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Abstract— This paper studies the problem of secure state
estimation of networked switched systems in the presence of
denial-of-service (DoS) attacks, as well as disturbances and
measurement noise. Firstly, a state transformation rule is
designed to partition the original system into two subsystems,
facilitating the design of discrete and continuous state observers.
Secondly, by modifying the traditional super-twisting sliding-
mode method and taking into account the frequency and
duration characteristics of DoS attacks, we employ dynamic
differential properties between different modes to design a
switching law identification strategy. We show that this strategy
can accurately estimate the switching state without impos-
ing any requirement on the switching times and sequences.
Thirdly, based on the identified activated mode, a set of mode-
dependent continuous state sliding-mode observers is designed,
that achieves continuous state estimation in finite time. The
practicality and applicability of the developed results are
validated through numerical simulations.

I. INTRODUCTION

Emerging from the intersection of modern control technol-
ogy, computer technology, and communication technology,
networked control systems (NCSs) exhibit several desirable
characteristics, including improved efficiency, reduced costs,
enhanced flexibility, and better remote control and monitor-
ing capabilities [1], [2]. They play a vital role in various
domains like energy management [3], water distribution [4],
and intelligent housing [5]. Physical plants with switching
modes can capture the impact of external conditions, jumping
parameters, or changing control strategies [6], [7], leading
to the emergence and widespread attention of networked
switched systems (NSSs) in recent years [8], [9].

Despite significant progress, the integration of information
and physical space presents new challenges for NCSs. The
complex system structure magnifies the impact of external
disturbances and uncertainties on perception, communica-
tion, and control. In addition, the open communication envi-
ronment heightens susceptibility to network attacks. Ensuring
NCS security against these challenges is crucial, with secure
state estimation emerging as a key research focus [10].

As one kind of the prevalent cyber-attacks, denial-of-
service (DoS) attacks operate without the need for prior
system knowledge. They undermine the connectivity of
communication networks, consequently impinging upon the
exchange of information and real-time data flow [11]. To
cope with secure state estimation under DoS attacks, ex-
tensive results can be found for NCSs, such as the zero-
sum game strategy [12], the resilient estimator [13], and the
neural-network-based method [14]. However, in the case of
NSSs are considered, to the best of the authors’ knowledge,
there are currently no results concerning the secure state

estimation against DoS attacks. The main challenges to
achieve the secure state estimation of NSSs are: i) The
transmitted measurement data may exhibit delays and packet
loss. ii) The unknown timing and order of switching laws
as well as the false switching dynamics induced by DoS
attacks increase the design complexity. iii) The presence
of measurement noise and dynamic disturbances makes the
known information available for state estimation less reliable.

Contribution: Inspired by the above issues, this paper
studies the secure state estimation for NSSs in the presence
of DoS attacks, dynamic disturbances and measurement
noise. Firstly, we analyze the dynamic difference between
the different modes under bounded uncertainty assumptions.
Based on the mode identification condition, an augmented
super-twisting sliding-mode (ASSM) observer is proposed,
which is used for constructing a discrete state observer.
Secondly, with partially observable continuous states, based
on the estimated activated mode information, we design a
group of mode-dependent ASSM observers to estimate the
observable states. Then, we estimate the continuous state in
finite time, by suitably designing a correction term utilizing
an appropriate state transformation. Finally, the theoretical
results are verified through a numerical simulation.

