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Abstract— We consider the problem of estimating the states
of a continuous-time nonlinear dynamical system, where a
subset of sensors can be maliciously corrupted using a po-
tentially unbounded additive signal. The proposed estimation
scheme employs a bank of observers which are robust with
respect to disturbances and attacks, in conjunction with median
operation to build the state estimate. The median operation is
the key ingredient which guarantees that the state estimate
is constructed using sensor(s) which are not under attack. A
standing assumption in this scheme is that the system has to be
observable from each sensor. We provide a constructive design
method for the state observers for a class of nonlinear systems
and illustrate the efficacy of the resilient median-based state
estimation scheme using real data on an inverter-based power
distribution network.

I. INTRODUCTION

Cyber-physical systems (CPS) permeates multiple facets
of the industry and our day-to-day life. Thus, the security of
CPS has gained increasing interest over the last years [1].
Due to the integrated cyber- and physical dynamical nature
of CPS, these systems are especially vulnerable to cyber-
attacks ([2], [3]). Examples of CPS are critical infrastructure,
like power grids [4]. Therefore, it is imperative that different
mitigation strategies to minimize the impact of a possible
attack and/or to reduce the likelihood of such attacks have
been proposed, of which an overview is given by [5].

A popular point of attack has been the sensors and
mitigation strategies have been widely studied. A common
approach is to use the redundancy of sensing information.
When less than half of the system’s sensors are attacked, an
accurate reconstruction of a system can be possible [6]. This
has been shown for continuous LTI systems [7], discrete LTI
systems [8], and for nonlinear systems [9], [10], to name a
few.

We introduce a resilient state estimation method using a
median operation for a class of nonlinear systems against
malicious attacks on sensors. It is assumed that a nonlinear
dynamical system has N sensors, of which at most M
are compromised. The goal of the resilient state estimation
method is to correctly estimate the true state of the system,
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given that it is unknown which sensors have been com-
promised. To do so, observers use a median operation to
construct the correct state estimate. This method has been
employed for linear [11] and linear distributed systems [12]
in earlier works. However, it has not been used for nonlinear
systems. Assuming that the plant is observable from each
sensor, the median based method proposed for nonlinear
systems has an advantage that it is computationally favorable
compared to existing results employing multiple observers
(c.f. the methods in [10] and [9]) as it employs only N
observers, where N is the number of sensors present in the
system.

In this paper, we employ a multiple observer architecture
in constructing our state estimate, see Figure 1. Under the
assumption that the system with N sensors is observable via
each sensor, we design an observer using data from each
sensor which is robust with respect to system disturbances.
We perform a median operation in building our state esti-
mate. We show that this design is constructive on Lur’e sys-
tems with slope-restricted and bounded nonlinearities. The
robustness property imposed on each state observer in our
framework is constructive, as existing observer designs such
as in [13], [14], possess this property. Its design is formulated
in the form of a linear matrix inequality. Finally, we apply the
proposed median-based resilient state estimation algorithm
to a model of an inverter-based power distribution network
and verified our algorithm with benchmark data from a low
voltage power distribution network of a residential zone.

Fig. 1. Configuration of the proposed resilient state estimation.

The contributions of this paper are:
• A resilient state estimator using the median operation

for nonlinear systems which are observable via every
output. When strictly less than half of the sensors have
been compromised, the estimation error is independent
of the additive sensor attack.

• A constructive design for Lur’e-like systems.
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• The efficacy of the algorithm is verified with benchmark
residential data of a power distribution network.

The paper is structured as follows. In Section II, we
formulate the problem and introduce the preliminaries used
in building the resilient state estimator in Section III. We
then show that our framework is constructive on a class
of nonlinear systems in Section IV. The efficacy of the
algorithm is then illustrated on a smart grid network in
Section V and we validated the algorithm on real data in
Section VI. Lastly, Section VII concludes the paper. All
proofs are provided in the appendix.

Notation:
• Let R = (−∞,∞), R≥0 = [0,∞), R>0 = (0,∞). The

set of integers {i, i + 1, i + 2, ..., i + k} is denoted by
N[i,i+k].

• Let (u, v), where u ∈ Rnu and v ∈ Rnv , denote the
column vector (uT , vT )T .

