb

)
︸ ︷︷ ︸

H

c(t), where (5)

Hf =−
∫
R
v(x)

(
f(x)u(x)T

)′
dx, (6)

Hb =

∫
R
v(x)

(
b(x)u(x)T

)′′
dx. (7)

C. Eigenvalues of H for ergodic system

If a unique stationary pdf pstat(x) exists for the FPE with
ṗ = 0 in (2), then we expect a non-trivial and unique constant
solution for c(t) = cstat, which solves

0 = Hcstat. (8)

Hence, H should have a rank-defect of exactly 1, cor-
responding to a single 0-eigenvalue. Furthermore, if the
diffusion process is ergodic, such that p(t, x) → pstat(x) for
t → ∞, we expect that c(t) → cstat in (5), and hence that
all non-zero eigenvalues of H are negative.

D. Solution and test function space

As in [18], the solution functions un(x) are defined as
products of polynomials an(x) =

∑n
i=0 αnix

i with an initial
approximation of the (time-invariant) pdf p0(x). Let a(x) =
[a0(x), · · · , aN (x)]

T denote a polynomial basis up to order
N , so that u(x) = a(x)p0(x) represents a basis of U . The
approximate solution p̃(t, x) then reads

p̃(t, x) = u(x)T c(t) = a(x)T p0(x)c(t). (9)

Contrary to [18], we select the test function space as products
of polynomials with an additional weighting function pw(x),

v(x) = ζa(x)pw(x) (10)

with normalizing constant ζ. pw(x) and p0(x) are generally
different, but both are valid pdfs with p(x) ≥ 0,∀x ∈ R and∫
R p(x) dx = 1.

Assumption 2: Being regular pdfs, we assume that p0(x)
and pw(x) and their derivatives vanish for |x| → ∞.

As a result, integration by parts of (6) and (7) yields

Hf =

∫
R
v′(x)f(x)u(x)T dx (11)

Hb =

∫
R
v′′(x)b(x)u(x)T dx. (12)

We introduce the combined pdf pc(x) = ζp0(x)pw(x),
where ζ is the same as in (10) and is chosen such that∫
R pc(x) dx = 1. The polynomials an(x) are defined to be

orthogonal with pc(x) as weighting function,

⟨am, an⟩pc
=

∫
R
am(x)an(x)pc(x) dx = δmn. (13)

In principle, p0 and pw can be any pdfs for which the
integrals in (11) and (12) exist, and p0 can be selected to
entail known features of the exact solution [17], [19].

Definition 4 (Central-Gaussian distribution): In the fol-
lowing, ncentral

σ (x) denotes a central (i.e. zero-mean) Gaussian
distribution with variance σ2.

The following discussions are limited to central Gaussian
p0(x) and pw(x) with variances σ2

0 and σ2
w.

III. SPARSITY OF THE SYSTEM MATRIX

As a result of the FPE being linear in p(t, x), our approach
is characterized by the matrix H in (5) and (8). In the
stationary case, we need to algebraically solve the linear
homogeneous system (8), whereas the transient case implies
integration of the dynamic system (5). In both cases, it is
critical that, as the size of H increases, only a small number
of its elements are non-zero. In this section we discuss H’s
sparsity, which is a consequence of the orthogonality of the
selected polynomial basis (13).

Although our approach is shown in Section V to outper-
form [18] both in the stationary and in the transient case,
Section III-A revisits the structure of H for plain-polynomial
test functions in view of the matrix properties discussed in
Section II-C. Subsequently, Section III-B outlines how this
structure changes for weighted-polynomial test functions.
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A. Plain-polynomial test functions

In [18], plain basis polynomials are used as test func-
tions, so that v(x) = a(x) and pc(x) = p0(x) in (13),
and the resulting polynomial basis is a scaled generaliza-
tion of Hermite-polynomials. The test function derivatives
in (11) are given simply by the polynomial derivatives,
v′(x) = a′(x). Because the derivative of any polynomial
can be expressed in terms of (lower-order) basis polynomials,
a′m(x) =

∑m−1
k=0 η′mkak(x), we can write

v′(x) = E′v(x), (14)

where E′ = [η′n1n2
] ∈ R(N+1)×(N+1) is a lower-triangular

matrix with zero-diagonal. Furthermore, Hermite polynomi-
als have the convenient property that a′m(x) = η′mam−1(x),
which also applies for the scaled Hermite polynomials. As a
result, E′ has non-zeros only on the first sub-diagonal.