Notation: Denote the sets of real and integer numbers
by R and N, respectively. A subset of R (or N) satisfying
condition (·) is denoted by R(·) (or N(·)). For a matrix A,
denote its maximum and minimum eigenvalues by λmax(A)
and λmin(A), respectively. Denote the matrix whose rows
span the null space of A by A⊥ and the pseudo-inverse of
A by A†. Given a function f : R≥0 → Rn and a time
interval [0,∞), we denote the L∞ norm of f(·) on [0,∞)
by ∥f∥∞ := ess sups∈[0,∞) ∥f(s)∥. A function f(·) is called
continuous from the right at point c, if ∀ε ∈ R>0, ∃δ ∈ R>0

such that for all x satisfying c < x < c+δ, the value of f(x)
satisfies |f(x) − f(c)| < ε. For two functionsf(x), g(x), if
limx→0

f(x)
g(x) = 0, we call f(x) is the infinitesimal of higher

order of g(x) at 0, denoted by f(x) = o(g(x)).
II. PROBLEM FORMULATION

A. System description

Consider a NSS, whose physical plant is described as a
switched linear system with N modes in the form of

ẋ(t) =Aσ(t)x(t) +Bσ(t)u(t) +Dd(t),

y(t) =Cx(t) + Eω(t),
(1)

where σ(t) : [0,∞) → S := {1, 2, · · · , N} denotes
the switching signal that is a piece-wise constant function
continuous from the right, and N is the number of switching
modes. A switching sequence is defined as
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Σ := {(σ0, s0), (σ1, s1), · · · , (σi, si), · · · },
where si denotes the ith switching instant and σi := σ(si) ∈
S. For the estimation problem, we consider σ(t) as a discrete
state to estimate, while x(t) ∈ Rn is the continuous state
vector to estimate, u(t) ∈ Rm is the known control input,
and y(t) ∈ Rp is the measurement output. Variables d(t) ∈
Rl and ω(t) ∈ Rs represent the unknown disturbance and
noise presented in the actuator and sensor channels. Matrices
Ai ∈ Rn×n, Bi ∈ Rn×m, i ∈ S, C ∈ Rp×n, D ∈ Rn×l,
and E ∈ Rp×s are known with appropriate dimensions. For
convenience, for the rest of the paper we do not explicitly
state the time argument unless required after (1).

Consider a periodic sampler that quantizes the continuous
measurement y(t) into a zero-order holding signal. Denote
{tk}k∈N≥0

as the set of sampling instants satisfying
δmin ≤ tk+1 − tk =: δ ≤ δmax, t0 = 0, (2)

where δmin, δmax ∈ R>0 denote respectively the minimum
and maximum bounds of the unknown sampling period δ.
Subsequently, the sampling signal y(tk) is transmitted to
the estimator via a communication network, which may be
subject to DoS attacks, as depicted in Fig. 1.
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Fig. 1. The secure state estimation framework for a NSS under DoS attacks.

To characterize the switching law σ(t), we introduce the
following definition about minimum dwell time.

Definition 1 ( [15]): For the switching signal σ(t) with
the switching sequences in terms of time {sk}k∈N≥0

, the
positive constant τa := mink∈N≥0

(sk+1 − sk) is called the
minimum dwell time. ■

The following assumptions are imposed to facilitate the
design of the secure state estimator.

Assumption 1: The system (1) satisfies:
(i) The state x(t) evolves in a bounded region, ∀t ≥ 0.

(ii) There exists constants d̄, d̂, ω̄, ω̂ ∈ R>0 such that
∥d∥∞ ≤ d̄, ∥ḋ∥∞ ≤ d̂, ∥ω∥∞ ≤ ω̄, ∥ω̇∥∞ ≤ ω̂.

(iii) rank(CD) = rank(D) = l.
(iv) The minimum dwell time τa > δmax. ■

Remark 1: The first and second conditions concern phys-
ical limitations and safety constraints in practical systems,
necessitating bounded system states, disturbances, and noise.
When Ai is stable, ∀i ∈ S, (i) is implied by (ii) if the control
input u is either bounded or represents state feedback with
bounded gain. The third point is a precondition to design
a sliding mode observer which rejects uncertainties d. This
means that the output is sensitive to the effect of disturbances
and has been widely utilized [16]. The last point guaran-
tees that at most one switch occurs during one sampling

period. This prevents unnecessary switches, avoiding Zeno
behavior by ensuring a finite number of switches over any
finite time. Notably, no assumptions about the timing and
order of switching laws are required. This, coupled with
false switching dynamics induced by DoS attacks, makes
direct ultilization of the existing discrete-time estimation
algorithms, e.g., [17], impractical for state and/or disturbance
estimation. ■

