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Abstract— Electric grids with a high share of inverter-
interfaced power sources require novel control approaches like
the popular virtual synchronous machine (VSM) to ensure
stable operation. Such power systems are increasingly relying
on real time communications between individual machines to
achieve control objectives. Signals sent over a communication
network include power set points, configuration parameters
and machine health data. A novel damping mechanism for
VSMs, virtual friction (VF), makes use of this communication
infrastructure to provide damping for the machines with low
impact on the output powers of the inverters during frequency
deviations from the nominal. We investigate in this paper,
how this system can be secured when the communication
channels are compromised by malicious actors. We analyze a
microgrid with several VSMs employing VF in the presence of
manipulated signals, and a secure control scheme is proposed
that is able to maintain strong damping during attacks. The
efficacy of the proposed secure control scheme is validated using
a high fidelity simulation model.

I. INTRODUCTION

The increasing share of inverter-interfaced power sources
in electric grids requires such inverters to implement grid
support functions usually proper to synchronous generators.
A well known approach to provide such capabilities is the
virtual synchronous machine (VSM): an inverter controlled
by an algorithm that emulates inertia, frequency- and voltage-
droop similar to the characteristics of a synchronous genera-
tor [1]. In order to operate power systems with many VSMs
in a stable manner, damping methods have to be implemented
(e.g. PLL-damping, virtual damper windings, high frequency
droop) [2]. A more recent method is virtual friction (VF)
[3], [4], [5], a damping torque applied to the swing equation
of the VSM, acting in proportion to the deviation of the
virtual rotor frequency from the center of inertia (COI)-
frequency of the microgrid. The advantage of VF compared
to frequency droop is its lower impact on the output power
of the VSM, which is important for power sources where
the output power is regulated to yield a maximum amount
of energy from the connected primary energy source (e.g.
wind, sun). [6] indicates further that VF increases the region
of attraction of the stable operating point of a microgrid,
potentially improving system stability compared to other
damping methods.
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In this paper, we address the vulnerability of the communi-
cation channels between the VSMs and the central controller
(CC) with respect to cyber attacks. Possible scenarios for
such attacks are denial of service (DoS) attacks or false data
injection attacks, where the data sent over the communication
channels has been manipulated with malicious intent, see
[7] and the references therein. Of course, the communi-
cation channels themselves may be secured by encryption
or watermarking [8], [9]. However, these techniques require
high computational power at each VSM, which may not be
practical. We present here a redesign of the control algorithm
executed at the CC (centralized) and at each of the VSMs
(distributed) by implementing two mechanisms: (i) a central-
ized secure state estimator (adapted from [10]) in the CC to
mitigate the potentially manipulated measurements received
by the CC, and (ii) a distributed attack detector/corrector at
each VSM which uses only local data as a countermeasure
for potentially manipulated COI-frequencies.

The secure state estimator employs the architecture devel-
oped in [10], by choosing a state estimate from a bank of
robust observers. Due to the uncertainty of the grid parame-
ters, we need to design robust observers with state estimation
errors that remain bounded in the presence of parameter mis-
match. Moreover, we design the observer gain and parameter
matrices such that the estimated output (angular frequencies)
of a subset of the VSMs converges asymptotically to the
corruption free measured output (angular frequencies) of the
same subset of the VSMs. We hypothesize that this will be
the key in ensuring that the VSMs synchronize just as in
the nominal case presented in [4]. Crucially, we guarantee
that the state estimation error is independent of the false
data injection attack on the measured data, provided that
at least half of the communication channels have not been
compromised (the attacker has no access).

In addressing the potentially corrupted COI-frequency
received at each VSM, we are limited to using only local
data. Hence, we propose an attack detection/correction mech-
anism, that uses local data to estimate the COI-frequency.
This estimate is compared to the COI-frequency received
from the CC and a decision is made on whether the estimate
or the received COI-frequency is used to stabilize the grid.
We remark that existing methods, e.g. [11] are not applicable
as individual machines do not communicate with each other
and have no knowledge about the grid-architecture.

The contributions of this paper are:
1) A centralized secure state estimation algorithm which

is robust with respect to parameter uncertainty and
an estimation error that is independent of the additive
attacks on the measurements, when at least half of the
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communication channels are uncompromised.
2) A distributed attack detection and correction mecha-

nism which uses only local data.
3) A validation of the proposed mechanisms using a high

fidelity simulation model of a microgrid consisting of
three interconnected VSMs.

All relevant proofs can be found in the Appendix.

Notation

Let C be the set of complex numbers, R = (−∞,∞),
R≥0 = [0,∞), R>0 = (0,∞), N[i,i+k] = {i, i + 1, i +
2, . . . , i + k}, N≥i := {i, i + 1, . . . , } and T := (−π, π]
(modulo 2π). The number of k-element subsets of an n-
element set is denoted

(
n
k

)
= n!

k!(n−k)! . A block diagonal
matrix with square matrices Di ∈ Rn×n, i ∈ N[1,n]

is denoted by diag(D1, D2, . . . , Dn). 0(N×M) denotes an
N ×M matrix of zeros, 1(N×M) denotes an N ×M matrix
of ones and I(N) denotes an N × N identity matrix. The
Euclidean norm of a vector x ∈ Rn, is denoted |x| and for
a matrix A ∈ Rn×n, its induced norm is |A|. Given a point
x ∈ Rn, the closed ball with radius ∆ around x is denoted as
Bx,∆ = {z ∈ Rn | |z−x| ≤ ∆}. When x is the origin, we use

B∆. The step function is denoted by µτ (t) =

{
0, if t < τ,

1, else.