Due to Assumption 1, the drift term can be expressed
in terms of the basis polynomials, f(x) =

∑N
k=0 η

f
kak(x),

given that Nf ≤ N . Let M ∈ R(N+1)×(N+1)×(N+1)

denote a symmetric three-way tensor whose elements are
the weighted integrals over three basis polynomials,

mn1n2n3
=

∫
R
an1

(x)an2
(x)an3

(x)pc(x)dx. (15)

We can now write

Hf = E′
N∑

k=0

ηfkMk, (16)

where Mk ∈ R(N+1)×(N+1) is the kth matrix-slice of M.
Remark 1: Mk is sparse for k ≪ N , because mn1n2n3

=
0 whenever ni > nj + nk for any i, j, k, due to the
orthogonality of the basis polynomials.

Similar to (16), Hb is written as

Hb = E′E′︸ ︷︷ ︸
E′′

N∑
k=0

ηbkMk. (17)

In (17), E′′ = E′E′ ∈ R(N+1)×(N+1) results from the
second-order derivative representation of v(x) and has non-
zeros only on the second sub-diagonal.

For illustration of the resulting H-matrix we consider a
1D-DP (1) with cubical drift and additive diffusion,

f(x) = βx+ γx3, b(x) = σ2, (18)

where γ must be negative for stability. Fig. 1 (left) shows
the sparsity pattern of H for (18) with β, γ, σ ̸= 0.

Remark 2: The first row of H is always zero, which
is a result of E′’s and E′′’s first rows being zero. This
guarantees at least one non-trivial stationary solution of (8),
in accordance with Section II-C.

B. Weighted-polynomial test functions

This section inspects the structure of H for test functions
with pw(x) = ncentral

σw
(x), so that the combined pdf is pc(x) =

ncentral
σc

(x) with 1
σ2
c
= 1

σ2
0
+ 1

σ2
w

.
The derivatives of v(x) now involve derivation of the

exponential function in ncentral
σw

(x), so that v′(x) and v′′(x)

Fig. 1. Sparsity pattern of H for cubical diffusion process with additive
noise (18), Gaussian p0(x) and N = 20. Left: Plain-polynomial test
functions, Right: Gaussian pw(x).

are no longer expressed by lower-order basis functions as in
(14). Instead, application of the chain-rule results in

v′(x) = E′vN+1(x), v′′(x) = E′′vN+2(x), (19)

where vN+1(x) and vN+2(x) are obtained by expanding the
test function basis with vN+1(x) and vN+2(x), and E′ ∈
R(N+1)×(N+2),E′′ ∈ R(N+1)×(N+3). Note that, although
vN+1(x) and vN+2(x) are used to construct H , they are not
used as test functions in the Galerkin-scheme.
E′ and E′′ are no longer square and have non-zero

elements below and above the diagonal. The sparsity of H
for (18) and Gaussian pw(x) is shown in Fig. 1 (right).

Remark 3: For σw < ∞, the first row of H is no
longer zero, so that the required zero-eigenvalue according
to Section II-C is no longer obvious. Indeed, H may have
full-rank for poorly chosen σw, but we observed in practice
that σw can be selected to achieve the expected eigenvalue
properties according to Section II-C.

Remark 4: For large σw, the weighting function pw(x)
acts like a constant in the region of interest, and the test
functions are equivalent to the plain polynomials. As a result,
for σw → ∞ the matrix H approaches the result from Sec-
tion III-A, including the property that the first row is zero.