B. Modelling DoS attacks

Considering DoS attacks on the measurement channel,
data transmission service is denied upon occurrence of an
attack. Inspired by [18], DoS attacks are modeled based on
both attack frequency and duration. Denote the attack instant
sequence as hn, n ∈ N≥ 0, then within the time interval of
the nth DoS attack

Hn := {hn} ∪ (hn, hn + τn),

the communication is interrupted, with the length of the nth
DoS attack τn ∈ R≥0. For t ≥ τ ∈ R≥0, denote

Ξ(τ, t) :=
⋃

n∈N≥0

Hn

⋂
[τ, t], Θ(τ, t) := [τ, t] \ Ξ(τ, t).

Specifically, for the interval [τ, t], Ξ(τ, t) and Θ(τ, t) repre-
sent the sets of time instants where communication is denied
and allowed, respectively. Let ∆n := hn+1 − hn > τn, n ∈
N≥0, denote the time elapsing between any two successive
DoS attacks. The severity of a DoS attack can be described
by its frequency and duration length.

Assumption 2: For DoS attacks, there exist known pos-
itive constants τmax < τa and τmin > δmax such that

supn∈N≥0
{τn} ≤ τmax, infn∈N≥0

{∆n} ≥ τmin. ■

Based on the above, for each t ∈ R≥0, the measurement
output can be represented as y(tk̂(t)), where

k̂(t)=

{
−1, if Θ(0, t)=∅,
sup{k ∈ N0 | tk ∈ Θ(0, t)}, otherwise.

In this form, k̂(t) represents the last update instant when the
communication transmission is successful. That is the mea-
surement signal will maintain the data of the last successful
update instant. Without loss of generality, we set t−1 = 0.
C. Problem statement

This subsection presents a statement of the problem con-
sidered in this paper, which is provided below.

Problem 1: Under Assumptions 1-2, design an observer
for system (1), which in the presence of DoS attacks:

(i) Identifies the switching law σ(t) in finite time;
(ii) Estimates the continuous state x(t) in finite time; ■

Property (i) is required to identify the activated mode,
which is a prerequisite to determine the dynamics used for
the continuous state estimation. Followed by the identified
activated mode, (ii) requires an estimation scheme of the
system’s continuous state. Furthermore, (i) and (ii) should
be accomplished while tolerating bounded disturbances and
measurement noise, as well as handling DoS attacks with
known frequency and duration bounds.

3058



III. SWITCHING LAW IDENTIFICATION

In this section a novel discrete state observer based on
the super-twisting second-order sliding-mode technique is
designed to estimate the switching signal σ(t) in finite time.
A. Transformed system and preliminary assumptions

The transformed state coordinates are introduced to de-
couple the unknown disturbance d(t) from the system (1):

T =

[
D⊥

(CD)†C

]
, U =

[
(CD)⊥

(CD)†

]
,

where T ∈ Rn×n and U ∈ Rp×p are non-singular matrices.
This transformation is feasible due to Assumption 1 (iii).
Specifically, we define the transformed state as

x̄(t) = [x⊤1 (t) x
⊤
2 (t)]

⊤ = Tx(t),

where x1(t) ∈ Rn−m and x2(t) ∈ Rm. Similarly, we define
the transformed output as

ȳ = [y⊤1 (t) y
⊤
2 (t)]

⊤ = Uy(t),

where y1(t) ∈ Rp−m and y2(t) ∈ Rm. In the new domain,
one can obtain the following transformed dynamics

ẋ1(t)=A1σ(t)x1(t)+A2σ(t)x2(t)+B1σ(t)u(t), (3a)
ẋ2(t)=A3σ(t)x1(t)+A4σ(t)x2(t)+B2σ(t)u(t)+d(t), (3b)
y1(t)=C1x1(t) + E1ω(t), (3c)
y2(t)=x2(t) + E2ω(t), (3d)

with the implicit definition of matrices A1σ(t), A2σ(t),
A3σ(t), A4σ(t), B1σ(t), B2σ(t), C1, E1 and E2.

