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Abstract — Various pathologies and physical impairments 

diminish the capacity to maintain a seated balance, with spinal 

cord injury serving as a clinical example. Individuals with this 

condition often lose control of muscles below the injury level and 

commonly rely on a wheelchair for mobility. The impact of such 

injuries on seated postural control necessitates the development 

of new stabilization strategies in response to disturbances. These 

strategies differ significantly from those used by asymptomatic 

individuals. Particularly, they rely on upper limb movements as 

the primary means of control, given the absence of control from 

the trunk. Reconstructing the produced active joint torques at 

the shoulder and arm levels or the passive torque at the lumbo-

sacral level is crucial to understand compensatory strategies and 

developing innovative monitoring techniques in rehabilitation 

exercises. The methodology starts from a nonlinear model with 

5 Degrees of Freedom called “Trunk-2-Arms” (T2A) and 

proposes an observer based on quasi-LPV and LMI problem 

synthesis. The design of the observer uses a cascade of 3 models 

(trunk and the 2 arms) in order to reduce the design complexity. 

Therefore, local PI-observers are derived that allows to estimate 

the state and the human joint torques. The global estimation 

error convergence of the cascaded observer scheme is 

guaranteed using a separation principle and the Lyapunov 

theory. The methodology is validated through simulations and 

using real clinical data collected on 26 SCI people.   

I. INTRODUCTION 

Individuals experiencing a spinal cord injury (SCI) often 

exhibit a substantial reduction or complete absence of 

muscular activity in the abdominal and trunk areas, 

sometimes coupled with partial or complete loss of sensation 

below the level of injury. Consequently, this leads to 

diminished postural control and significantly increases the 

risk of falling [1] [2]. The consequences of such injuries are 

substantial, impacting sensorimotor, cardiovascular, 

respiratory, and digestive functions. The impact of the injury 

on the vertebral stabilizing system generates new stabilization 

strategies, which are different from the asymptomatic 

strategies of healthy subjects. These strategies which 

compensate for the absence of voluntary control are 

essentially based on the movements of the upper limbs. 

Understanding these strategies as well as quantifying the 

resulting joint forces are necessary in order to assess the 

impact of the injury and to propose news methods facilitating 

the control of seated stability. One of the challenges is to 

estimate the variables that generate these efforts, the torques 
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that are not measured and not measurable. The paper follows 

an alternative to classic inverse dynamics [3-5]. This 

alternative starts from a biomechanical model and use 

nonlinear PI-observer design. The framework of this design 

uses the so-called quasi-LPV (or Takagi-Sugeno model) 

formalism via exact polytopic descriptions of nonlinear 

systems in a compact set of the state and LMI constraints 

problems [6]. In order to reduce the complexity and to get less 

conservative result a descriptor form is considered, that is also 

very well-suited to mechanical models [7].  

In order to assess the methodology, an experimental 

campaign has been carried out in Montreal [8] on 26 SCI 

people delivering numerous workable data. The first trials to 

understand the SCI seated position were using reduced 

models: the “Head-2-Arms-Trunk” (H2AT) with 2 Degrees-

of-Freedom (DoF) [3] and the “Seated-3-segments” (S3S) 

model involving 3 DoF [5] [8]. The S3S model was validated 

with real data, however, it considers (for simplification 

issues) symmetric arms behavior for the SCI. Indeed, a large 

part of the experimental data (when the arms behave 

asymmetrically) could not be exploited. This work answers to 

this issue by introducing an asymmetric 2 arms model called 

“Trunk-2-Arms” (T2A). 

There are several challenges to go from S3S model to T2A. 

A first challenge is related to complexity; an observer for the 

S3S model [5] [8] produces an LMI constraint problem that is 

already close to the limitations of current solvers with a 

standard computer (see Remark 3). A second challenge 

concerns genericity, the methodology must remain valid even 

with additional degrees of freedom. The last one is to carry 

out the synthesis of the observer using the nonlinear model 

without simplification (linearization, neglecting terms, small 

angles assumption, etc.). It also has to solve the problem of 

unmeasured scheduling variable without using neither norm 

bounds [9] nor using Lipschitz-like conditions [10].  