• The cardinality of a set J is denoted as |J |.
• The identity matrix of dimension n is denoted by In

and a matrix of dimension m by n with all elements 1
is denoted by 1m×n.

• A diagonal matrix with elements ei, i ∈ N[1,n] is
denoted by diag(e1, e2, ..., en).

• Given a symmetric matrix P , its maximum (minimum)
eigenvalue is denoted by λmax(P ) (λmin(P )).

• The infinity norm of a vector x ∈ Rn, is denoted by
|x| := max

i∈N[1,n]

|xi|, and for a matrix A ∈ Rn×n, we

define |A| := max
i∈N[1,n]

∑
j∈N[1,n]

|aij |, where aij is the i-th

row and j-th column element of matrix A.
• A continuous function α : R≥0 → R≥0 is a class

K function, if it is strictly increasing and α(0) = 0;
additionally, if α(r) → ∞ as r → ∞, then α is a class
K∞ function.

• A continuous function β : R≥0 × R≥0 → R≥0 is a
class KL function, if: (i) β(., s) is a class K function
for each s ≥ 0; (ii) β(r, .) is non-increasing and (iii)
β(r, s) → 0 as s→ ∞ for each r ≥ 0.

II. PROBLEM FORMULATION

We consider the following nonlinear system with N sen-
sors in the presence of disturbances d and sensor attacks ai.

ẋ = f(x, z, w, d), z = (z1, z2, ..., zN ),

zi = hi(x,w, d), i ∈ N[1,N ],

yi = zi + ai,

(1)

where x ∈ Rnx is the state, yi ∈ Rni is the measured
output at the i-th sensor, w ∈ Rnu is a measured input,
d ∈ Rnu is the system disturbance, f and hi are locally
Lipschitz functions and ai : R≥0 → Rni is a possibly
unbounded attack signal that cannot be measured. We assume
the following about the sensor attack model.

Assumption 1: Sensors i ∈ N[1,N ] which are not under
attack satisfy ai(t) = 0, for all t ∈ R≥0. The index set
I ⊆ N[1,N ] of attacked sensors is unknown and remains
constant, i.e., the attack vector a = (a1, a2, ..., aN ) ∈ NI ,

where NI := {(a1, a2, ..., aN ) : ai(t) = 0, ∀t ∈ R≥0, ∀i /∈
I}. □

The objective of this paper is to estimate the states x of
system (1) under Assumption 1.

We will build upon the multiple observer approach to-
wards resilient state estimation proposed in [9]. The main
contribution of this paper is in employing the median-based
operation in building our state estimate from the estimates
provided by multiple observers, which we will present in the
next section.

III. RESILIENT MEDIAN-BASED MULTI-OBSERVER

We first describe the median operation. The median of
N values y1, y2, ..., yN , denoted by med(y1, y2, ..., yN ) is
defined by the ((N + 1)/2)th largest value of y1, y2, ..., yN
if N is odd, and defined by the average of the (N/2)th and
the (N/2+ 1)th largest values of y1, y2, ..., yN if N is even.
In the context of system (1), suppose there are N sensors
measuring the same uncompromised sensor value y0. Then,
as long as N > 2M , where M is the number of compromised
sensors, the median value of all estimates is equal to y0, i.e.,

med(y1, y2, ..., yN ) = y0. (2)

This holds regardless of the values of ai. This intriguing
property of the median-based operation is used to choose
an observer which receives attack-free sensor outputs. We
assume that the system (1) is observable from each sensor
as follows.

Assumption 2: There exists a function f̂ : Rnx × Rni ×
Rni → Rnx such that the solution to

˙̂xi = f̂(x̂i, yi, w), i ∈ N[1,N ], (3)

and the solution to system (1), respectively satisfy∣∣x(t)− x̂i(t)
∣∣ ≤β̂ (∣∣x(0)− x̂i(0)

∣∣ , t)
+ ζ̂

(
sup

s∈[0,t)

|d(s)|

)
+ γ̂

(
sup

s∈[0,t)

|ai(s)|

)
,

(4)

for all t ∈ R≥0 and initial conditions x(0), x̂i(0) ∈ Rnx ,
where β̂ is a KL function and ζ̂ and γ̂ are K∞ function. □

Assumption 2 requires the system (1) to be observable
via each sensor yi and condition (4) is an ISS (input-to-state
stability) property of the estimation error system x− x̂i with
respect to the system disturbance d and the attack vector ai.
We employ the median operation to build a state estimate,
which is defined as follows.

x̂ = (x̂1, x̂2, ..., x̂nx),

x̂j = med(x̂1j , x̂
2
j , ..., x̂

N
j ), j ∈ N[1,nx].

