
Auxiliary Signal-Based Distance Protection in
Inverter-Dominated Power Systems

Josh A. Taylor1 and Alejandro D. Domı́nguez-Garcı́a2

Abstract— Power system protection schemes today rely on
currents rising by several orders of magnitude when faults oc-
cur. In inverter-dominated power systems, a fault current might
be just a few percent larger than normal, making fault detection
more difficult. One solution is for the inverter to slightly perturb
its output current and/or voltage, i.e., to inject an auxiliary
signal, so as to make the system’s behavior under faults easier
to distinguish from normal. In this paper, we optimize auxiliary
signals for fault detection with distance relays. We begin with
a standard auxiliary signal design problem for generic static
systems. We use duality to reformulate the problem as a bilinear
program, which we solve using the convex-concave procedure.
We implement the framework in an example based on distance
protection, in which the auxiliary signal is negative sequence
current.

I. INTRODUCTION

In power networks supplied by synchronous generators,
large currents provide clear information about the existence
and location of faults [1], [2]. In systems supplied primarily
by inverter-interfaced resources (IBRs), inner-loop current
controllers prevent large currents even during faults, so that
a fault current might be only a few percent larger than nor-
mal [3]. As a result, fault detection schemes for synchronous
machine-fed faults can fail in inverter-dominated grids [4].

One way to make faults easier to detect in inverter-fed
grids is to slightly perturb the output current when there
is suspicion of a fault [4], [5]. This can be accomplished,
for example, by adding new inputs to the inverter’s cur-
rent and/or voltage controllers. For example, in [6], when
the inverter’s terminal voltage is low, the inverter injects
harmonic currents. Similarly, the IEEE Standard 2800 now
stipulates that inverter-interfaced resources must inject neg-
ative sequence current to make them behave more like
synchronous generators during unbalanced faults [7]. The
downside of such schemes is that perturbing the current
lowers power quality, though only when the presence of a
fault is suspected. The benefit is that no additional hardware
is necessary, which can make them compatible with some
existing protection setups [4].

In this paper, we pose the design of such perturbations
as an auxiliary signal problem. An auxiliary signal is a
perturbation to the system’s inputs that facilitates fault detec-
tion [8]. Because we are focusing on phasor-based protection
schemes, here we only consider static system settings. We
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use duality to reformulate the standard static auxiliary signal
design problem as a bilinear program. An advantage of
this approach is that we can incorporate general inequality
constraints, which, for instance, might encode an inverter’s
voltage or current limits. Though nonconvex, the problem
is not large in scale, and could be solved in a variety of
different ways. Here we use the convex-concave procedure
(CCP) [9], [10] because it enables the use of convex solvers
and is relatively easy to implement.

We now review the relevant literature. In several recent pa-
pers, the inverter injects a current perturbation to make faults
easier to detect. As mentioned above, [6] injects harmonics,
and [4], [5] modulate the positive and negative sequence
currents. We also note that negative sequence current has
been used to assist islanding detection [11]. There is an
established literature stream on auxiliary signal design, of
which the textbook [8] provides comprehensive coverage.
The most relevant paper, which is slightly more recent and
from which we take direct inspiration, is [12], wherein fault
detection in linear time-invariant systems is reformulated
using Hahn-Banach duality. The present work differs in that
we focus on static systems; the resulting bilinear program and
its numerical solution are new. Aside from the first author’s
recent work in [13], none of the formalisms in the auxiliary
signal literature have been applied to fault detection in power
systems.

The original contributions of this papers are as follows.
C1. We use duality to reformulate fault detection in static

systems as a bilinear program. This allows for inequality
constraints in the system model, and solution via a
variety of tools from nonlinear programming.

C2. We use the CCP to obtain locally optimal solutions of
the bilinear programs.

C3. We apply the procedure to distance protection. Specif-
ically, we optimize negative sequence current injection
to assist detection of a phase-to-phase fault.

The remainder of the paper is organized as follows. In
Section II, we describe the auxiliary signal design problem
for static systems. In Section III, we use duality to reformu-
late fault detection in static systems as a bilinear program.
In Section IV, we describe its numerical solution via CCP.
In Section V, we apply the procedure to distance protection.
We describe several directions of future work in Section VI.