II. PROBLEM FORMULATION

We consider a microgrid with N ∈ N>0 interconnected
VSMs which communicate with a CC through commu-
nication channels as shown in Fig. 1. In Sect. II-A, we
describe the friction enhanced power system (FEPS) model
used to represent the electrical dynamics of the grid and
the VSMs and show the modeling of the vulnerability of
the communication channels. We then outline a mitigation
strategy in Sect. II-B.

Fig. 1: Secure control scheme for a microgrid with several VSMs.

A. Model of a microgrid under attack

We use the FEPS model proposed in [4], where for j ∈
N[1,N ], each j-th VSM is described by

Mjω̇j = Ps,j−Pe,j+ωn[Dj(ωn−ωj)+Fj(ωC,j−ωj)], (1)

where (Mj , Dj , Fj) ∈ R3
>0 are model parameters, Ps,j ∈ R

is a power term, ωC,j ∈ R≥0 is the COI-frequency given in
(4), ωn is the nominal grid frequency and Pe,j ∈ R is the
electric power output of the j-th generator defined by

Pe,j :=
∑

k∈N[1,N]

αjk sin(δj − δk − ϕjk) , (2)

with model parameters αjk ∈ R≥0, ϕjk ∈ T and δj :=
θj−θ1 where θj ∈ T is the rotor angle of the j-th VSM. For
a detailed explanation of all model parameters and conditions
for synchronization in the absence of attacks, the reader is
referred to [4].

We assume that every VSM communicates with the CC
via its own communication channel. In other words, there
are N independent communication channels between the
microgrid and the CC. An attacker may have gained access
to the communication channels between the VSMs and the
CC, with the ability to manipulate the data. We model such
false data injection attacks by potentially unbounded additive
signals aA and aB . Malicious actors may target frequency
data ωj sent from each VSM towards the CC by corrupting
it with aAj . We model the signals between VSM j ∈ N[1,N ]

and the CC as
ωAj = ωj + aAj , (3)

where aAj : R→ R is unknown to the operator and ωj is the
angular frequency of the j-th VSM from (1)-(2).

The COI-frequency ωC,j of the grid is transmitted back to
each j-th VSM for the VF-damping term. The transmitted
COI-frequency ωC,j might also be subjected to attacks. This
is also modelled as an additive and unknown signal aB such
that the COI-frequency received by each VSM k ∈ N[1,N ] is

ωC,k := ωn
C +

∑
j∈N[1,N]

Mja
A
j∑

j∈N[1,N]
Mj

+ aBk , (4)

where ωn
C =

∑
j∈N[1,N]

Mjωj∑
j∈N[1,N]

Mj
is the nominal COI-frequency

in the absence of attacks aAj and aBk . Further, we assume
that at least half of the communication channels cannot be
accessed by the attacker for all t ∈ R≥0. This assumption is
crucial for securely estimating the states of the VSMs at the
CC, which we state formally as follows.

Assumption 1 (At least half of the channels are secure):
Let I ⊆ N[1,N ] be the index set of attacked channels with
cardinality |I| = Q < N

2 , which remains constant over all
time t ∈ R≥0. The attack vectors aA := (aA1 , a

A
2 , . . . , a

A
N )T

and aB := (aB1 , a
B
2 , . . . , a

B
N )T satisfy (aA, aB) ∈ AI ,

where AI :=
{

(aA × aB) ∈ RN × RN : aAj (t) = 0,
aBj (t) = 0, ∀t ∈ R≥0,∀j ∈ I}.

Under the ideal scenario when there are no attacks, i.e.,
aA = 0 and aB = 0, prior work [4, Theorem 1] provides al-
gebraic conditions based on the model parameters to achieve
synchronization. We recall the synchronization conditions for
the model (1), (2) and (4) in the absence of attacks below.

Lemma 1 (Theorem 1 of [4]): Consider the microgrid
model (1)-(4) when there are no attacks, i.e., aA = 0
and aB = 0. Then, there exists ∆γ ∈ R≥0 such that for
any ∆δ = ∆δ(∆γ) ∈ R>0 and ∆ω ∈ R>0, there exists
ε∗ ∈ R>0 such that if for all j ∈ N[1,N ],
• the microgrid parameters Dj , Fj and Mj satisfy

M2
j

(Dj+Fj)2
∈ (0, ε∗), and

• the power input is constant, i.e., Ps,j(t) = P ∗j , for all
t ∈ R≥0, where P ∗j ∈ R, and
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• δ(0) ∈ B∆δ
and ω(0) ∈ B∆ω

,

then there exist (δ∗, ω∗) ∈ RN−1×RN such that lim
t→∞

δ(t) =

δ∗ and lim
t→∞

ω(t) = ω∗.

The synchronization point (δ∗, ω∗) is given in Theorem
1 of [4]. We will be exploiting this result in the design of
our attack mitigation mechanisms. The presence of false data
injection attacks aA and aB may disrupt the synchronization
of the VSMs, which could cause undesired fluctuations in
output power, overheating in the transmission lines due to
overcurrents or lead to the disconnection of the VSMs.