IV. MULTIVARIATE DIFFUSION PROCESSES

A. Multivariate diffusion process and FPE

Definition 5 (Multivariate diffusion process): In the mul-
tivariate case, we have x,Xt ∈ Rd, and

dXt = f(Xt)dt+G(Xt)dWt (20)

describes a multivariate diffusion process, where Wt ∈ Rdw

denotes the increment of a dw-dimensional Wiener process.
Definition 6 (Multivariate Fokker-Planck equation): The

corresponding FPE reads

∂p(t,x)

∂t
=−

d∑
i=1

∂

∂xi
{p(t,x)fi(x)}+

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
{p(t,x)Bij(x)} , (21)

where B(x) = G(x)G(x)T ∈ Rd×d.
We search for approximate solutions of (21) of the form

p̃(t,x) = u(x)T c(t), (22)
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similar to (3), where univariate pdfs and polynomials are
replaced by their multivariate counterparts, e.g.

un1,··· ,nd
(x) = an1,··· ,nd

(x)p0(x). (23)

If the maximum polynomial order for each state variable xl

is Nl, the dimension of U and V is Ntotal =
∏

l(Nl + 1).
The resulting matrix H ∈ RNtotal×Ntotal is given by

H =

d∑
i=1

Hfi +
1

2

d∑
i=1

d∑
j=1

HBij , (24)

where

Hfi =

∫
Rd

∂v(x)

∂xi
fi(x)u(x)

T dx1 · · · dxd (25)

HBij =

∫
Rd

∂2v(x)

∂xi∂xj
Bij(x)u(x)

T dx1 · · · dxd, (26)

after integration by parts, subject to equivalent assumptions
about p0(x) and pw(x) as in Assumption 2.

B. Decoupled p0, pw, pc

The computation of the integrals in Hfi and HBij is
generally not tractable for higher system dimensions, such
as d > 3. However, if we select p0(x) and pw(x) decoupled
in the state variables, p0(x) = p

(1)
0 (x1) · · · p(d)0 (xd), then

u(x) and v(x) can also be written in decoupled form, using
univariate polynomials a(l)(xl) as in the 1D-case.

The partial derivatives in (25) are simply

∂v(x)

∂xi
= v(1)n1

(x1) · · · v(i)ni

′
(xi) · · · v(d)nd

(xd), (27)

and similarly for the second-order derivatives, meaning that
all the derivative representations used in the 1D-case can be
applied to the multivariate expressions in (25) and (26). Fi-
nally, the multivariate integrals can be computed as products
of tractable univariate integrals in the state variables.

Note that it is possible to address strong dependence be-
tween some state variables by using partially coupled basis-
functions, resulting in multivariate (but still low-dimensional)
pdfs and polynomials, and their integrals. In this paper,
however, we focus on fully decoupled basis-functions and
their capabilities to reproduce even strongly coupled pdfs
(see results in Sec. V).

For illustration we consider a 2D-diffusion process that
describes a single-degree-of-freedom (SDOF) oscillator of
Duffing type with external force excitation (additive noise)
[17]. Let x1 and x2 denote the displacement and the velocity
of a mechanical oscillator, and

f(x) = [x2, f(x1) + εx2]
T
,B(x) = diag(0, σ2), (28)

with f(x) as in (18), and ε < 0 for the resulting system to
be stable. The resulting sparsity pattern of H is shown in
Fig. 2 (left) for Gaussian p

(1)
0 , p

(1)
w , p

(2)
0 , p

(2)
w .

Fig. 2. Sparsity pattern of H-matrix for Duffing-type diffusion process
with additive noise (28) (N1 = N2 = 8) using Gaussian p0, pw . The HIT
parameters are q = ∞ (no HIT active, left) and q = 0.8 (right). The order
of the resulting systems is Ntotal = 81 and Ntotal = 34, respectively.

C. Hyperbolic index truncation

If the multivariate polynomials are expanded with equal
order in each state, N1 = · · · = Nd, the overall system
dimension Ntotal increases exponentially with d. In previous
work [18], many of the Nl were hence kept at low orders,
at the cost of depending on good initial approximations p0.

In the context of polynomial chaos expansion it has been
observed that expansion orders can be reduced for coupling
terms between the states using hyperbolic index truncation
(HIT) schemes [21]. In a similar spirit we define the set of
admissible indices by

AN
q ≡

{
n ∈ Nd :

(∑d
l=1 (nl/Nl)

q
) 1

q ≤ 1

}
, (29)

with q > 0. For q = ∞, no HIT is active and all coupling
polynomial terms are considered, equivalent to [18] and the
system shown in Fig. 2 (left). Application of (29) with
smaller q allows to maintain considerably higher expansion
orders in each state dimension while managing the overall
computational cost. Fig. 2 (right) shows the H-matrix for an
identical system and configuration where q = 0.8 in (29).