II. PROBLEM FORMULATION
We adapt the formulation in Section 3.2 of [8]. Consider

a linear static system that can operate in one of two modes:
normal and faulty, which we index by k = 0 and k = 1,
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respectively. Let x denote a vector of system variables that
are known a priori or can be measured. Let θ denote the
auxiliary signal: a vector of system variables whose value
can be manipulated so as to determine in which mode the
system is operating. Then, for k = 0, 1, the system behavior
can be described by

Θkθ +Xkx = Hkλk, (1a)
Akx ≤ bk, (1b)

where λk is unknown but must satisfy

∥λk∥ < 1, k = 0, 1, (1c)

Θk, Xk, Hk are matrices of appropriate dimensions, and bk
is a vector of appropriate dimension.

The relation in (1a) can be a result of physical laws, e.g.,
Kirchhoff’s laws. The inequality constraint in (1b) describes
specific limits that the vector of known/measured variables
must satisfy, e.g., the inverter’s maximum output current. The
unknown vector, λk, describes measurement errors or un-
modeled behavior. For example, the actual relation between
the auxiliary signal, θ, and the vector of known/measured
variables, x, might be nonlinear. In this case, λk could
capture higher-order terms in x and θ that were omitted
from (1a).

Given (1a) – (1b), we ask if there is a reasonable level of
noise, λ0 or λ1, under which the known quantities could have
come from model k = 0 or k = 1. For intuition, suppose
first there is no auxiliary signal (θ = 0). If there is a λ0 that
satisfies (1) for k = 0 and no feasible λ1 for k = 1, then we
can conclude the system is operating normally. If vice versa,
then the system is operating in its faulty mode. If there are
λ0 and λ1 such that (1) is feasible for k = 0 and k = 1,
then we cannot determine if the system has failed or not. In
this case, we design θ so that (1) is only feasible for k = 0
or k = 1, but not both. Next, we derive a new way of doing
so.

III. DUALITY-BASED AUXILIARY SIGNAL
DESIGN

Consider the optimization

P0 : min
x,ω,λ

ω (2a)

subject to Θkθ +Xkx = Hkλk (2b)
Akx ≤ bk (2c)

∥λk∥2 ≤ ω, k = 0, 1, (2d)

where λ =
[
λ⊤0 , λ

⊤
1

]⊤
. Let σ(θ) = ω∗ denote the optimal

objective. Observe that (2d) will bind for k = 0 or k = 1.
If ω∗ ≥ 1, then at least one of the models is infeasible.
If ∥λ0∥ < 1 and ∥λ1∥ ≥ 1, or vice versa, then we can
determine if the system is operating normally (k = 0) or has
a fault (k = 1). We want to design the auxiliary signal, θ,
so that this is the case.

We want θ to be minimal in some sense, which we
quantify by the cost θ⊤Qθ, where Q ⪰ 0. We seek to solve

P1 : min
θ

θ⊤Qθ subject to 1 ≤ σ(θ). (3)

In other words, we want to find the smallest auxiliary signal
that makes normal and faulty operation distinguishable. We
expect the constraint to bind at the optimal solution, so that
only one of the models is infeasible.

The constraint is difficult to handle because it contains a
minimization. We can eliminate the minimization by replac-
ing P0 with its dual, a maximization. Because P0 is a convex
quadratic program, strong duality ensures that it has the same
objective as its dual (assuming some constraint qualification
holds). We may simply constrain the objective to be greater
than one, which ensures the maximum objective is at least
one.

Replacing P0 with its dual and dropping the maximum,
P1 becomes

P2 : min
θ,α,β,ϵ,δ

θ⊤Qθ (4a)

subject to 1 ≤
1∑

k=0

β⊤
k Θkθ − ϵ⊤k bk − δk (4b)

α0 + α1 = 1 (4c)
1∑

k=0

β⊤
k Xk + ϵ⊤k Ak = 0 (4d)

4αkδk ≥
∥∥H⊤

k βk
∥∥2 , k = 0, 1 (4e)

αk ≥ 0, ϵk ≥ 0, k = 0, 1, (4f)

where α =
[
α⊤
0 , α

⊤
1

]⊤
, and β, δ, and ϵ are similarly defined.