Part II presents the notations, part III the biomechanical 

model T2A and the problem formulation. To deal with the 

numerical complexity of the observer design, we follow the 

idea of cascaded nonlinear observer [11] [5]. To this end, part 

IV presents the T2A model rewritten in the form of a cascaded 

model with three subsystems: trunk, left and right arms. A PI-

observer [12] is developed for each system and using 

Lyapunov stability theory, the convergence of the estimation 
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error is obtained. Finally, part V gives illustrative results 

especially with clinical data and part VI concludes the work.  

II. NOTATIONS AND MATERIALS 

The following notations are considered in the paper. The 

symbol ( )  in an expression might be used either for brevity 

or to signify that the dependence of a variable will be defined 

later. 
n n

nI   stands for the identity matrix. Subscripts and 

exponents h and v stands for polytopic representation of a 

variable, i.e., ( )
1

vr

v i i

i

E v E
=

=  , ( ) ( )
1 1= =

=  
vrr

v j

h i j i

i j

A h v A  and 

the functions share the convex sum property ( ) 0ih   , 

 1i r , ( )
1

1
r

i

i

h
=

 = . The symbol ( )*  in an expression 

stands for an expression induced by symmetry, e.g., 

( ) ( )* * T TA A A C

C B C B

 +  +
=   

   
. We also recall the 

following relaxation lemma from [13]. 

Lemma 1. For  , 1i j r  and  1 ek r . The condition 

( ) ( ) ( )
1 1 1

0
r r rv k

hh i j k iji j k
h h v

= = =
 =         is verified if  

( )( )2 1 0k k k

ii ij jir + −  +   ,   , 1i j r ,  1 ek r  (1) 

III. BIOMECHANICAL MODELLING 

A. SCI modelling: From H2AT model to T2A model 

Postural control modeling generally focuses on standing and 

often relies on variations of inverted pendulum models [14] 

[15]. There are very few works related to modeling in the 

sitting position [16], and [17] appears to be one of the rare 

fully nonlinear models dedicated to sitting control. However, 

in the latter case, the control is solely at the lumbar joint, and 

the model is not specifically intended for experimental 

validations. Therefore, we have developed our own fully 

nonlinear models for sitting positions. The initial versions are 

H2AT model [3] and S3S model [5], Fig. 1. 

 
 

Fig. 1. Sitting posture (left) modelling, H2AT (middle), S3S (right) 

The comprehensive description of these nonlinear models 

and their Euler-Lagrange-based derivations are beyond the 

scope of this paper due to space constraints. The new T2A 

model, depicted in Fig. 2, extends the S3S model by 

incorporating a second arm, expanding the model from 3 

degrees-of-freedom (DoF) to 5 DoF.  

 

Fig. 2. The Trunk-2-arms (T2A) model 

The T2A model is formulated in a descriptor form as  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

E q t x t A x t x t S q t Bu t

y t Cx t

 = + +


=

  (2) 

The coordinates ( )q t  are relative joint positions such that: 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 1 2

T

R R L Lq t q t q t q t q t q t=    .  

0 1 2 1 2 0 1 2 1 2

T

R R L L R R L Lx           =  
 is the 

T2A state composed of absolute position coordinates such 

that: 0 0 1 1 0 2 2 1, , , /S S S S Sq q q S R L    = = − = − = . 

The five torque inputs ( )  0 1 2 1 2

T

R R L Lu t =       

correspond to the joint torques, where 0  is the torque at the 

trunk, 1R  (respectively 1L ) is the torque at the right 

shoulder (respectively left shoulder), and 2R  (respectively 

2L ) is the torque at the right elbow (respectively left elbow).  