B. Secure Control Objective

We propose securing the microgrid with two mechanisms:
(i) anomaly detectors co-located at each VSMs to detect
corrupted COI-frequency signals ωC using only local data;
(ii) a secure state estimator at the CC to counter corrupted
signals ωj . We briefly describe these mechanisms here.

1) Attack detector and corrector: At each VSM, an
anomaly detector uses local data to detect whether the COI-
frequency ωB received from the CC has been corrupted by
the attack vector aB . Each anomaly detector only has access
to the local data, namely frequency ωj , electric power output
Pe,j , power input Ps,j and the received COI-frequency ωBC,j .
Using the local data, the anomaly detector then counters the
potentially corrupted received COI-frequency

ωBC = ωeC + aB , (5)

where ωeC : R≥0 → RN is the COI-frequency computed at
the CC, given by

ωeC,j :=

∑
j∈N[1,N]

Mjω
e
j∑

j∈N[1,N]
Mj

∈ R, j ∈ N[1,N ], (6)

where ωej : R≥0 → R are estimates of the frequency ωj at
each VSM using the received measurements ωAj which may
have been attacked by aAj according to (3).

This is mitigated by designing ωC,j which switches be-
tween the received COI-frequency ωBC,j and the locally
estimated COI-frequency ωdC,j based on attack detection
rules defined in Section III, i.e.,

ωC,j(t) =

{
ωdC,j(t), attack detected,
ωBC,j(t), otherwise. (7)

These rules and the locally computed COI-frequency ωdC,j
are designed to possess the following property.

Property 1: Consider the FEPS model (1), (2) with ωC,j
given by (7), where ωdC,j : R≥0 → R is the corrected COI-
frequency computed using local data, i.e., the received COI-
frequency ωBC,j , the j-th VSM’s power output Pe,j and active
power set point Ps,j . The corrected COI-frequency ωdC,j and
attack detection rules are designed such that ωC,j in (7) is
within a margin Kω ∈ R≥0 of the computed COI-frequency
ωeC,j , i.e., |ωC,j(t)−ωeC,j(t)| ≤ Kω , for t ∈ R≥0.
In Section III, we show how Property 1 can be achieved.

2) Secure state estimator: The secure state estimator is
deployed at the CC to provide estimates ωej of the actual
angular frequency ωj with the following property.

Property 2: Consider the FEPS model (1), (2) with ωC
defined by (7) which satisfies Property 1. For all ∆ω ∈ R>0,
there exist Ke = Ke(∆ω) ∈ R>0 such that the error between
the estimates ωej and the true angular frequencies ωj satisfy
|ωej (t) − ωj(t)| ≤ Ke, for all t ∈ R≥0, initial conditions
ωej (0) ∈ B∆ω and ωj(0) ∈ B∆ω .
Note that Property 2 gives an upper bound on the estimation
error that is independent of the attack aA on the transmitted
angular frequencies ωj . In Section IV, we show how a secure
state estimator can be designed to achieve Property 2.

3) Securing the microgrid: With the aforementioned mit-
igation mechanisms in place, we have the microgrid model
(1), (2), (7). For the rest of the paper, we will work
with the model written in the following form by taking
the state x̃, input ũ and measured output ỹ to be x̃ =
[δ1, . . . , δN−1, ω1, . . . , ωN ]ᵀ, ỹ = [ω1, . . . , ωN ]ᵀ, and ũ =
[Ps,1, . . . , Ps,N ]ᵀ. We can then write the FEPS model (1),
(2), (5) and (7) as

˙̃x = [f1(x̃, ũ,m), . . . , fN (x̃, ũ,m)]ᵀ, (8)

where m(t) captures the (unknown) deviation of the model
from nominal, due to the mechanisms for mitigating attacks,
as follows

m(t) =

{
ωdC(t)− ωn

C(t), attack detected,
ωeC(t)− ωn

C(t), otherwise, (9)

where the purpose of ωdC,j and ωeC,j was explained in
Sections II-B.1 and II-B.2, respectively.

At this juncture, we make the following assumption that
the system is uniformly bounded for all input ũ.

Assumption 2: For all ∆x ∈ R>0, there exists Kx ∈ R>0

such that the solution x̃ to the microgrid model (1), (2) and
(7) satisfies x̃(t) ∈ BKx , for all t ∈ R≥0, bounded input ũ
and initial condition x̃(0) ∈ B∆x

.
Showing that Assumption 2 holds is challenging even in

the nominal case without attacks, see [12] for the model with-
out virtual friction and [4] for the FEPS-model considered
in this paper. Proving that Assumption 2 holds for our setup
with the mitigation mechanisms will be the focus of future
work. Nonetheless, we will see in simulations presented
in Sect. V that Assumption 2 is satisfied. The rest of this
paper focuses on the design and validation of the two attack
mitigation strategies.