Here δ is a dummy variable that simplifies (4b), β is the dual
variable of (2b), ϵ of (2c), and α is the dual variable of (2d).
The following lemma summarizes the result.

Lemma 1: If strong duality holds for P0, then P1 is
equivalent to P2.

By solving P2, we obtain an auxiliary signal, θ, for which
θ⊤Qθ is minimal and (1) infeasible. If we assume that one
of the models is true, k = 0 or k = 1, and that the noise
is bounded, this guarantees that we can distinguish between
normal and faulty operation.

IV. SOLUTION VIA THE CONVEX-CONCAVE
PROCEDURE

There are several options for solving P2. We use the
CCP because it allows us to use convex solvers and is
straightforward to implement [9], [10]. We now describe its
implementation for P2.

P2 is nonconvex due to the bilinear constraint (4b). Con-
straint (4e) is a hyperbolic constraint, which has a second-
order cone representation, and the others are linear.

Define
Ψk =

[
0 Θk

Θ⊤
k 0

]
,

where 0 and I respectively denote zero and identity ma-
trices of appropriate dimension. Let ψk denote the largest
eigenvalue of Ψk. Then, each bilinear term in (4b) can be
written

1

4

[
βk
θ

]⊤
(Ψk − ψkI)

[
βk
θ

]
+

1

4

[
βk
θ

]⊤
(Ψk + ψkI)

[
βk
θ

]
.
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The first term is concave and the latter convex. We linearize
the latter because it is on the right side of the inequality. The
linearization is

Jz
k (βk, θ) =

1

4

[
βz
k

θz

]⊤
(Ψk + ψkI)

[
βz
k

θz

]
+

1

2

[
βz
k

θz

]⊤
(Ψk + ψkI)

([
βk
θ

]
−
[
βz
k

θz

])
,

where βz
k and θz are the values of βk and θ at the zth iteration

of the CCP.
The CCP for P2 is as follows. Choose algorithm param-

eters γ0 > 0, γmax > γ0, ζ > 1, θ0, and β0 and set the
iteration counter to z = 0. Then repeat the below steps until
a stopping criterion, e.g., convergence of the objective or
variables, is satisfied.

1) Solve the optimization
(
θz+1, βz+1

)
= argmin

θ,α,β,ϵ,δ,ξ
θ⊤Qθ + γzξ⊤1

subject to ξ ≥ 0

1− ξ ≤
1∑

k=0

Jz
k (βk, θ)− ϵ⊤k bk − δk

(4c)− (4f).

2) Set γz+1 = min{ζγz, γmax}.
3) Set z = z + 1.

Here ξ is a slack variable that allows θ0 and β0 to be
infeasible. The additional term in the objective is a penalty on
ξ. Each iteration of the CCP is a second-order cone program,
which can be solved efficiently using existing software.

V. APPLICATION TO DISTANCE PROTECTION
A distance relay measures local current, i, and voltages, e

(from each phase to ground or between phases). Let ī and ē
denote complex numbers, referred to as phasors, associated
with i and e, respectively. The relay computes an impedance
by dividing the voltage phasor by the current phasor: z̄ =
ē/̄i. The presence of a fault affects the voltage and current,
and therefore the impedance computed by the relay. If the
impedance is in the relay’s zone of operation, e.g., a circle
or quadrilateral on the complex plane, it initiates protective
action, i.e., opening a circuit breaker. The zone of operation
is based on estimates of the impedance the relay will see
under normal conditions and during a fault [14]. A distance
relay can misdiagnose an inverter-fed fault because the
current it measures is little different from normal. We remark
that this description of distance relaying is simplistic [15],
but serves as context for the following example.

A. Single-IBR single-load system

Consider an IBR supplying power to a load through a
transmission line, as shown in Figure 1. A phase a-to-phase
b fault occurs somewhere on the line. A distance relay on
the line must use local voltage and current measurements to
determine if a fault has occurred.