(5)

The multiple observer architecture using the median opera-
tion (5) is summarized in Fig. 1. With this framework, we
guarantee that the state estimate converges to the true state
up to a margin of error depending on the disturbance d, as
follows.

Theorem 1: Consider the system (1) under Assumptions 1
and 2, with N outputs of which at most M are compromised,
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i.e. the attack vector a belongs to NI , for some set I ⊂
N[1,N ] where |I| ≤ M . Suppose N > 2M , then there exist
a class KL function βm and a class K∞ function ζm such
that the solution to system (1) and the median-based observer
(3), (5) satisfy

|x(t)− x̂(t)| ≤ βm (|x(0)− x̂(0)| , t)

+ ζm

(
sup

s∈[0,t)

|d(s)|

)
, ∀t ∈ R≥0, (6)

for any initial conditions x(0), x̂i(0) ∈ Rnx and system
disturbance d. □

Theorem 1 proves the existence of resilient observers.
Next, we provide a constructive design methodology for a
large class of systems, which include models of intercon-
nected power inverters.

IV. CONSTRUCTIVE DESIGN FOR LUR’E-LIKE SYSTEM

Consider the following Lur’e-like system, which is a
specific form of (1):

ẋ = Ax+ ϕ(z), ϕ(z) = (ϕ1(z1), ϕ2(z2), ..., ϕN (zN )),

zi = Hix+ wi + di, i ∈ N[1,N ],

yi = zi + ai, (7)

where the nonlinearities ϕi : Rni → R are slope-restricted
as follows.

Assumption 3: For i ∈ N[1,N ], the nonlinearity ϕi satisfies

ei ≤
ϕi(ξ)− ϕi(ψ)

ξ − ψ
≤ ēi, ∀ξ, ψ ∈ R, ξ ̸= ψ. (8)

For this class of nonlinear systems (7), the condition of
Assumption 2 is satisfied by designing each observer using
each sensor yi in the following manner:

˙̂xi = Ax̂i + ϕ(ξi) + Li(yi − (Hix̂
i + wi)),

ξi = Hx̂i + w +Ki(yi − (Hix̂
i + wi)),

(9)

where Li and Ki are the observer matrices to be designed
according to the sufficient condition in Proposition 1. Note
that the terms Hx̂i and w use the full H from system (7)
and all known inputs w, respectively.

Proposition 1: Consider the system (7) under Assump-
tion 3 and observers (9). If for N > 2M and, for every
i ∈ N[1,N ], there exist a matrix Pi = PT

i > 0, a positive
definite matrix Ui = diag(u1, ..., uN ), scalars νi ≥ 0,
µi,d ≥ 0, µi,a ≥ 0 and observer matrices Li and Ki such
that the following is satisfied[

A
(
Pi, PiLi, νi

)
B

(
Pi, Ui,K

T
i Ui

)
Pi −Pi

B
(
Pi, Ui,K

T
i Ui

)T D(Ui, ē) 0 0

Pi 0 M(µi,d) 0

−Pi 0 0 N(µi,a)

]
≤ 0

(10)
where

A (Pi, PiLi, νi) := Pi(A−LiHi) + (A−LiHi)
TPi + νiInx

,

B
(
Pi, Ui,K

T
i Ui

)
:= Pi + (H −KiHi)

TUi,

D(Ui, ē) := −2Uidiag(ē−1
1 , ..., ē−1

N ),

M(µi,d) := −µi,dIni ,

N (µi,a) := −µi,aIni .

Then the observation error x − x̂i for every i ∈ N[1,N ]

satisfies Assumption 2. □

The inequality in (10) is linear in Pi, PiLi, νi, Ui, KT
i Ui,

µi,d and µi,a and hence, can be solved numerically using
MATLAB’s LMI Lab, for example. To minimize the effect
of the system disturbance d on the observation error x− x̂i
of each observer i, we aim to minimize the parameter µi,d

subject to (10) for each i ∈ N[1,N ].