III. ATTACK DETECTOR AND CORRECTOR (AD)

The attack detector and corrector (AD) uses only locally
available data ωj and Pe,j to compute fall-back signals ωdC,j .
The signals ωdC,j are estimates of ωeC from (6). These are
estimated with the desired nominal conditions in mind, i.e.,
in the absence of attack vectors aA = 0 and aB = 0.
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A. Design of fall-back signal ωdC
We make the (simplifying) assumption that for each VSM

j, the remaining microgrid can be represented by a single
equivalent generator with frequency ωeC,j . The angular dif-
ference between VSM j and this equivalent generator is
denoted by δC,j = θj − θeC,j , where θj ∈ T is the rotor
angle of the j-th VSM and θeC,j ∈ T is the rotor angle of the
equivalent generator. Using the FEPS model (1), (2) for this
simplified two-generator system, the actual output power of
VSM j can be approximated by

Pe,j ≈ −αj0 sin(ϕ0j) + αj sin(δeC,j − ϕj), (10)

where (αj0, αj) ∈ R2
≥0, (ϕ0j , ϕj) ∈ T2 are parameters of

the electric connection between VSM j and the equivalent
generator. Solving (10) for δC,j and taking the time derivative
yields

δ̇eC,j ≈
Ṗe,j

αj

√
1−

(
Pe,j+α0j sin(ϕ0j)

αj

)2
. (11)

For a reasonable grid, the maximal output power Pmaxe

of the machine is much smaller than the grid coupling, i.e.,
αj � Pmaxe ≥ |Pe,j |, such that the dependency on Pe,j
in the denominator can be disregarded to avoid singularities
for certain values of Pe,j . Therefore, (11) becomes δ̇eC,j ≈
βjṖe,j , where βj := 1

αj
∈ R>0. Using the relation ωeC,j =

ωj − δ̇eC,j and by noting from definitions that δ̇eC,j := θ̇j −
θ̇eC,j = ωj − ωeC,j , we obtain an estimate ωdC,j of ωeC using

ωdC,j := ωj − βjṖe,j , (12)

where the βj can be determined by curve-fitting using an
initial set of training data. At steady state, clearly Ṗe,j = 0,
such that ωdC,j = ωj = ωeC,j .

B. Detection rules

Finally, detection rules determine, when the signal ωBC,j is
considered not trustworthy (and thus when ωdC,j is fed to the
VSM algorithm instead of ωC,j). We will use the following
attack detection rules: |ωBC,j−ωdC,j | > ∆d

f for more than T df ,
and ωBC,j jumps by more than ∆d

s . The parameters ∆d
f > 0

and ∆d
s > 0 are to be tuned. These rules are motivated by

the fact that ω̇C is limited by the inertia in the system and
the fact that there can be no constant offset between ωeC and
ωdC,j .

C. Achieving Property 1

We first show that the estimation accuracy between the
estimate ωdC,j and the transmitted ωeC,j can be made small
up to a margin by tuning the parameters βj .

Proposition 1: Consider the FEPS model (8) with the
estimate ωdC given by (12) and ωe satisfying Property 2.
Let Assumption 2 hold. For any (∆δ,∆ω, εω) ∈ R3

>0, there
exist β = β(εω) ∈ R≥0 and νω = νω(∆δ,∆ω) such that by
choosing βj in (12) as βj = β, the following holds

|ωdC,j(t)−ωeC,j(t)| ≤ εω+νω, t ∈ R≥0, j ∈ N[1,N ], (13)

for all initial conditions δ(0) ∈ B∆δ
and ω(0) ∈ B∆ω .

Next, we show that by implementing the AD based on (7)
and (12), we can achieve Property 1.

Theorem 1: Consider the FEPS model (8) with the AD
defined by (7), ωdC from (12) and ωe satisfying Prop. 2. Let
Assumption 2 hold. For any (∆δ,∆ω, εω) ∈ R3

>0, there exist
β = β(εω) ∈ R≥0 and Ke = Ke(∆δ,∆ω, εω) such that by
choosing βj in (12) as βj = β, Property 1 is satisfied.

IV. SECURE STATE ESTIMATOR

In this section, we present a secure state estimator that
possesses Property 2. Given that uncertainty in the microgrid
parameters is unavoidable, we present a novel observer de-
sign which overcomes this, in addition to mitigating attacks
on the transmitted measurements. These observers are based
on the linearized FEPS model.

A. Linearized microgrid model

According to Lemma 1, in the absence of attacks (i.e.,
aA = 0 and aB = 0), the state x̃ of the microgrid model
(1)-(4) converges to x∗ = [(δ∗)ᵀ, (ω∗)ᵀ], with δ∗ ∈ RN−1

and ω∗ ∈ RN defined as in [4, Theorem 1]. We linearize
around the stable operating point given by x∗. Deviations
are denoted by x = x̃−x∗, y = ỹ− y∗ and u = ũ−u∗, and
we define matrices M, G, and H as follows:

M = diag
(

1

M1
,

1

M2
, . . . ,

1

MN

)
,

[G]jk =
∂fj
∂ωk

,

[H]jk =
∂fj
∂δk+1

∣∣∣∣
x∗,u∗

,

where

∂fj
∂ωk

=


Fjωn∑
Mi
− ωn
Mj

(Fj +Dj) , j = k,

MkFjωn
Mj

∑
Mi

, j 6= k,

∂fj
∂δk

=


− 1

Mj

N∑
l=1
l 6=j

ajl cos(δ∗j − δ∗l − ϕjl), j = k,

αjk
Mj

cos(δ∗j − δ∗k − ϕjk), j 6= k.