The error between the current measurement and actual
output is

ed,y2(t) := y2(tk̂(t))− y2(t).

Define κ(t) := t− tk̂(t). Using Taylor’s series expansion,
the delayed signal y2(tk̂(t)) can be written as

y2(tk̂(t)) = y2(t− κ(t)) = y2(t)− ẏ2(t)κ(t) + ℏ(t),
where ℏ(t) represents the higher order terms of the Taylor’s
series expansion. According to the sampling mechanism (2)
and Assumption 2, it follows that κ(t) ≤ τmax + δmax and

∥ed,y2(t)∥∞ ≤ (τmax + δmax)∥ẏ2(t)∥∞, (4)

where ∥ẏ2(t)∥∞ satisfies

∥ẏ2(t)∥∞ ≤ ∥ẋ2∥∞ + λmax(E2)(τmax + δmax)ω̂.

To guarantee the distinguishability between the modes in
S, the following assumption is required.

Assumption 3: There exists a known positive constant
δ1 < τa/2 such that, for any t > δ1, ∀i, j ∈ S, i ̸= j:∫ t

t−δ1
∥ϕi,j(τ)∥dτ >

∫ t

t−δ1
∥ϕi,i(τ)∥dτ (5)

where

ϕi,j :=A4iξ2(t)−A3jx1(t) + (A4i −A4j)x2(t)

+ (B2i −B2j)u(t)− d(t).

with ξ2(t) := ed,y2(t) + E2ω(t). ■
Remark 2: The intuition behind Assumption 3 is that

when a mode change occurs, after a period of time it
enables larger changes in ϕi,j than in ϕi,i. To identify the

modes of the plant, the dynamic difference of modes should
be considered. Based on whether the error of dynamics is
related, the term ϕi,j can be divided into two parts:

a(t) =(A4i −A4j)x2(t) + (B2i −B2j)u(t),

b(t) =−A3jx1(t) +A4iξ2(t)− d(t).

From Assumption 1 and (4), one can deduce that ∥b(t)∥ ≤
Π1(t), where Π1 is a known positive function. We can see
that ∥a(t)∥ ≡ 0 if i = j while ∥a(t)∥ ≥ 0 if i ̸= j. When
there exists δ1 < τa such that

∫ t
t−δ1 ∥ϕi,j∥ ≥ Π2(t), i ̸= j

and Π2(t) > δ1Π1(t), condition (5) is satisfied. ■
B. Mode identification under DoS attacks

To estimate the switching law σ(t), consider a set of mode-
dependent sliding-mode observers in the form of

˙̂x2,i(t) = A4ix̂2,i(t) +B2iu(t) + vi(t), i ∈ S, (6)

where x̂2,i is the estimated state of x2 in the ith observer.
Denote the ideal estimation error by e2,i(t) := x̂2,i(t)−x2(t)
and the actual estimation error by π2,i(t) = x̂2,i(t)−y2(tk).
The correction terms vi, i ∈ S are designed as

vi(t) = −k1 ⌈π2,i(t)⌋
1
2 −A4iπ2,i(t) + vi,1(t)

v̇i,1(t) = −k2sign(π2,i(t)),
(7)

where k1, k2 ∈ R>0 are design parameters and

⌈π2,i(t)⌋
1
2 :=

[
⌈π2,i1(t)⌋

1
2 , · · · , ⌈π2,im(t)⌋

1
2

]⊤
with

⌈π2,ij(t)⌋
1
2 := |π2,ij(t)|

1
2 sign(π2,ij(t)), j = 1, · · · ,m.