The state-space matrices of the T2A model (2) are given by 

( )
( )

5 5

5

0

0

I
E q

E q

 
=  

 
, ( )

( )
5

5

50

0

I
A x

A x

 
=  

 
, ( )

( )
5 10

S q
S q

 
=  

 
, 

5 40
B

B

 
=  

 
,  5 50C I= . The entries of these matrices are 

described equations (3) to (5). Subscript R  stands for right, 

L  for left, l•  is a length, m•  a mass, I•  an inertia, a•  inertial 

constants related to the Center of Mass,  b l a• • •= − ; subscript 

0  is used for the trunk, 1  for the shoulder and 2  for the arm. 

For example, 0l  is the length of the trunk, 2Lm  the mass of 

the left arm. At last, the region of possible movements for a 

human [18] are defined using the compact set x : 

/

0

1 /

2 /

0

1 /

2

5 5 29

20 60 57

571

,

0 45

Lx R L

R LR

R

L

q s

q s

q s

q

q

q

 
 

=  
 

−      

 −    



 
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( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

10 1 1 9 1 2 2 10 1 1 9 1 2 2

8 0 1 4 2 2

9 0 1 2 4 2 1

8 0 1 4 2 2

9 0 1 2 4 2 1

0 sin sin sin sin

sin 0 sin 0 0

sin sin 0 0 0

sin 0 0 0 sin

sin 0 0 sin 0

R R R R R R R L L L L L L L

R R R R R

R R R R R R

L L L L L

L L L L L L

p q p q q p q p q q

p q p q

A x p q q p q

p q p q

p q q p q

   

 

 

 

 

 − − + − − +


= + −



+ −








 


 (4) 

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 10 1 9 1 2 10 1 9 1 2

8 1 3 4 2

9 1 2 4 2 5

8 1 3 4 2

9 1 2 4 2 5

cos cos cos cos

cos cos 0 0

cos cos 0 0

cos 0 0 cos

cos 0 0 cos

R R R R R L L L L L

R R R R R

R R R R R R

L L L L L

L L L L L L

p p q p q q p q p q q

p q p p q

E q p q q p q p

p q p p q

p q q p q p

 − − + − − + 
 

− 
 = − +
 

− 
 − + 

 (5) 

( )

( )

( )

( )

( )

( )

2 0

6 1

7 2

6 1

7 2

sin

sin

sin

sin

sin

R R

R R

L L

L L

p

p

S q p

p

p











 
 
 
 =
 
 
 
 

, 

1 1 0 1 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

B

− − 
 

−
 
 =
 

− 
 
 

, 

( )

( )( )

( )( )

2 2

1 0 0 0 1 1 2 2 0

2 0 0 1 1 2 2 0

2 2 2

3 1 1 1 2 1 4 2 2 1 5 2 2 2

6 1 1 1 2 1 7 2 2

8 1 1 0 2 0 1 9 2 2 0 10 1 1 2 1

,

,

, , ,

, ,

, ,

R L R L

R L R L

R R R R R R R R R R R R R R

R R R R R R R R R

R R R R R R R R R R R R

p I m a m m m m l

p m a m m m m l g

p I m a m l p m a l p I m a

p m b m m l g p m a g

p m a l m l l p m a l p m a m l

= + + + + +

= + + + +

= + + = = +

= − + + =

= + = = + R

 (6) 

3Lp  to 10Lp  are defined similarly as 3Rp  to 10Rp  in (6) , replacing the subscript R with L .

Remark 1: notice that ( )( )E q t  in (2) is invertible for each 

( )q t . Nevertheless, for such mechanical models [7] the 

number of nonlinearities increases in a huge way if we use a 

standard description involving ( )( )1E q t−
. It results in an 

increase of vertices to describe the nonlinear model and 

generally ends with more conservative results. 

Remark 2: The fifth input 0  corresponds to the trunk torque 

which cannot be mobilized in the case of an SCI whereas it is 

the most important input for a valid person. Thus, it results in 

an unstable or weakly stabilizable system as the SCI can only 

use the upper body (the shoulders 1L , 1R  and the arms 2L  

and 2R ) to stabilize itself. 