V. RESULTS

A. 1D-diffusion process

We begin by considering stationary solutions of the non-
linear system (18). For γ < 0, the exact solution reads

pexact
stat (x) = c exp

(
2σ−2F (x)

)
, (30)

where F ′(x) = f(x) from (18) and c is a normalization
constant, which can be verified by equating coefficients in
the stationary FPE (2) with ṗ = 0.

We consider the following configurations for central Gaus-
sian p0 and pw:

• “g-p”: σ0=1, σw=∞ (plain-polynomial vn as in [18]).
• “g-w”: σ0=1, σw=1.2 (weighted-polynomial vn).
Fig. 3 (left) shows the stationary pdf results and the error

err(x) = p̃stat(x) − pexact
stat (x) for β = 1, γ = −0.2 in (18)

and N = 30, and demonstrates how weighted test functions
outperform plain-polynomial test functions for identical p0.
Fig. 3 (right) shows the pdf-evolution over time initialized
with a central-Gaussian pdf (σinit = 0.5), compared with
MCS using Euler-Maruyama integration and NMC = 105

realizations.
The eigenvalues of the resulting H-matrices for both

configurations are as expected, according to Section II-C:
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Fig. 3. Left: Stationary pdf and pdf error for Gaussian p0, pw with plain-
polynomial (“g-p”) and weighted-polynomial (“g-w”) test functions for 1D-
diffusion process (18), N = 30. The exact stationary solution and initial
approximation p0(x) are also shown for reference. Right: Pdf-evolution
p(t, x) for (18), N = 30, compared with MCS (“MC”) using Euler-
Maruyama integration and NMC = 105 realizations.

Fig. 4. Left: Stationary pdf pstat(x1, x2) for SDOF-oscillator (28) using
“g-w-HIT” and N1 = N2 = 30. Right: Computation times required to
achieve a certain accuracy for the stationary solution pstat(x1, x2) for (28).
The polynomial expansion orders N1, N2 for “g-p”, “g-w” and “g-w-HIT”
were varied from 10 to 60. MCS result “MC” shown for comparison, with
number of MC-realizations NMC varied from 102 to 106.

All eigenvalues are negative except a single one that is zero,
and the corresponding eigenvector represents the stationary
solution of (8).

B. 2D-diffusion processes

For the 2D-diffusion process (28) we consider the same
configurations as in the 1D-case, with identical σ2

0 and σ2
w

for x1 and x2. Further, a third configuration “g-w-HIT” is
added with HIT-parameter q = 0.8. Fig. 4 (left) shows the
stationary pdf for (28) using the “g-w-HIT”-configuration
with expansion orders Ni = 30. The system size is Ntotal =
(30 + 1)2 = 961 for “g-p” and “g-w”, and Ntotal = 381 for
“g-w-HIT”.

For negative γ in (18) and ε in (28), the exact stationary
pdf for (28) reads

pexact
stat (x1, x2) = c exp

(
2σ−2F (x1)

)
ncentral
σ2

(x2), (31)

with F ′(x) = f(x) as in (30) and σ2
2 = −σ2

2ε [17]. The fact
that the 2D-example (28) has an exact stationary reference
solution allows us to inspect how a desired accuracy affects
the required computation times. Fig. 4 (right) shows the CPU
times of “g-p”, “g-w”, “g-w-HIT” for varying polynomial
expansion orders from N1, N2 = 10 to 60 over the integrated
squared error ISE =

∫
err(x)2dx. For qualitative com-

parison, we also plot MCS computation times for varying
numbers of realizations resulting in different accuracies.
Stationary solutions are obtained by simulating over long
enough periods of time Tstat, such that a quasi-stationary

Fig. 5. Pdf-evolution p(t, x1, x2) for SDOF-oscillator (28) using “g-w-
HIT” and N1 = N2 = 30.

state is reached. Tstat = 20 was determined empirically, and
the number of realizations was varied from NMC = 102 to
106. All computations were performed using Python on a
Dell computer with 12th Gen Intel(R) Core(TM) i7-1265U
processor @ 1.8 GHz and 16GB RAM.