Remark 1: The LMI-based observer design presented in
Proposition 1 follows the same ideas in [9] to obtain robust-
ness with respect to system disturbances d, in addition to the
attack signal ai.

V. RESILIENT STATE ESTIMATION FOR AN
INVERTER-BASED POWER DISTRIBUTION NETWORK

We consider an inverter-based power distribution network
in a line configuration as shown in Fig. 2. The network
consists of N customers that each have an inverter, which is
connected to the distribution network, and a smart secondary
substation at the head of the line. The substation functions
as a monitoring center, it communicates a desired nominal
reference voltage v̄ ∈ R to each inverter containing the local
controller Σi, which is able to generate reactive power qg,i
while producing an active power ρg,i. As such, the voltages
received by the customers vi are regulated to operate in a
safe margin, i.e. for a given δ > 0, v̄ − δ ≤ vi(t) ≤ v̄ + δ,
for all t ∈ R≥0.

The voltage level at the connection point between the
customer and the distribution line is v′i, with line impedances
Z ′
i = R′

i + jX ′
i between the customer i and the distribution

line, and line impedances Zi = Ri + jXi in between the
connection points on the distribution line.

The power flow in the distribution network consists of Pi

and Qi which are the total active and reactive powers flowing
from node i to node i+ 1, respectively; ρi := ρg,i − ρc,i is
the net injected active power into the distribution line from
customer i; qi := qg,i − qc,i, where qg,i is the net injected
generated reactive power and qc,i the consumed reactive
power from customer i, respectively. We model the power
flow with a linearized DistFlow model [15].

The local controller Σi actuated by the inverter is able to
generate reactive power qg,i at each customer i as follows

q̇g,i = − 1

τi
qg,i +

1

τi
Ψi(v̄

2 − v2i ), (11)

where τi > 0 is the time constant of the inverter’s response,
v̄ ∈ R is the reference voltage and the droop function
Ψi : R → R is a static mapping from the difference of
the squared voltages w to the set-point for the reactive
power. The droop function Ψi(w) is chosen to be a piecewise
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Fig. 2. Infrastructure of the low-voltage distribution grid.

saturation function considered in [16] of the following form:

Ψi(w) :=



−Q̄i, w ≤ wmin,i

−
(
1− w−wmin,i

wm,i−wmin,i

)
Q̄i w ∈ (wmin,i, wm,i]

0, w ∈ (wm,i, wn,i](
w−wn

wmax,i−wn,i

)
Q̄i w ∈ (wn,i, wmax,i]

Q̄i, w > wmax,i,
(12)

where wmin,i ≤ wm,i ≤ 0 ≤ wn,i ≤ wmax,i are design
parameters, Q̄i ∈ R≥0 is the saturation limit of the i-
th inverter, satisfying Q̄i =

√
s̄2i − ρ2g,i. Here, s̄i ∈ R

is the maximum apparent power of the i-th inverter. The
design parameters wmin,i, wm,i, wn,i, wmax,i are chosen

such that ēi := min

{
Q̄i

wmax,i−wn,i
, Q̄i

wm,i−wmin,i

}
satisfies

[17, Theorem 6].
We consider the scenario where the measurements of

the voltages vi received at the substation may possibly be
corrupted. This corruption is modelled using an additive
attack signal αi : R≥0 → R, which is possibly unbounded,
as described by

yi = vi + αi. (13)

We employ the same change in state coordinates as done
by [17] such that the linearized DisFlow model from [15],
controllers (11), and measurements received at the monitor-
ing center (13) can be written in the form of (7) by choosing:

• x = (qg,1, qg,2, ..., qg,N )

• zi := v̄2 − v2i
• the known input wi = ϕi(ρ, qc) + v̄2 − v′

2
0, where

ϕi (ρ, qc) :=
∑

j∈N[0,i−1]

ψj (ρ, qc)

+
∑

j∈N[0,i−2]

2β′
j (ρj+1, qc,j+1) ,

ψj (ρ, qc) := 2Xj

∑
k∈N[j+1,N]

qc,k − 2Rj

∑
k∈N[j+1,N]

ρk

−2β′
j (ρj+1, qc,j+1) ,

where β′
i(r, s) := R′

ir + X ′
is, with β′

−1(r, s) = 0 for
all r, s ∈ R,

• the attack signal ai = 2viαi − α2
i , where αi is the

additive attack signal from (13),
• Hi from (7) form the rows of the matrix

H = −2


X0 X0 . . . X0

X0 X0 +X1 . . . X0 +X1

...
...