B. The problem formulation 

The goal is to derive an observer for system described by (4) 

to (6) inside the compact state region x  (3): 

a) that guarantees the state error observation to converge;  

b) that estimates slow varying input torques; 

c) can be tested on data recorded on different SCI people. 

The technique used is based on polytopic observers 

representing, in a compact set of the system, exactly the 

nonlinear system without approximation. Nevertheless, even 

if a direct formulation can be obtained via nonlinear sectors, 

it appears out of the possibility of the actual solvers.  

Remark 3: To give an idea of the complexity, consider the 

S3S model [3] (Fig. 1 right) and a polytopic observer based 

on an exact representation of the biomechanical model. 

Writing of the problems a) and b) requires 128 LMI 

constraints of size 12 12  and 1518  decision variables. 

Following the same approach for the system T2A would end 

with 4096  LMI constraints of size 20 20  and more than 

14000  variables, considering the poorest code, without any 

performance and no relaxation and with no guarantee to have 

a solution. Apart the fact that it approaches the numerical 

limits of solvers, adding performances, or other DoF 

(rotations for example), this direct way cannot be followed.  

Therefore, similar to the approach in [5] the design of a 

cascade of observer [11] can come at hand. The steps to 

design the cascade of observer are: 

1. rewrite model T2A under a cascaded form of 3 models; 

2. extend these 3 “local” models to include the slow varying 

input torques, problem b); 

3. show that the cascade obtained holds the properties of a 

separation principle for the “local” observers’ design;  

4. design for each model a PI-observer with guarantee of 

convergence of the “local” error. This step includes non-

measured scheduling variables issues. 

C. Step 1: Cascade representation of T2A model 

A cascade of three sub-systems, Fig. 3, is built, T  represents 

the trunk, AR  represents the right arm, and AL  the left arm. 

The trunk model T  corresponds to: 

( )1 0 2 0 0sin cp p = +  +    (7) 

The right arm model AR  corresponds to 

( ) ( ) ( )

 

2

0

0

1

2

2

0

R R R R R R R R

R

R AR R

R

E q x A x x S q B u D

y I x










  
= + + +  

  


 
= = =  

 

  (8) 

with 1 2 1 2

T

R R R R Rx     =   , and  

( ) ( )

( )
4 2 2

4 2 1

0

0 sin
0

sin 0

R AR R R R

R R R

I

A x p q

p q





 
 

 =  
  −  
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0 0

1 1
0

0 1

RB

 
 

= −  
    

, ( ) ( )

( )

2 1

6 1

7 2

0

sin

sin

R R R

R R

S q p

p





 
 

=  
 
 

, 

( ) ( ) ( )

( ) ( )

2

8 1 8 1

9 1 2 9 1 2

0

sin cos

sin cos

R R R R R

R R R R R R

D q p q p q

p q q p q q

 
 

=   
  + +  

, 

( ) ( )

( )
2 3 4 2

4 2 5

0

.cos
0

cos



 
 

=   
  
  

R R R R R

R R R

I

E p p q

p q p

 

 
Fig. 3.  Cascade representation of the T2A model with T  the trunk, 

AR , AL  the right and left arms and the 2 static functions. 

The coupling equation between the right arm AR  and the 

trunk T  is given by: 

( )

( )

( )

( )

( )

10 1 1 1

9 1 2 2 2

1

10 1 1

9 1 2 2

sin

sin
. .

cos

cos

T

R R R R

R R R R R

cR R R

R R R

R R R R

p q

p q q
f

p q

p q q

 

 





   −
   
− +    = = − 

   
   

+      

 (9) 

The definition of the left arm LR  follows the same procedure 

as described in (8) for the model AR , and its interaction with 

the trunk cL  in (9). The equations are not reiterated here; 

simply substitute the subscript “R” with “L” in (8) and (9). 