The linearized model then can be written in the form

ẋ = Ax+ Bu+ Em, y = Cx+ aA, (14)

with

A =

 0(N−1)×(N−1) −1(N−1)×1 I(N−1)

H G

,
B =

[
0(N−1)×(N−1)

M

]
,

C =
[

ON×(N−1) I(N)
]
,

E =

[
0(N−1)×1,

ωnF1

M1
, . . . ,

ωnFN
MN

]ᵀ
.

(15)

It is important to note that the changes in the load consump-
tion or network tie-line impedances impact αjk and ϕjk in
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(2) such that in a realistic microgrid, parameter uncertainty
affects the matrix H in (15) and only a guess Ĥ can be used.
We will show in the following how to design an observer that
is robust against such parameter uncertainty for the purpose
of secure state estimation. We denote by Â the system matrix
obtained by replacing H and G in (15) by Ĥ and Ĝ, where
Ĝ is specially chosen to be

Ĝ =
Fj+Dj

Fj

[
G + ωndiag

(
D1

M1
,
D2

M2
, . . . ,

DN

MN

)]
. (16)

This matrix Ĝ has zero row sum1, which will be exploited
in the design of the robust observer in the next section.

B. Observer design in the presence of parameter uncertainty

A crucial condition of the secure state estimation algorithm
in [10] is redundant observability (see Theorem 1 in [10]).
We state this in the assumption below.

Assumption 3: Consider the linearized model (14) with
N ∈ N>0 output channels where at most Q ∈ N>0 channels
have been compromised. For every set Kι ⊂ N[1,N ] with
|Kι| ≥ N − 2Q, the pair (Â,CKι) is observable, where
CKι is obtained by stacking all the rows κ ∈ Kι of C.

Under Assumption 3, we know that for every K
ι
⊂ N[1,N ]

with |Kι | ≥ N−2Q, the following observer can be designed
such that its state converges to a constant in the absence of
attacks (i.e. aA = 0 and aB = 0)2:

˙̂xKι = Âx̂Kι +Bu+LKι(yKι−CKι x̂
Kι), ι ∈ N[1,|Kι |] (17)

where yKι is the stacking of all κ ∈ Kι components of the
output y and LKι is an observer gain matrix to be designed
such that the matrix Â−LKιCKι is Hurwitz. Since the pair
(Â,CKι) is observable, such a matrix LKι exists.

Furthermore, due to the parameter uncertainty captured
by the matrix Â, we provide additional design conditions
on the observer gain matrix LKι such that the estimates of
the angular frequency ω̂Kιj for j ∈ N[1,|Kι|] converge to a
constant ω̃∗Kι ∈ R|Kι|. Note that ω̃∗Kι may be different from
the synchronization point ω∗Kι from Lemma 1. We provide
an observer gain matrix LKι that achieves this below.

Proposition 2: Consider the linearized microgrid model
(14) under Assumption 3 in the absence of attacks (aA = 0
and aB = 0), and the observer (17). Let the observer gain
matrix LKι be

LKι =

[
0(N−1)×|Kι|

L̄Kι

]
, (18)

where
• the matrix Â− LKιCKι is Hurwitz, and
• the sub-matrix L̄Kι ∈ RN×|K| is chosen such that the

following matrix has full rank:

[ Ĥ L̄Kι ]. (19)
1This is equivalent to the matrix G for a system with the same overall

damping, but without frequency droop. It was shown in [6] that the δj
of such a system have the same dynamics as the original system. The
frequency-related eigenvalue of Â lies in the origin.

2We use the superscript Kι to denote affiliation with observer with state
vector x̂Kι , and subscript Kι to denote the stacking of the rows κ ∈ Kι
of a vector or a matrix.

If limt→∞ u(t) = 0, we have

|x̂Kι(t)| ≤ K̂e, t ∈ R≥0, (20)

lim
t→∞

ωκ(t)− ω̂Kικ (t) = 0, κ ∈ Kι, (21)

for some K̂e∈R>0 and for all initial conditions x̂Kι(0)∈Rn.

C. Achieving Property 2: Secure estimation of ωj
Under Assumptions 1 and 3, we can now use the secure

state estimation framework from [10, Section III-B]. Two
banks of observers are designed. The first bank has ns :=(

N
N −Q

)
observers with state x̂Sβ , β ∈ N[1,ns], gener-

ated according to (17), which uses the subset Sβ ⊂ N[1,N ]

of transmitted angular frequencies ω ∈ RN with cardinality

|Sβ | = N − Q. The second bank has np :=

(
N

N − 2Q

)
observers with state x̂Pα , α ∈ N[1,np], generated according
to (17), which uses the subset Pα ⊂ N[1,N ] of transmitted
angular frequencies ω ∈ RN with cardinality |Pα| = N−Q.

Finally, the secure state estimate x̂(t) is chosen from the
banks of observers as follows:

πSβ (t) = max
Pα⊂N[1,N],|Pα|=N−2Q

|x̂Sβ (t)− x̂Pα(t)|

σ(t) = argmin
Sβ⊂Pα,|Sβ |=N−Q

πSβ (t), x̂(t) = x̂σ(t)(t).
(22)

We can guarantee the following about the state estimate
x̂ = [ δe ωe ]ᵀ, where δe ∈ RN−1 is the secure estimate
of δ and ωe ∈ R is the secure estimate of the angular
frequencies ω in (14) which is used to compute the COI-
frequency ωeC defined in (6).