Remark 5: The comparison with MCS is only qualitative,
as further optimization options such as parallelization or
higher-order integration schemes were not explored.

Fig. 5 shows the pdf result for different t using “g-w-
HIT” with N1 = N2 = 30, using a central Gaussian with
covariance matrix Σinit = diag (0.25, 0.25) as initial pdf.

C. 4D-diffusion process

We consider a system of 2 randomly excited Van-der-Pol
oscillators, coupled via linear spring and damping elements,

f(x) =


x2

βx1 + ρ(1 + εx2
1)x2 + γx3 + κx4

x4

βx3 + ρ(1 + εx2
3)x4 + γx1 + κx2


B(x) =diag

(
0, σ2, 0, σ2

)
, (32)

with parameter values ρ = γ = κ = 0.2, β = −0.8, ε =
−0.2, σ = 1. A “g-w-HIT” configuration was used (q =
1, Ni = 36), resulting in Ntotal = 91,376 instead of Ntotal =
(36 + 1)4 = 1,874,161, and a matrix density of 7.9× 10−7.

For lack of exact stationary reference solutions, we use
MCS to simulate over a long enough period of time to reach
quasi-stationarity (Tstat = 50). Fig. 6 shows different station-
ary marginal pdfs as computed by the Galerkin-method (top)
compared with MCS (NMC = 105, bottom). Equation (8) was
solved using an iterative least-squares solver from Python’s
scipy.sparse library in ∼20s for this configuration.

The deterministic Van-der-Pol oscillator exhibits a limit-
cycle behavior that results in crater-like pdfs under stochastic
excitation [23], which is preserved in pstat(x1, x2) of the
2DOF-system. Strong correlation between the displacements
and velocities of the two bodies, due to the coupling
spring and damping elements, is successfully reproduced in
pstat(x1, x3) and pstat(x2, x4), in spite of assuming p0 and pw
independent in the state variables (see Sec. IV-B).

Fig. 7 shows the transient 1D-marginal displacement and
velocity densities of one of the oscillators, p(t, x1) and
p(t, x2), compared with MCS (NMC = 105). Here, the initial
pdf was a Gaussian with mean µinit = (3, 0,−3, 0)T and
covariance matrix Σinit = diag (0.5, 0.5, 0.5, 0.5).
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Fig. 6. Top row: Stationary marginal pdfs pstat(x1, x2), pstat(x1, x3),
pstat(x2, x4) for 2DOF Van-der-Pol oscillator (32), Ni = 36, q = 1.
Bottom row: MCS result at T = 50 for comparison using NMC = 105

realizations.

Fig. 7. Marginal pdf evolutions p(t, x1), p(t, x2) for 2DOF Van-der-
Pol oscillator (32), Ni = 36, q = 1. MCS result for comparison using
NMC = 105 realizations.

VI. SUMMARY AND DISCUSSION

We have demonstrated how the Galerkin-method presented
in [17] and [18] can be generalized using weighted test func-
tions. We discussed the structure of the resulting sparse linear
systems, and applied hyperbolic index truncation to manage
the computational cost for large systems. The performance
was improved in the stationary case, and first results for
transient FPE solutions were presented using this approach.

For the time being, suitable parameters for the initial
approximation and weighting function are found empirically
to yield non-positive eigenvalues according to Section II-
C, but inappropriate parameters have been observed to lead
to instability. A better understanding is necessary of what
causes positive eigenvalues in the first place, so that suit-
able parameters can be found reliably for a given system.
Furthermore, we expect that the structure and sparsity of
the linear system for large expansion orders can be further
exploited. Optimized solvers for high-dimensional systems
could benefit from the specific structure, e.g. using sparse-
tensor representations and tensor decompositions [24], [25].

The proposed method bears potential for nonlinear filtering
due to its non-parametric and continuous representation
of the pdf. We demonstrated how non-Gaussian pdfs can
be propagated based on nonlinear system models, and the
next step is to update the expansion coefficients based on
nonlinear measurement models. A key question is how such
updates can be realized directly, without the need to compute
or integrate the underlying high-dimensional joint pdfs.
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