D. Step 2: Extended systems – slow varying inputs 

Designing a classical Unknown Input Observer (UIO) is not 

feasible due to unsatisfied rank conditions [19]. Hence, in line 

with our prior studies, in order to design a PI-observer, we 

consider ( )
0


   as an “accurate” representation of the input 

torques behavior.  

Remark 4: This choice corresponds to the fact that the human 

torque variations are sufficiently slow, problem b), to be 

captured via a second order dynamic. It has been validated in 

simulation and on real data [8]. 

Therefore, we introduce the second order dynamic for the 

trunk T  to get: 

( )
0 0

2 00 01

0 11 0 0 0
0

sinc 00 1 0

0 0T T

pp

I J

 

 

           
           

=           
            

 (10) 

with 
0 1

0 0
J

 
=  

 
, 

U

T

U

 
 =  

 
, and 

0U c =  +  . Defining 

0

0

Tx




 
=  

 
, ( )

( )0 1

2 01

0 11 0

sinc 00
TA

pp


−

  
=   

   
 and 

 1

1

1 0
0

0
TB B

p−

 
=  

 
, then expression (10) is equivalent to 

( )0 .
0

    
=     

     

T TT T

T T

x xA B

J
  (11) 

Identically, for the right arm (8), we get: 

( ) ( )
( ) ( )

2

2 0

0

0 0
0

00
0 0

R RR R RR R

R R R

R RR

x xA x BE
D C

JI

 
 



   
           

= + +                           

  1

2

2

0
R R

R R

R R

x
y I






   
= = =   

   

 (12) 

with 
20

0 0
R

I
J

 
=  

 
, 1 2 1 2

T

AR R R R Rx     =   , and 

1 1 2 2

T

R R R R R
  =      . Notice that for the arms (12) 

following Remark 1, we keep a descriptor structure. From 

(11) and (12), the steps 3 and 4 can be initiated. 

 

Fig. 4.  T2A cascade observer with ˆ
T  the observer for the trunk, ˆ

AR

ˆ
AL  for the right and left arms and the 2 static functions. 

IV. DESIGN OF THE CASCADE OF OBSERVERS 

The global scheme of the cascade of observers, ˆ
T  and ˆ

AR , 

ˆ
AL  is depicted Fig. 4. The black arrows of Fig. 4. indicate 

measurable variables, the red arrows indicate estimated 

variables used by the local observers of the cascade. Step 3: 

Observation problem formulation 

For the trunk, a direct form can be obtained from (11) as 

( )
( )( )0

0

ˆ ˆ
ˆ .

ˆˆ 0




    
  = + −  

      

T TT T

T T T

TT

x xA B
K y y

J
 (13) 

Define the state observation error as 
ˆ

ˆ

TT

T

T T

xx
e

  
= −   

    
. It 
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follows directly from (11) and (13) that 

( )
( ) ( )0

0 0 .
0


  

  
= − =   

  

T T

T T T T T T

A B
e K C e e

J
 (14) 

The observer design problem resumes in finding ( )0TK   

such that (14) is asymptotically stable. 

For the arms (12), there is an issue as the matrix ( )R ARA x , 

see its definition after (8) (same for ( )L ALA x ), depends on the 

non-measured scheduling variables 
1 2,R R   (

1 2,L L  ). The 

problem of non-measured variables for the design of an 

observer, in a general framework, is still an open problem. We 

provide in our case a way to solve it without neither norm 

bounds [9] nor using Lipschitz-like conditions [10]. For the 

right arm, an observer can be written as: 

( ) ( )

( ) ( ) ( )( )

2

2

2

0

0

ˆ ˆˆ0

ˆ0ˆ0

0 0
ˆ

ˆ
ˆ

0 0

R RR R AR R

RR

a R R R R R

x xA x BE

JI

D C K y y




 



     
  =    

       

     
     + + +  −
     
        

            (15) 

Notice that since the variables 
0  and 

0  are non-measured, 

they are replaced with their respective estimates 
0̂  and 

0̂  

coming from the trunk observer ˆ
T . We define the state 

estimation error as 
ˆ

ˆ

RR

R

R R

xx
e

  
= −   

    
. Since 

( )2 0

0

R RE

I

 
 