Proposition 3: Consider the linearized microgrid model
(14) with limt→∞ u(t) = 0 and the secure state estimator
(17) and (22) under Assumptions 1 and 3. There exist
constants (k, λ, γ̂, γm) ∈ R4

>0 such that

|x(t)− x̂(t)| ≤ke−λt|x(0)− x̂(0)|+ γ̂

(
sup
s∈[0,t]

|x(s)|

)

+ γm

(
sup
s∈[0,t]

|m(s)|

)
, t ∈ R≥0, (23)

lim
t→∞

ωj(t)− ω̂σ(t)
j (t) = 0, j ∈ σ(t), (24)

for any initial conditions x(0) ∈ R2N−1, x̂(0) ∈ R2N−1.
We obtain from Proposition 3 that in the absence of the
deviation of the dynamics from the nominal captured by
m(t) and if the state of the linearized model x(t) converges
to the origin, the estimated angular frequencies ωe converge
exponentially to the true angular frequencies ω of the lin-
earized model (14). Most crucially, the state estimation error
x(t) − x̂(t) is independent of the attacks aA on the CC’s
received measurements ωAj .

We are now able to show that the model mismatch m(t)
introduced by the attack mitigation mechanisms are bounded.

Lemma 2: Consider the linearized microgrid model (14)
with input limt→∞ u(t) = 0, the secure state estimator
(17), (22), and an attack detection/correction mechanism
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Fig. 2: Microgrid with 3 VSMs and two loads.

defined by (7) with the estimate ωdC given by (12) and
ωeC given by (6). For any (∆δ,∆ω, εω) ∈ R3

>0, there exist
β = β(εω) ∈ R≥0 and Km = Km(∆δ,∆ω, εω) ∈ R>0 such
that by choosing βj in (12) as βj = β, m(t) defined in (9)
satisfies |m(t)| ≤ Km, for all t ∈ R≥0, x(0) ∈ B∆δ

× B∆ω

and x̂(0) ∈ B∆δ
× B∆ω .

We can now show that the secure state estimator presented
here satisfies Property 2, which we state formally below.

Theorem 2: Consider the linearized microgrid model (14)
with input limt→∞ u(t) = 0, the secure state estimator
(17), (22), and an attack detection/correction mechanism
defined by (7) with the estimate ωdC given by (12) and
ωeC given by (6). Suppose Assumptions 1-3 hold. For any
(∆δ,∆ω, εω) ∈ R3

>0, there exist β = β(εω) ∈ R≥0 and
Ke = Ke(∆δ,∆ω, εω) ∈ R>0 such that by choosing βj in
(12) as βj = β, Property 2 is satisfied.

The proof of Theorem 2 is a straightforward application
of Lemma 2, Assumption 2 (bounded states) and Proposition
3. Due to space limitations, we have omitted the proof.

To summarize, we have now shown that both mitigation
mechanisms posses the desired Properties 1 and 2 which,
together with Assumption 2, allows us to securely control a
microgrid with N VSMs. We show this in the next section.

V. SIMULATION RESULTS

We demonstrate the proposed secure control scheme by
Matlab Simulink simulations of a microgrid consisting of
three VSMs G1, G2 and G3, loads L1 and L2, connected
over two tielines T1 and T2, cf. Fig. 2. Electric components
are simulated using the Simscape Specialized Power Systems
library and the VSMs are based on [1]. LT1 = LT2 = 1mH,
RT1 = RT2 = 0.5Ω and the nominal voltage is 230Vrms.
Attack detection rules employ ∆d

f = ∆s
f = 0.5Hz and

T df = 0.5s. Initially, only L2 is connected with PL2 = 6kW
and QL2 = 3kVar. The VSMs use constants Mj = 63Ws2,
Dj = 0.2Ws2 and Fj = 4 · Dj . The voltages required by
the FEPS model are E = [230 230 230]V3. The system is
observable with a single frequency ωj , i.e. all observability
matrices constructed with Â and CKι have full rank. The
two sets of observers of the secure state estimator are
S = {{1, 2}, {1, 3}, {2, 3}} and P = {1, 2, 3}, such that
a total of 6 observers are required. The observer gains L̄Kι
are constructed by stacking the columns κ ∈ Kι of matrix
L̄ = 75 · 1(N×N) + 75I(N). A first order high-pass filter
with time constant T = 5s is used for the input u to the
observers, such that lim

t→∞
u(t) = 0. The matrix Ĝ is defined

3A MATLAB script to generate the FEPS-model matrices and the
linearized model can be found in [13].
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Fig. 3: The secure state estimator at the CC for a grid with 3 VSMs.

using VF-coefficients F̂j = (Fj + Dj) and no frequency
droop D̂j = 0, as was recommended at the end of Sect. IV-
A. The AD constant is β = 1e−4 and finally, Ĥ, Ĝ are

Ĝ =

−3.33 1.67 1.67

1.67 −3.33 1.67

1.67 1.67 −3.33

, Ĥ =

 45.4 43.3

−90.1 44.7

44.7 −88.0

.
The structure of the secure state estimator is given in Fig. 3.