Suppose the relay measures the positive and negative
sequence voltage and current phasors, which we denote by

Relay

Bus 1

Load
Transmission line

IBR

Bus 2

| {z }
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Fault

Fig. 1. Single-IBR single-load system. A fault occurs somewhere along
the length of the transmission line.

ē+, ē−, ī+, and ī−, respectively. When there is no fault, the
system is balanced and the measurements will satisfy

ē− ≈ z̄−ī− ≈ 0, ē+ ≈ z̄+ī+,

where z̄+ and z̄− are estimates of the apparent positive and
negative sequence impedance. Assume now there is a fault
between phases a and b. Then measurements will satisfy

ē− − z̄fī− ≈ ū+, ē+ − z̄fī+ ≈ ū−,

where z̄f is an estimate of the impedance to the fault, and ū+
and ū− are respectively the positive and negative sequence
components of the voltage phasor at the fault point, which
are a priori unknown but are such that ū+ = ū− (see, e.g.,
Section 5.4.1 of [14]). These relations are approximate due
to uncertainty in the impedances and noisy measurements,
which we represent explicitly below.

In this scenario, a synchronous machine would act like a
voltage source, injecting large currents with nonzero negative
sequence. On the other hand, an IBR behaves like a current
source, preventing large currents and keeping ī− ≈ 0 even
under a fault, leading to an inaccurate estimate of the fault
impedance. Similar to [4], we remedy this by having the
inverter inject negative sequence current.

Here the auxiliary signal, θ̄, is a phasor. Because it is
negative sequence current, it takes the place of ī− (which is
roughly zero). When there is no fault, the system model is

ē− = z̄−θ̄ + λ̄−,0 (5a)
ē+ = z̄+ī+ + λ̄+,0, (5b)

where ∥∥∥∥
[
λ̄−,0

λ̄+,0

]∥∥∥∥ ≤ 1. (6)

This corresponds to (1a) when k = 0. Here λ̄−,0 and λ̄+,0

capture measurement noise and imperfect knowledge of the
line’s positive and negative sequence impedances. When
there is a fault, the system model is

ē− = z̄fθ̄ + λ̄−,1 (7a)
ē+ = z̄fī+ + λ̄+,1, (7b)

where ∥∥∥∥
[
λ̄−,1

λ̄+,1

]∥∥∥∥ ≤ 1. (8)

This corresponds to (1a) when k = 1 (faulty operation).
In addition to capturing measurement noise and imperfect
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knowledge of the value of z̄f, λ̄−,1 and λ̄+,1 capture lack
of information on the positive and negative sequence com-
ponents of the voltage at the point of the fault. We want to
design θ̄ so that either (5) or (7) is feasible, but not both.

In Appendix VI, we convert (5)-(8) to a real-valued
system and put it in the form of (1). We can thus fully
parameterize the auxiliary signal design optimization, P2.
We remark that it would be more natural here to add the
uncertainty directly to the impedances. This would result in
multiplicative uncertainty, a topic of future work.

B. Numerical results

To solve P2 numerically with the CCP, we must specify
the values of z̄−, z̄+, and z̄f. We set

z̄− = 30 + j35,

z̄+ = 30 + j35,

z̄f = 26 + jxf,

where xf, the reactance of the fault path, is a parameter we
vary.

All optimizations were carried out in Python using
CVXPy [16] and the solver Gurobi [17]. All figures were
made with Matplotlib [18]. Each optimization took under a
second to solve.

We first explore the feasibility of P2. Testing the feasibility
of a particular auxiliary signal entails solving P2 for a fixed
value of θ̄. Fixing θ̄ makes the bilinearity linear, which makes
P2 a second-order cone program. Figure 2 shows feasible
values of θ̄ on the complex plane for two cases: xf = 25
and xf = 35. The latter case is more difficult because the
fault impedance is closer to the normal impedance seen by
the relay. As a result, the set of infeasible auxiliary signals,
i.e., which do not make the fault distinguishable form normal
operation, is larger when xf = 35.