 

 

is well-defined for every 2R , the convergence of Re  is 

ensured if system (16) converges 

( ) ( ) ( )

( ) ( )

2

2 2

22
00

0
0

ˆˆ0

ˆ0 00

0
ˆ

ˆ
0

RRR R R R R RR R

R

R R

R R R

xxA x B A x BE
e

J JI

K Ce C






 

       
= −        

         

         −  + −           

 (16) 

In (16), the issues are to treat both quantities: 

( ) ( ) ( )ˆ
R R R R RA A x A x  = −  and 

22
00

0
0

ˆ

ˆ
T




 

  
  = − 
    

 (17)  

as functions of the state errors. The first term comes from 

( ) ( ) ( ) ( )ˆ ˆ ˆ
R R R R R R R R R R RA x x A x x A x e A x− = +    and: 

( ) ( )4 2 2 2

1 1

0 0

ˆsin 0
0

ˆ 0

R R R R R

R R

A p q  

 

 
 

    = −
  
  − +  

.  

Then, it follows after technical manipulations that: 

( ) ( ) ( )ˆ ˆ,R R R R R R R RA x e A x H x x e+   =  

 
( ) 2 2

4 2

1 1

0

ˆ0
0 sin

ˆ 0

RR R

R R

R R

I

e
p q

 

 

 
 

  = +
  
  − −  

 (18) 

The second term of (17) writes directly 

22
0 0 00 0 0

0
0 0 0

  .
ˆ ˆˆ 0

ˆ ˆ0 1

    

   

     −  +   − =   
      −    

 (19) 

Then, it follows from (19) that 

( ) ( )
0 022

00 0 0

0 0
0

0

ˆ0 0
ˆ ˆ 0 0

ˆ
ˆ 0 1 0

0 0 ˆ

R R

T T

C C

 
  

    

 −          +       − =    −                      −  

 ( )12 0 0
ˆ, ,R R TE e  −  (20) 

For the right arm, it follows from (16) and (20) that  

( )
( ) ( )

( )2

12

2

0

00

RR R

R T R R R

R

H BE
E e e K C e

JI

    
 + = −      

    

or equivalently introducing the notation ( )R   and ( )R  : 

( ) ( ) ( )12 .  +  = R T R R R RE e e e  (21) 

The left arm can be easily defined by symmetry, i.e., with 

matrices ( )ˆ,L LH x x  and ( )12 0 0
ˆ, ,L LE    : 

( ) ( ) ( )12 .  +  = L T L L L LE e e e  (22) 

Remark 5: Remember that problem a) requires that we 

guarantee asymptotic convergence of the state error in x . 

The way to describe (21) and (22) using the transformations 

(18) and (20) is indeed crucial as they introduce no 

approximation and are only state error dependent.  

Now, the full observation problem can be written as 

( )

( )

( )

( )

( )

0

12

12

0 0 0 0

0 0 0

0 0 0

T T T

R R R R R

L L L L L

I e e

E e x e

E e x e

 

 

 

      
      

 =       
             

(23) 

where ( )0T   is defined in (14), ( )R   and ( )R   are 

defined in (21). We recall the following result for descriptor 

cascaded observers [5].  

Theorem 1 [5]. Consider two descriptor systems, ( )iE   being 

always regular ( ) ( ) ( )( ), ,i i iE A C   ,  1, 2i  , such that it 

exists matrices ( )iK  ,  1, 2i   ensuring that the two 

estimation error systems defined by 

( ) ( ) ( ) ( )( )i i i i i iE A K C  =  −    (24) 

are Globally Asymptotically Stable (GAS). Consider the 

augmented system: 

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1 1

12 2 12 2 2 2

0 0E A K C
e e

E E A A K C

     −   
=   

    −     

(25) 

with ( )12E   and ( )12A   are norm-bounded matrices. Then, the 

error system (25) is also Globally Asymptotically Stable. 