In the following, we simulate four events: At t = 1s, load
1 connects: SL1 = [3kW 1kVAr], at t = 2s, the set-powers
change to Ps = [2 6 2]kW , at t = 3s, load 1 changes to
SL1 = [1kW 0.5kVAr] and at t = 4s, the set-powers change
back to Ps = [2 2 2]kW . We show the performance of the
secure state estimator at the CC, if one of the three received
frequencies is attacked as well as results with attacks on the
communication channels from the CC to the VSMs4.

A. Attack on signals sent to the CC

Fig. 4 shows an attack aA on the signals sent towards
the CC with aB = 0: Each attack lasts for 1 second and
targets one ωj sent towards the CC. At first the attack
targets ω1 with a sine-wave of amplitude 4πrad/s, then ω2

is targeted by a square-wave of amplitude 2rad/s and finally
ω3 sees a constant addition of 2πrad/s. Fig. 4a shows the
non-compensated frequency ωAC , the output of the multi-
observer based estimator ωeC and the correct COI-frequency
ωC . Fig. 4b shows the output powers of the VSMs. The
system response under attacks (solid lines) is identical with
the system response without attacks (dashed lines).

B. Attacks on signals sent to the VSMs

Fig. 5 shows the response of VSM 1 to an attack vector
aB = [µ3a

B
0 −µ5a

B
0 −µ7a

B
0 ]ᵀ where aB0 is a square wave

with amplitude 2rad/s. The attack cause strong disturbances
on the received COI-frequency ωBC shown in Fig. 5a. The
AD identifies the attack on the first jump of ωBC at t = 2s
(dotted black line). The estimate ωdC follows relatively well
the actual output of the CC, ωeC . The output power of G1

when the AD is deactivated shows strong oscillations (blue
line in Fig. 5b). When the AD is activated, the VSM uses

4For lack of space we only show the results with an attack vector
aB consisting of several square waves. We have further tested undetected
delay and replay attacks on the signals sent towards the VSMs and similar
performance of the AD could be observed.
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(a) Actual COI-frequency ωC , its estimate ωeC and the non-
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Fig. 4: Attack on signals sent to the CC: At t = 2s a sine-wave is
added to ω1, at t = 4s a square-wave is added to ω2 and at t = 6s
a constant is added to ω3, each for 1s.

ωdC instead of ωBC as soon as the attack is identified and the
output power is not affected by the attack.
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(a) Frequency sent by the CC (ωeC ), attacked frequency received
by the AD at G1 (ωBC ) and estimate by the AD (ωdC ). The black
dashed lines indicates the moment the attack is identified by the
AD.
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Fig. 5: An attack with vector aB consisting of square waves.

VI. CONCLUSION

We have presented a secure control strategy for a mi-
crogrid of interconnected VSMs where the communication

channels are potentially under attack. The scheme consists of
(i) a secure state estimator at the CC and (ii) an attack detec-
tion and corrector co-located at each VSM. A robust linear
observer design was introduced that ensures zero steady-state
output tracking error in the presence of uncertainty in the
grid parameters. This scheme is validated in a high fidelity
simulation of a microgrid with three VSMs and two loads.
Future work will focus on showing that the secure system
achieves synchronization.

APPENDIX

A. Proof of Proposition 1

Given εω ∈ R>0, ∆δ ∈ R>0 and ∆ω ∈ R>0, we have
• from Assumption 2 that Kx = Kx(∆x) > 0 where

∆x := max{∆δ,∆ω} > 0, and
• Ke > 0 from Property 2.

Let j ∈ N[1,N ] and

β̄jk :=
∑

k∈N[1,N]

αjk cos(ϕjk), (25)

where αjk ∈ R>0 and ϕjk ∈
(
−π2 ,

π
2

)
for j 6= k, are model

parameters from (2). Note that β̄jk ∈ R>0 and hence we can
choose βj =

(
2NKxβ̄jk

)−1
εω and νω := 2Kx +Ke.

Recall that the estimate ωdC,j is given by (12) which can
be rewritten in terms of ωj and its time derivative as ωdC,j =
ωj − βj

∑
k∈N[1,N]

αj,k cos(δj − δk − ϕjk)(ωj − ωk). This
is obtained by taking the time derivative of Pe,j from (2).
We have from Lemma 1 that δj , for j ∈ N[1,N ] are small5.
Hence, ωdC,j ≈ ωj − βj β̄jk

(∑
k∈N[1,N]

ωj − ωk
)

, with β̄jk

from (25). From Assumption 2, we have that |ωj(t)| ≤ Kx,
for all t ∈ R≥0, for some Kx ∈ R>0. Therefore, for all
t ∈ R≥0,

|ωdC,j(t)− ωj | ≤ 2NKxβj β̄jk. (26)

Next, we observe that ωj − ωeC,j = ωj − ωn
C,j +∑

k∈N[1,N]
Mk(ωek−ωk)∑

k∈N[1,N]
Mk

. According to Property 2, we have

|ωek(t) − ωk(t)| ≤ Ke for all t ∈ R≥0 and k ∈ N[1,N ].
Hence,

|ωj(t)− ωeC,j(t)| ≤ 2Kx +Ke, t ∈ R≥0. (27)

Finally, since |ωdC,j(t) − ωeC,j(t)| ≤ |ωdC,j(t) − ωj(t)| +
|ωj(t) − ωeC,j(t)| and using (26) and (27), we obtain the
desired bound (13).