. . .
...

X0 X0 +X1 . . .
∑

i∈N[0,N−1]
Xi


−2diag(X ′

0, ..., X
′
N−1),

• A = diag(−1/τ1,−1/τ2, ...,−1/τN ), and
• ϕi(zi) = τ−1

i Ψi(zi), which satisfies Assumption 3, with
ei = 0 and ēi = ei/τi.

In order to estimate the voltages vi at customer i, first the
states x of all the controllers Σi, i ∈ N[1,N ] are estimated,
after which the voltages vi are estimated using

v̂2i (t) = Hix̂(t)− ψi(ρ, qc) + v′
2
0, (14)

where x̂ is the state estimate provided by the secure estima-
tion algorithm, ψi and v′0

2 are known inputs. We now have
the following bound on the error between the estimated v̂i
and true voltages vi.

Proposition 2: Consider the linearized Distflow model,
controllers (11) with measurements (13), where α belongs
to NI for some unknown set I ⊂ N[1,N ] with at most
M elements, received by the substation and the estimated
voltages (14) at the substation. Suppose N > 2M and for
every i ∈ N[1,N ], there exist a matrix Pi = PT

i > 0,
a positive definite matrix Ui = diag(u1, ..., uN ), scalars
νi ≥ 0, µi,d ≥ 0, µi,a ≥ 0 and observer matrices Li and
Ki such that (10) holds. Then, we have the following error
bound on the resilient state estimator

|vi(t)2 − v̂i(t)
2| ≤ βv (|x(0)− x̂(0)| , t)

+ ζv

(
sup

s∈[0,t)

|d(s)|

)
, ∀t ∈ R≥0, (15)

for all i ∈ N[1,N ], initial conditions qg,i(0) ∈ R,
where x(0) = (qg,1(0), qg,2(0), . . . , qg,N (0)), x̂(0) =
(q̂g,1(0), q̂g,2(0), . . . , q̂g,N (0)), βv is a class KL function,
and ζv is a class K∞ function. □

In particular, Proposition 2 shows that if there are no
disturbances, d ≡ 0, the estimates converge to the true values.

VI. VALIDATION ON A BENCHMARK MODEL

A. Load data
To validate the resilient state estimation method, a sim-

ulation of a benchmark residential European low-voltage
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distribution network is performed [18, Table 7.26] with the
model parameters in Table II. The residential subnetwork has
N = 5 customers and is in a line configuration as shown in
Fig. 2 with the mapping of the nodes in Table I.

TABLE I
MAPPING OF NODES FROM THE BENCHMARK TOPOLOGY TO OUR

TOPOLOGY

Node label
Benchmark topology

[18, Fig. 7.7] Our topology
R1 v′0
R3 v′1
R11 v1
R4 v′2
R15 v2
R6 v′3
R16 v3
R9 v′4
R17 v4
R10 v′5
R18 v5

TABLE II
GRID PARAMETERS FROM TABLE 7.26 IN [18]

i 1 2 3 4 5
Ri−1[Ω] 0.00343 0.00172 0.00343 0.00515 0.00172
Xi−1[Ω] 0.04711 0.02356 0.04711 0.07067 0.02356
R′

i−1[Ω] 0.00147 0.00662 0.00147 0.00147 0.00147
X′

i−1[Ω] 0.02157 0.09707 0.02157 0.02157 0.02157
τi [s] 1 1 1 1 1

ρg,i [W] 3500 5500 4000 4500 3000
ρc,i [W] 2295 5440 5440 2295 2720
qc,i [VAr] 300 960 480 600 400