 

It is direct to see that problem (23) corresponds to Theorem 

1 conditions, as ( )12 0A  = , ( )12RE   and ( )12LE   are norm-

bounded matrices. Therefore, sufficient conditions for (23) to 

be GAS are that the 3 following systems are GAS: 
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( )
( )0

0 .
0

T T

T T T T

A B
e K C e

J




  
= −   

  
 (26) 

( ) ( )
( )2

2

ˆ,0

00

R R RR R

R R R

R

H x x BE
K C

JI


 

   
= −      

    

 (27) 

( ) ( )
( )2

2

ˆ,0

00

L L LL L

L L L

L

H x x BE
K C

JI


 

   
= −      

    

 (28) 

where 
R  and 

L  are dummy variables, as they do not 

represent the full state errors 
Re  and 

Le  of the right (left) arm. 

Nevertheless, finding ( )0TK  , ( )RK   and ( )LK   such that 

, , 0T R L t
e  

→
⎯⎯⎯→  ensures (23) to be GAS. 

A. Step 4: LMI design 

For system (26), we can use a “linearizing” expression of the 

gain ( ) ( )1

0 1 2 0 00 sin 0 0
T

T LTK p p K   − = +   to get 

a linear state observation error as 

0

T

T LT T T

J B
e K C e

J

  
= −  

  
 (29) 

Therefore, a single pole placement can be used to obtain 

2 2 210 10.2 9.14 4.1 10 5.36 10
T

LTK  =     (30) 

For (27) and (28), we use a polytopic description of the 

descriptors using the compact state region x  (3). For (27), 

with ( )  2cos ,1q v , ( )( )2
ˆsin ,i i i iq     +    ,  1, 2i  , 

it corresponds to 

( )

( ) ( ) ( )

2

2

1

2 2

1 2

1 1 2

0

0

ˆ ˆ, ,
0

Ri

i R

i

ij R

i R R j R R R R

i j

E
v q

I

H B
w x x w x x K C

J





=

= =

 
= 

 

  
−   

  





(31) 

with ( )
( )

( )2

1 2 2 2

1 cos
1

1

q
v q v q

v

−
= = −

−
 ( )2

ˆ1 ,i R Rw x x− =   

( )
( )( )2

1

ˆsin
ˆ,

i i i

i R R

i i

q

w x x

  

 

− +

=
−

. From (31), we use the 

result of [7] for observation of descriptor systems.  

Theorem 2 [7]: Consider a descriptor model 

,v h h hE x A x B u y C x= + =  (32) 

together with the observer: 

  ( )1 1

3 4 2

0
ˆ ˆ ˆ

ˆ ˆ

T

hv

v h h v

h h hv

h

P K
E x A x B u E I y y

P P K

y C x

−    
 = + + −   
    


=

 (33) 

If there exist 1 1 0TP P=  , 3 jP , 4 jP , 1 jkK , 2 jkK ,  1j r

and  1 ek r , such that conditions in (33) holds with 

( ) ( )

( )
3 1

4 2 1 3 4

* *
.

*

 − +
 =  

− + − − +  

T

j i jk ik

ij T T T

j i jk i k j j k

P A K C

P A K C P E P P E
 (34) 

Then, the estimation error is asymptotically stable.  

 

The LMI problem (34) applied to (31) gives an observer 

solution in the whole state compact set x , defined in (3): 

3 3 3 3

11 3 3 3 3

3 3 3 4

12 3 3 4

4 3 4 3

21

158 45 51 11.8 9 7 8

13.2 117.3 9.91 12.2 5 5 9 9

91.2 14.9 19.2 5.3 7 9 2

81 122.4 6.2 0.7 9 4.1 9.2 7

47.3 8.1 0.41 0.09 4 5 4

2.7 21.3 0.0

T

T

T

e e e
K

e e e e

e e e e
K

e e e

e e e e
K

− − − −

− − − −

− − − −

− − −

− − − −

 − −
=  

− − − 

 − −
=  

− − − − 

− − −
=

− 2 3 3 4

3 4 3 4 3

22 3 3 2

9 0.16 5.7 8 4 3

13.4 5.8 0.07 5.2 6 9.4

4.7 11.5 1.16 0.09 8 2 7.8 0.12

T

e e e e

e e e e e
K

e e e

− − − −

− − − − −

− − −

 
 