Theorem 1: Consider the NSS (1) satisfying Assump-
tions 1-3 and the observer (6)-(7) with

k1 > 0, k2 > ϕmax, (8)

where ϕmax := maxi,j∈S

∥∥∥ϕ̇i,j∥∥∥
∞

. The discrete observer

σ̂(t) = argmin
i

∫ t

t−δ1
∥vi,1(τ)∥dτ (9)

accurately estimates σ(t) in each interval [sk + Te, sk+1),
where δ1 < Te < τa − δ1. ■

Proof: Assume that, during the interval [sk, sk+1) for
some k ∈ N≥0, the jth mode of the plant is activated, by
using (3b) and (6), the dynamics of e2,i satisfy

ė2,i(t) =A4i (e2,i(t)− π2,i(t))−A3jx1(t)− d(t)

+ (A4i −A4j)x2(t) + (B2i −B2j)u(t)

− k1 ⌈π2,i(t)⌋
1
2 + vi,1(t)

=ϕi,j + vi,1(t)− k1 ⌈π2,i(t)⌋
1
2

(10)

Define variable vi,2(t) := ϕi,j(t) + vi,1(t). Then,

v̇i,2(t) = ϕ̇i,j − k2sign(π2,i). (11)

The following result, referred to Claim 1, can be deduced.
Claim 1. With the observer (6)-(7) satisfying (8), the error

e′ := [e2,i; vi,2] , i ∈ S, enters the set Ωe := {e′ ∈ R2m |
∥e2,i(t)∥∞ < ∥ξ2(t)∥∞, vi,2 = 0} in finite time. □

To deduce this, define the pth element of e2,i (vi,2) as e2,ip
(vip,2), p = 1, · · · ,m, and introduce an auxiliary variable

ζ⊤ip := [ζip,1, ζip,2] =
[
⌈e2,ip(t)⌋

1
2 , vip,2(t)

]
.
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Then consider the quadratic function

Vip(ζip) = ζ⊤ipPipζip,

with Pip := diag{pip,1, pip,2} ∈ R2×2 a constant, symmetric
and positive definite matrix, as a candidate Lyapunov func-
tion, where pip,1, pip,2 > 0. It follows that

λmin{Pip}∥ζip∥2 ≤ V (ζip) ≤ λmax{Pip}∥ζip∥2. (12)

With this form, it has been proven in [19] that, when ξ2(t) ≡
0 and ϕi,j ≡ 0, there exists a positive definite and symmetric
matrix Qip such that

A⊤
ipPip + PipAip = −Qip, Aip :=

[
− 1

2k1
1
2

−k2 0

]
where Aip such that ζ̇ip = 1

|ζip,1|Aipζip.
Taking the derivative of Vip along (10)-(11) yields

V̇ip = ζ̇⊤ipPipζip + ζ⊤ipPipζ̇ip,

where ζ̇ip is given as

ζ̇ip =

[
1
2

1

|e2,ip|
1
2

(
ζip,2 − k1 ⌈π2,ip⌋

1
2

)
ϕ̇ip,j − k2sign(π2,ip)

]
.

Claim 1 is implied by that when |e2,ip(t)|> ∥ξ2(t)∥∞ and
vip,2 ̸= 0, then V̇ip(ζip) < −αV

1
2
ip (ζip), for some α > 0 and

all i ∈ S, p = 1, · · · ,m. We prove this in two cases.
Case (i): e2,ip(t) > ∥ξ2(t)∥∞ and vip,2 ̸= 0. In this case,

π2,ip > 0 and thus

ζ̇ip =

[
1
2

1

|e2,ip|
1
2

(
ζip,2 − k1 (e2,ip − ξ2,p)

1
2

)
ϕ̇ip,j − k2

]
.