The setpoint voltage comminucated to each customer is
v̄ = 230 V, and the nominal voltage at the head of the
line v0(t) = 230 + 5 sin t V is a given function of time, to
model harmonic perturbations. Due to the physical properties
of power generation, the maximal reactive power generated
satisfies the constraint Q̄i =

√
s̄2i − ρ2g,i, where s̄i is a

property of inverter i, such that we obtain[
Q̄1 Q̄2 Q̄3 Q̄4 Q̄5

]
=
[
2321.6 3464.1 2467.8 2800 1999

]
VAr

Considering the continuous droop function (12) and ini-
tializing the droop control law (11) at qg,i = 0 VAr for
i ∈ N[1,5], then, according to [17, Theorem 6] and the
model parameters in Table II, we obtain R̄ = 0.0052 Ω,
R̄′ = 0.0066Ω, X̄ = 0.0707Ω, X̄ ′ = 0.0971Ω, which leads
to ϵy = 2325 V2, ∆ρ = 2205 W, and ∆c = 627.04 VAr.
Further, we choose ēi = ē for i∈ N[1,N ] where ē := 0.2 A

V ,
which is achieved by setting wn,i = −wm,i = 0 V2 and
wmax,i = −wmin,i = 17320.5 V2 for all i ∈ N[1,5].

B. Conventional state estimation

The resilient state estimation algorithm proposed in this
paper is compared to a conventional (non-resilient) state

estimator as follows
˙̂x = Ax̂+ ϕ(ξ) + L(y − (Hx̂+ w)),

ξ = Hx̂+ w +K(y − (Hx̂+ w)),
(16)

where w ∈ Rnu is a known input, and the observer matrices
K and L are designed according to Proposition 1 with ap-
propriate modification to the dimensions of the matrices. The
main difference between a conventional non-resilient state
estimator compared to the proposed resilient state estimation
algorithm is in the number of sensor data that is being
employed by the observer(s) in the respective algorithms.
The conventional non-resilient state estimator employs the
data from all sensors. This is in contrast to the resilient
state estimation algorithm proposed in this paper, where each
observer uses the data of only one sensor, and the algorithm
then decides which sensors to use.

C. Results

To efficiently compare the performance of the conventional
state estimator and the proposed resilient state estimator, the
squared voltage estimation error ṽ2i (t) = v2i (t) − v̂2i (t) is
evaluated for both estimators. The results are shown in Fig. 3.

0 5 10 15 20 25 30

0

1

2

0 5 10 15 20 25 30

0

1

2

3

0 5 10 15 20 25 30

0

2

4

0 5 10 15 20 25 30

0

2

4

6

0 5 10 15 20 25 30

0

2

4

6

Conventional state observer Median-based observer

Fig. 3. The squared voltage estimation error ṽ2i (t) = v2i (t) − v̂2i (t) for
a conventional non-resilient state estimator and the proposed resilient state
estimator with a1(t) = a4(t) = 30 V ∀t ≥ 10.5 s and a random system
disturbance with |d(t)| ≤ |dmax| = 6 V.

We launch sensor attacks on sensors 1 and 4 with a1(t) =
a4(t) = 30 V, for all t ≥ 10.5 s. Hence, we have M = 2,
and 2M < N = 5. We see that the resilient state estimation
method outperforms the conventional state estimator. The
squared voltage estimation error is small for the resilient state
estimator, since the median operation excludes corrupted
sensor data. The conventional non-resilient state estimator
shows a jump in the squared voltage estimation error for
t ≥ 10.5 s as expected since it employs corrupted sensor
data. It is interesting to note that all estimates show a jump
even though only two sensors are corrupted. Hence, the
non-resilient state estimator is sensitive to a few corrupted
sensors.
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VII. CONCLUSION AND FUTURE WORK

We have proposed a resilient state estimation for contin-
uous nonlinear systems with N outputs under adversarial
sensor attacks using a multiple observer setup in lieu with
a median operation to construct the state estimates. We
require the system to be observable via each sensor (output)
such that a robust observer employing each sensor can be
constructed. Moreover, strictly less than half of the sensors
can be compromised. The main feature that distinguishes
the resilient algorithm proposed in this paper with existing
works is the usage of a median operation in constructing
each component of the state estimate from the state estimates
provided by the bank of observers. We then applied the
framework to a class of nonlinear systems and validated our
results on an inverter-based power distribution network. In
the future, we are interested in moving from a centralized to
a distributed setup.
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APPENDIX