B. Proof of Theorem 1

Let j ∈ N[1,N ]. Given (∆δ,∆ω, εω) ∈ R3
>0, let β =

β(εω) ∈ R>0 and νω = νo(∆δ,∆ω) ∈ R>0 come from
Proposition 1.

By definition (7) and the detection rules in Section III-
B, ωC,j(t) = min{ωdC,j(t), ωBC,j(t)}. Then, |ωC,j(t) −

5For exact construction of the bounds on the initial conditions ∆δ and
∆ω , as well as the synchronization point (δ∗, ω∗), the reader is referred to
Theorem 1 of [4]

3082



ωeC,j(t)| ≤ min{|ωdC,j(t)−ωeC,j(t)|, |aBj (t)|}. Using Proposi-
tion 1, we obtain (13) for all initial conditions (δ(0), ω(0)) ∈
B∆δ
× B∆δω

. Hence, for all t ∈ R≥0,

|ωC,j(t)− ωeC,j(t)| ≤min{εω + νω, |aBj (t)|} ≤ εω + νω,

and we obtain Property 1 with Ke := εω + νω ∈ R>0.

C. Proof of Proposition 2
In steady-state, we obtain the following from (17):

0 =

[
0 −1 I

Ĥ Ĝ

]
x̂ι + LKι(yKι − ŷKι), (28)

where we omitted writing the dimensions of the matrices.
We obtain the relation (28) due to the following
• the observer gain matrix LKι is chosen such that the

matrix Â− LKιCKι is Hurwitz,
• the input u satisfies limt→∞ u(t) = 0,
• yKι is bounded according to Assumption 2, and
• limt→∞ yKι(t) = limt→∞ ωKι(t) = ω∗Kι according

to Lemma 1, where ωKι and ω∗Kι denote the stacking
of the κ ∈ Kι components of the vectors ω and ω∗,
respectively;

which implies that the state estimate x̂Kι is bounded and
converges to a constant. Hence, we have shown (20). Next,
since the observer gain matrix LKι satisfies (18), we obtain
the following from (28).
• By the first N − 1 rows of (28), we have

ω̂Kι − ω∗ = (ω̂Kι1 − ω∗1)1(N−1), (29)

• By the last N rows of (28),

0 = Ĥ(δ̂Kι − δ∗) + Ĝ(ω̂Kι − ω∗) + L̄Kι(ωKι − ω̂
Kι
Kι ).

By (29), the second term satisfies Ĝ1(N−1)(ω̂Kι1 −ω∗1)
and since Ĝ has zero row sum, the second term is zero.
Let ζ̂Kι = [(δ̂Kι − δ∗)ᵀ, (ωKι − ω̂

Kι
Kι )

ᵀ]ᵀ and (30) can
be written as 0 =

[
Ĥ L̄Kι

]
ζ̂Kι . Due to the matrix

(19) being full rank, ζ̂Kι = 0 is a unique solution.
Therefore, we obtain (21) as desired.

D. Proof of Lemma 2
From (9), we have for all t ∈ R≥0 that

|m(t)| ≤max{|ωdC(t)− ωn
C(t)|, |ωeC(t)− ωn

C(t)|}. (30)

We first obtain a bound on the second term on the RHS as
follows for all t ∈ R≥0,

|ωeC(t)− ωn
C(t)| ≤|ωeC(t)|+ |ωn

C(t)| ≤ K̂e +Kx, (31)

where K̂e ∈ R>0 and Kx ∈ R>0 come from Proposition 2
and Assumption 2, respectively. Next, the first term on the
RHS can be bounded as follows for t ∈ R>0,

|ωdC(t)− ωn
C(t)| ≤ |ωdC(t)− ωeC(t)|+ |ωeC(t)− ωn

C(t)|
≤ Kde + K̂e +Kx, (32)

where the last inequality is obtained with Kde > 0 from
Proposition 1 and from (31) we obtained earlier. Finally, from
(30), (31) and (32), we conclude the proof with Km :=
Kde + K̂e +Kx.

E. Sketch of proof for Proposition 3

For an arbitrary set Kι ⊂ N[1,N ], the state estimation error
eKι := x − x̂Kι of observer ι has the following dynamics
from system (14) and (17),

ėKι(t) =(Â− LKιCKι)e
Kι(t) + (Â−A)x(t)

−Em(t) + LKιaAKι(t), (33)

where aAKι denotes the stacking of all the κ ∈ K component
of the attack vector aA. Since Â−LKιCKι is Hurwitz, the
solution to (33) satisfies

|eKι(t)| ≤kKι exp(−λKιt)|eKι(0)|+ γ̂Kι

(
sup
s∈[0,t]

|x(s)|

)

+ γmKι

(
sup
s∈[0,t]

|m(s)|

)
, t ∈ R≥0, (34)

where (kKι , λKι , γ̂Kι , γ
m
Kι) ∈ R4

>0.
The rest of the proof follows along the lines of the

proof for Theorem 3 of [10], which shows that redundant
observability and the corresponding multi-observer based
architecture (22) allows us to arrive at the guarantee (23).
Finally, (24) is obtained using Proposition 2.
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