Therefore, V̇ip satisfies

V̇ip ≤
1

|e2,ip|
1
2

ζ⊤ip
[
W⊤
ipPip + PipWip

]
ζip,

where Wip := Aip +Nip(t) is defined as[
− 1

2k1

(
1− 1

|e2,ip|∥ξ2(t)∥
1
2∞

)
1
2

−k2 + ϕ̇ip,j 0

]
.

Hence, when P is positive definite, V̇ip is negative definite
if and only if Aip +Nip(t) is Hurwitz. This is implied by

k1 > 0, k2 > ∥ϕ̇i,j∥∞. (13)

Case (ii): e2,ip(t) < −∥ξ2(t)∥∞ and vip,2(t) ̸= 0. In this
case, π2,ip < 0 and thus along the proof in case (i), when (13)
is satisfied, it follows that the matrix[

− 1
2k1

(
1 + 1

|e2,ip|∥ξ2(t)∥
1
2∞

)
1
2

−k2 − ϕ̇ip,j 0

]
is Hurwitz. Therefore, it holds that

V̇ip ≤ −|e2,ip|−
1
2 ζ⊤ipQipζip.

for the above two cases. Moreover, from (12) and the fact
that |ζip,1|

1
2 ≤ ∥ζip∥ ≤ λ

− 1
2

min{Pip}V
1
2
ip , it follows that V̇ip ≤

−αV
1
2
ip , where α is given by

α :=
λ

1
2

min{Pip}λmin{Qip}
λmax{Pip}

.

Therefore, a trajectory starting at the initial estimation error
eip(0) := [e2,ip(0), vip,2(0)] will converge to the region Ωe
in some finite time smaller than

Te ≤
2

α
V

1
2
ip (eip(0)).

From the above, one can see that the upper bound Te relies
on the initial error eip(0) and the eigenvalues of matrices
Pip, Qip, which can be adjusted by parameters k1 and k2.
Therefore, the finite convergence time Te < τa − δ1 can be
set as small as required by selecting the appropriate k1 and
k2 in condition (8). Based on Claim 1, one has that vi,1(t) =
−ϕi,j(t) since vi,2 = 0 if Te > δ1. From Assumption 3, one
gets ∫ t

t−δ1
∥vi,1(τ)∥dτ ≥

∫ t

t−δ1
∥vj,1(τ)∥dτ, i ̸= j.

As a result, the proposed estimation logic (9) provides an
exact estimation of the switching law σ(t) after the transient
time Te ≥ δ1. This completes the proof.

Theorem 1 shows the effectiveness of the ASSM observer,
which improves the robustness of the super-twisting sliding-
mode under measurement noise. From (i) in Assumption 1,
one can see that ϕmax exists and its upper bound can be
suitably calculated. Based on Assumption 3, the structure
of the discrete state observer requires a period of time δ1 to
distinguish the difference between the integration of different
modes. The selection of gains k1, k2 is also in order to satisfy
the condition Te < τa/2. This guarantees the finite time
identification of the switching law.

IV. CONTINUOUS STATE ESTIMATION

After obtaining the activated mode index, continuous state
estimation can be achieved by designing an observer for the
activated subsystem. However, due to the finite time required
for mode identification, we need to address the continuous
state estimation problem in segments. This necessitates the
design of mode-dependent observers in the manner:
˙̂x1,i(t) = A1ix̂1,i(t) +A2ix̂2(t) +B1iu(t), t ∈ [ŝk−1, ŝk),

x̂1,i(ŝk) = x̂1(ŝ
−
k )− ηk, k ∈ N≥1,

(14)
with

x̂1(t) =

{
x̂1,σ̂(ŝk−1+Te)(t), if t ∈ [ŝk−1 + Te, ŝk)
x̂1(ŝ

−
k−1), if t ∈ [ŝk−1, ŝk−1 + Te)

,

where ηk is a correction term that will be designed below,
ŝk := sk + Te, and ŝ−k := limε→0(ŝk − ε).