We now use the CCP to solve P2 for the optimal auxiliary
signal, θ̄. Figure 3 shows θ̄ as xf varies from 12 to 58.
The top plot shows the real and imaginary components of θ̄
for each value of xf. The bottom shows

∣∣θ̄
∣∣ as a function

of xf. When xf is either very small or very large, it is
significantly different from the apparent reactance during
normal conditions, making faults easier to detect. As a result,
θ̄ is on the bottom left of the top plot, and has small
magnitude on the bottom plot. When xf ≈ 35, the fault
is more difficult to detect, and a larger auxiliary signal is
necessary. In this case θ̄ is on the bottom right of the top
plot, and has larger magnitude on the bottom.

The optimization P2 is a generic framework for obtaining
auxiliary signals for static systems. This example demon-
strates that it can be solved efficiently, and produces intuitive
results when applied to a basic instance of fault detection.

VI. CONCLUSION

We have used duality to reformulate auxiliary signal
design for static systems as a bilinear program. The benefit
is more modeling flexibility and amenability to the large set
of solution techniques for nonlinear programming. Here we

Fig. 2. Feasible values of θ̄ (dotted) on the complex plane for xf = 25
(top) and xf = 35 (bottom).

have used the CCP because it is easy to implement and relies
on convex solvers.

The motivation for this work is fault detection in inverter-
fed grids. The problem is difficult because the fault currents
of IBRs are smaller than those of synchronous machines.
A relatively recent solution is to add perturbations that
make faults easier to distinguish from normal conditions. We
have formalized this strategy as an auxiliary signal design
problem, and applied the resulting procedure in an example
with a phase-to-phase fault.

We believe this is a natural approach to fault detection in
inverter-dominated power systems, which can be applied in a
range of scenarios. Two immediate directions of future work
are generalizing the procedure to more than two models,
and applying it to the full set of faults seen in three-phase
systems. We also intend to apply auxiliary signal formalisms
for dynamic systems, e.g., [12], to time-domain protection.

APPENDIX

We put the system in Section V, (5)-(8), in the form of (1),
which enables us to parameterize the auxiliary signal design
optimization, P2.

To this end, we convert all quantities from complex- to
real-valued. Let

θ̄ = µ+ jν
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Fig. 3. θ̄ (top) and
∣∣θ̄∣∣ (bottom) for xf ∈ [12, 58].

and

ē− = f− + jg−

ī− = c− + jd−

z̄− = r− + jx−.

We replace the subscript with + and f, respectively, to denote
positive sequence and fault values. Let

M− =

[
r− −x−
r− x−

]
,

and define M+ and Mf similarly. Let R [ȳ] and I [ȳ] denote
the real an imaginary parts of ȳ. Then (5) takes the form

[
f−
g−

]
=M−

[
µ
ν

]
+

[
R

[
λ̄−,0

]

I]
[
λ̄−,0

]
]

[
f+
g+

]
=M+

[
c+
d+

]
+

[
R

[
λ̄+,0

]

I
[
λ̄+,0

]
]
,

(7) takes the form
[
f−
g−

]
=Mf

[
µ
ν

]
+

[
R

[
λ̄−,1

]

I
[
λ̄−,1

]
]

[
f+
g+

]
=Mf

[
c+
d+

]
+

[
R

[
λ̄+,1

]

I
[
λ̄+,1

]
]
,

and (8) takes the form

R
[
λ̄−,0

]2
+ I

[
λ̄−,0

]2
+R

[
λ̄+,0

]2
+ I

[
λ̄+,0

]2 ≤ 1

R
[
λ̄−,1

]2
+ I

[
λ̄−,1

]2
+R

[
λ̄+,1

]2
+ I

[
λ̄+,1

]2 ≤ 1.

We can now parameterize (1). With a slight abuse of
notation, arrange the variables as

θ =

[
µ
ν

]
, x =




f−
g−
f+
g+
c+
d+



, λk =




R
[
λ̄−,k

]

I
[
λ̄−,k

]

R
[
λ̄+,k

]

I
[
λ̄+,k

]


 , k = 0, 1.

Then

Θ0 =

[
−M−
0

]
, Θ1 =

[
−Mf
0

]

X0 =

[
I 0 0
0 I −M+

]
, X1 =

[
I 0 0
0 I −Mf

]

H0 = H1 = I,

where 0 and I are appropriately dimensioned zero and
identity matrices. Lastly, we set Q = I .
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