A. Proof of Theorem 1

Since Assumption 2 hold, there exist a class KL function
βi
m and class K∞ functions ζim and γim such that the solution

to system (1) for every i ∈ N[1,N ] satisfies∣∣x(t)− x̂i(t)
∣∣ ≤ βi

m (|x(0)− x̂J (0)| , t)

+ ζim

(
sup

s∈[0,t)

|d(s)|

)
+ γim

(
sup

s∈[0,t)

|ai(s)|

)
. (17)

In the case that ai /∈ NI , we simplify (17) to:

|x(t)− x̂i(t)| ≤ ϵi, (18)

where the state estimation error is bounded by some upper
bound ϵi, since ai(t) = 0 for all t ∈ R≥0 and d is bounded.
When using the median operation as presented in (5), it
follows that for the final state estimate picked by the median
operation,

|x(t)− med(x̂1, ..., x̂N )| = |x(t)− x̂(t)| ≤ ϵ, (19)

where ϵ := maxi∈N[1,N]
ϵi. In the case that ai ∈ NI ,

|x(t)− x̂i(t)| > ϵi. (20)

Let us, for a moment, consider the situation in which the
median would contain an attack signal, then

|x(t)− x̂(t)| > ϵ. (21)

For this to hold true, per definition of the median, |I| ≥
N/2−1+1 = N/2, or M ≥ N/2, which violates our stand-
ing assumption. Thus, for N > 2M , med(x̂1, x̂2, ..., x̂N ) =
x̂0, where x̂0 is the attack-free value of the state estimate.

Now, we can rewrite (17) as

|x(t)− x̂(t)| ≤ βm
(∣∣x(0)− x̂i(0)

∣∣ , t)
+ ζm

(
sup

s∈[0,t)

|d(s)|

)
, (22)

where βm := max
i∈N[1,N]

βi
m is a class KL function and ζm :=

max
i∈N[1,N]

ζim is a class K∞ function. This concludes the proof.

3068



B. Proof of Proposition 1
Let the state estimation error be denoted by x̃i := x− x̂i

for every i ∈ N[1,N ]. Then, the state estimation error system
is

˙̃xi = (A− LiH
i)x̃i + ϕ(z)− ϕ(ξi)− Li(di + ai). (23)

The nonlinearity ϕ satisfies Assumption 3, which leads to the
conclusion that there exists a εi(t) ∈ [ei, ēi], for i ∈ N[1,N ]

such that
ϕ(z)− ϕ(ξi) = ε(t)(z − ξi)

= ε(t)ηi + ε(t)d− ε(t)Kidi − ε(t)Kiai
(24)

where ε(t) = diag(ε1(t), ε2(t), ..., εN (t))and ηi := (H −
KiHi)x̃

i. Then,
˙̃xi =(A− LiHi)x̃

i + ε(t)ηi + ε(t)d

− (ε(t)Ki + Li)di − (ε(t)Ki + Li)ai.
(25)

To show that the state estimation error system (25) satisfies
(4), we show that the time derivative of the candidate
Lyapunov function Vi(x̃i) = (x̃i)TPix̃

i along the trajectories
of the state estimation error system (25) is Vi(x̃i) < 0. It is
equal to V̇i(x̃i) = ( ˙̃xi)TPix̃

i+(x̃i)TPi
˙̃xi, or in matrix form:

V̇ (x̃J ) = χT
i


ÃT

i Pi + PiÃi Pi Pi −Pi

Pi 0 0 0
Pi 0 0 0
−Pi 0 0 0

χi, (26)

where χi := (x̃i, ε(t)ηi, ε(t)d− (ε(t)Ki + Li)di
−(ε(t)Ki + Li)ai), Pi = PT

i > 0 satisfies (10), and Ãi :=
A− LiHi.

Now, applying (10), the following is obtained

V̇ (x̃i) ≤ −ν|x̃i|2 − 2(ηi)TUiε(t)η
i + µi,dε(t)

2|d|2
+2(ηi)T ε(t)2Uidiag(ē−1

1 , . . . , ē−1
N )ηi

+µi,d|ε(t)Ki + Li|2 |di|2
+µi,a|ε(t)Ki + Li|2 |ai|2.