Define the estimated error as e1(t) := x̂1(t) − x1(t), the
mode-dependent errors as e1,i := x̂1,i − x1, i ∈ S, and the
output error as ey1,i = C1x̂1,i(t)−y1(t) = C1e1,i(t), i ∈ S.
It should be mentioned that for each mode, the observable
state is determined by the following observability matrix

Gi :=
[
C1, C1A1i, · · · , C1A1n−m−1

i

]⊤
.

According to [20], for observability, we assume there ex-
ists at least γk ∈ N switches such that the kernel space
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Ker(Gσ(sk−γk−1) ∪ · · · ∪ Gσ(sk−1)) = 0. In the following,
we design observers to estimate the observable part of e1,i
at time t̂−k , ∀i ∈ S. Select matrices Zki (respectively W k

i )
such that their columns are an orthonormal basis of Im(G⊤

i )
(respectively Ker(Gi)). As a result, we denote

zi(t) = (Zki )
⊤e1,i(t), wi(t) = (W k

i )
⊤e1,i(t),

Vi(Z
k
i )

⊤ = (Zki )
⊤A1i, Ri(Z

k
i )

⊤ = C1,

where Vi, Ri are matrices with proper dimension, and zi(t) ∈
Rli is the observable part of e1,i. Define

Ḡi :=
[
Ri, RiVi, · · · , RiV li−1

i

]⊤
,

which satisfies rank(Ḡi) = li for some li ≤ n−m.
Therefore, the observable state dynamics satisfy

żi(t) = Vizi(t), t ∈ [ŝk−1, sk),

ey1,i(t) = Rizi(t).

The proposed sliding mode observer satisfies

˙̂zi(t) = Viẑi + µi,∀t ∈ (ŝk−1, ŝk), ẑi(ŝk−1) = 0, (15)

for each i ∈ S, where

µi(t) = −k3 ⌈π1,i(t)⌋
1
2 − Liπ1,i(t) + µi,1(t),

µ̇i,1(t) = −k4sign(π1,i(t)),
(16)

where k3, k4, Li ∈ Rli×(n−m) , i ∈ S, are observer gains to
design, and π1,i(t) = (Zki )

⊤
(
C1x̂1,i(t)− y1(tk̂(t))

)
. The

above observer aims to render the observable part error
zi converge to zero. We then present the procedure to
compute ηk based on the estimated partly observable state.
To approximate the estimation error at time t−k , the following
state transition matrix is used:

Φ(t̂−k , t̂j + Te) :=e
A1σ̂(ŝk−1+Te )∆keA1σ̂(ŝk−2+Te )∆k−1

· · · eA1σ̂(ŝj+Te )(∆j+1−Te), j < k,

where the switching period is ∆k = ŝk − ŝk−1. Introduce

Ωk =


(Θk,k)⊤Φ(ŝ−k , ŝk−1 + Te)Zσ̂(ŝk−1+Te

)ẑi(ŝk−1 + Te)
...

(Θk−γk,k)⊤Φ(ŝ−k , ŝk−γk−1+Te
+ Te)Zσ̂(ŝk−γk−1+Te

)

· ẑi(ŝk−γk−1 + Te)(ŝk−γk−1 + Te)


where Θj,k is such that, ∀k ≥ γ1 + 1, ∀j = k − γk, · · · , k

Im(Θj,k) = Im
(
Φ(ŝ−k , ŝ

−
j ))W

j
σ̂(ŝj−1+Te)

)⊥

Im(Θk,k) = Im
(
W k
σ̂(ŝk−1+Te)

)⊥
.

Therefore, the correction vector is defined as

ηk = (Θk,k · · · ,Θk−γk,k)⊤†Ωk. (17)

Based on the above observers, the estimated state is

x̂(t) = T−1 [x̂1(t), x̂2(t)]
⊤
. (18)

Below, we present our main result regarding the finite time
estimation of the continuous states x.