− − 

 − −
=  

− − − 

 (35) 

Therefore, gains (30) for ˆ
T , (35) for ˆ

AR  and its equivalent 

for the left arm ˆ
LR  ensure that , , 0T R L t

e  
→

⎯⎯⎯→ . 

V. ILLUSTRATIVE RESULTS 

The first validations are done in simulation as the 

unmeasurable inputs (torques) are perfectly known and can 

therefore, validate the approach. To leverage the T2A model, 

all the results presented consider asymmetric upper limbs 

movements.  

A. Simulation results 

Additionally, to be close to the real experiments (described in 

the next section) we simulate a disturbance on the back. It 

corresponds to a sinusoidal signal with a frequency of 10Hz 

added to the angular speed of the trunk between times 2.8s 

and 5.8s. The methodology has been intensively tested in 

simulation with various parameters representing different SCI 

people and behaviors. In order to illustrate the results, we just 

present Fig. 5 one of the trials. The torque signals of the upper 

limbs are given, simulated in black, estimated in red.  

 
Fig. 5.  Estimated torques at left and right shoulder and elbow levels by 

T2A observers. 

B.  Experimental data results 

A set of experimental tests on 26 subjects with SCI were 

carried out in Montreal. Ethical approval has been obtained 

from the Research Ethics Committee of the Centre for 

Interdisciplinary Research in Rehabilitation of Greater 

Montreal (CRIR-1083-0515R). The participants read and 

signed the informed consent form prior to initiating the 
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measurements. The experiments consist in a person with SCI 

starting in a sitting position with the upper limbs flexed to 90°. 

Then a destabilizing force is applied at the level of the 3rd 

thoracic vertebra between the scapulae [8], it can be seen after 

2s on Fig 6. The participant has to maintain his/her stability, 

and to recover the flexed position at 90°.  

 

Fig. 6.  Estimated upper limbs torques. 

Fig. 6 shows the estimated right and left active torques at the 

shoulder (top) and the elbow (bottom). It shows clearly the 

dissymmetrical behavior on the upper limbs. Fig. 7 also gives 

the estimated passive torque at the trunk level according to the 

relation 0
ˆ ˆ ˆ

U c =  −  . 

 
Fig. 7.  Estimated trunk torque. 

The active torques of the upper limbs have minimal variation 

from the start of the acquisition to the disturbance application, 

When the destabilizing force is applied, the active torques 

rapidly adjust to counter it. After, as the subject regains seated 

balance, the active torques gradually decrease. The 

effectiveness of postural control in a seated position becomes 

evident through the subject's corrective stabilization 

movements. In particular, the asymmetry in the active torques 

of the shoulders and elbows justifies the utilization of an 

observer based on the T2A model. 

VI. CONCLUSIONS 

A nonlinear observer method is presented to reconstruct the 

internal variables of SCI patients, especially the joint torques. 

The observer design is based on the improved biomechanical 

T2A model, taking into account the flexion and extension 

movements of the right and left arms in an asymmetrical 

manner. Due to the involved numerical complexities of the 

observer design, the T2A model is rewritten in the form of a 

cascade of three subsystems: trunk, left arm and right arm. 

Then, an PI observer is developed for each subsystem. Via 

Lyapunov stability theory, the estimation convergence of the 

cascaded observer is guaranteed and the observer design is 

expressed in terms of LMI constraints. Both numerical 

simulations and data-based validations are performed to show 

the effectiveness of the proposed cascade observer design 

method. Future works focus on nonlinear observer design 

based on biomechanical models, considering the 3D 

movements of SCI patients. 
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