(27)
By examining the second and fourth term of the right hand
side of the inequality component-by-component, it becomes
apparent that for i ∈ N[1,N ], εi− ε2i /ēi = εi(1− εi/ēi) ≥ 0,
as εi(t) > 0 and 1 − εi(t)/ēi ≥ 0, due to εi ∈ [ei, ēi].
Next to that, since Ui is positive definite and a diagonal
matrix, we have that ui > 0. Therefore, −2(ηi)TUiε(t)η

i +
+2(ηi)T ε(t)2Uidiag(ē−1

1 , . . . , ē−1
N )ηi ≤ 0 and we obtain

V̇ (x̃i) ≤ −ν|x̃i|2+µi,dε(t)
2|d|2+µi,d|ε(t)Ki+Li|2 |di|2

+ µi,a|ε(t)Ki + Li|2 |ai|2. (28)

Since |di|2 ≤ |d|2,

V̇ (x̃i) ≤ −ν|x̃i|2 + µi,d(ε(t)
2 − |ε(t)Ki + Li|2) |d|2

+ µi,a|ε(t)Ki + Li|2 |ai|2. (29)

Recall that εi(t) ∈ [ei, ēi]. Using Young’s inequality, the
derivative is bounded by

V̇ (x̃i) ≤ −ν|x̃i|2 + µ1i,d(ē
2 + 2ē2|Ki|2 + 2|Li|2)|d|2

+ µi,a(2ē
2|Ki|2 + 2|Li|2)|ai|2. (30)

where ē = max{ē1, ē2, ..., ēN}. Note that Vi(x̃i) can be
sandwiched as follows

λmin(P )|x̃i|2 ≤ Vi(x̃
i) ≤ λmax(P )|x̃i|2, (31)

and that using this in combination with the comparison
principle, leads to the following from (30).

V (x̃i(t)) ≤ e−λitV (x̃i(0)) + δi

∫ t

0

e−λi(t−s)|d(s)|2ds

+ αi

∫ t

0

e−λi(t−s)|ai(s)|2ds, (32)

where λi = νi

λmax(Pi)
, δi =

µi,d

λmax(Pi)
(ē2+2ē2|Ki|2+2|Li|2)

and αi = 2
µi,a

λmax(Pi)
(ē2|Ki|2 + |Li|2).

Since
∫ t

0
e−λi(t−s)ds = (1−e−λit)/λi ≤ 1/λi, we obtain

V (x̃i) ≤ e−λitV (x̃i(0)) +
δi
λi

(
sup

s∈[0,t)

|d(s)|2
)

+
αi

λi

(
sup

s∈[0,t)

|ai(s)|2
)
. (33)

Now (31) is re-applied to (33), to obtain∣∣x(t)− x̂i(t)
∣∣ ≤ β̂

(∣∣x(0)− x̂i(0)
∣∣ , t)

+ ζ̂

(
sup

s∈[0,t)

|d(s)|

)
+ γ̂

(
sup

s∈[0,t)

|ai(s)|

)
.

(34)

where

β̂(r, t) =

√
λmax(Pi)

λmin(Pi)
e−

λi
2 tr, ζ̂(r) =

√
δi

λiλmin(Pi)
r,

γ̂(r) =

√
αi

λiλmin(Pi)
r,

(35)

and we note that β̂ is a KL function; ζ̂ and γ̂ are K∞
functions, which concludes the proof.

C. Proof of Proposition 2

From the linear DistFlow model, (11), (13) and (14), it
follows that for i ∈ N[1,N ] and t ∈ R≥0,

|v2i (t)− v̂2i (t)| ≤ |Hi||x(t)− x̂(t)|,
≤ |Hi|βe (|x(0)− x̂(0)| , t)

+ |Hi|ζe

(
sup

s∈[0,t)

|d(s)|

)
,

(36)

where the second inequality is obtained according to
Proposition 1 with a class KL function βe and class K∞
function ζe. Hence, we obtain βv(r, t) = |Hi|βe(r, t) and
ζv(r, t) = |Hi|ζe(r, t), which are class KL and K∞ functions
respectively.
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