Theorem 2: Consider the NSS described by (1) and let
Assumptions 1-3 hold. Then, the observer (14)-(18) provides
an estimate x(t) that satisfies

∥x̂(t)− x(t)∥ ≤ o(τmax + δmax), ŝk−1 + Te ≤ t ≤ sk,

if we set Vi − Li as a stable matrix, k3 > 0, and k4 >
maxi∈S λmax(Li(Z

k
i )

⊤)∥ed,y1(t)∥∞ + λmax(E1)ω̂. ■
Proof: According to Theorem 1, the discrete state

observer σ̂ provides a finite time estimate of σ, i.e.,

σ̂(t) = σk, ŝk−1 + Te ≤ t ≤ sk, k = 1, 2, · · · .
Without loss of generality, we assume that σk = i. From
(3a), (3c) and (14), the observation error dynamics are

ż1,i(t) =(Si − Li)z1,i + µi,1 − k3 ⌈π1,i(t)⌋
1
2

+ Li(Z
k
i )

⊤(ed,y1(t) + E1ω(t))︸ ︷︷ ︸
ψi

.

Define variable µi,2(t) := ψi(t)+µi,1(t), and with the same
process as in proof of Theorem 1, we can conclude that
under the observers (14)-(16), the estimation error e′ :=
[zi;µi,2] , i ∈ S, enters the set Ωe := {e′ ∈ R2(li)) |
∥zi(t)∥∞ < ∥ξ1(t)∥∞, µi,2 = 0} in finite time and

∥e1(sk)∥ ≤
k∑

q=k−γk

Hq,kez,σ(sq)(ŝq−1+Te)≤o(τmax+δmax).

Moreover, it follows from Theorem 1 that e2 ≤ o(τmax+
δmax). This completes the proof.

V. SIMULATIONS

In this section we validate our analytic results with a
numerical simulation. Consider a NSS in the form of (1) with
three modes, whose system matrices are given as follows.

A1 =


−1.5 −1.5 0.3 −0.4
−1.5 −1.5 0.3 −0.4
−1 −1 0 0
0 0 0 0

 , B1 =


−5
−5
0
0

 ,

A2 =


−1.95 −2.09 1.61 0
1.59 1.45 1.21 0
0 0 −1 0
1 1 0 1

 , B2 =


10
10
0
0

 ,

A3 =


−0.78 −0.92 0 4.34
−0.076 −0.22 0 −4.14

0 0 1 0
−1 −1 0 −10

 , B3 =


−10
−10
0
0

 ,
C =

[
1 0 0 0
0 1 0 0

]⊤
, D =

[
1 1 0 0

]⊤
, E =

[
1
1

]
.

In this example, x ∈ R4 is the state, y ∈ R2 is the output,
u = 1.5 is the known input, d(t) = sin(5t) is the unknown
disturbance and ω(t) = cos(2π(0.05t + 0.05)t) is a linear
chirp signal. Suppose the sampling time is δ = 0.01 s, and
the DoS attacks are given with τmin = 0.5 s and τmax =
0.2 s. The system initial conditions are set as x(0) = [4 −
3 2 − 2.5]⊤. The switching law is set as

σ(t) =

 1, if 2j ≤ t ≤ 2j + 1, j = 0, · · · , 4,
2, if 4j + 1 ≤ t ≤ 4j + 2, j = 0, · · · , 2,
3, if 4j + 3 ≤ t ≤ 4j + 3, j = 0, 1.
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Select the non-singular state transformation as

T =


−0.707 0.707 0 0

0 0 1 0
0 0 0 1
0.5 0.5 0 0

 , U =

[
−0.707 0.707
0.5 0.5

]
,

and the partly observable transformed matrices

Zk1 =
[
1 0 0

]⊤
, Zk2 =

[
0 1 0
1 0 0

]⊤
, Zk3 =

[
0 0 1
1 0 0

]⊤
.

The parameters of observers (6) and (15) are selected as
k1 = 10, k2 = 100, k3 = 5, k4 = 50.
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Fig. 2. Measurement y and its value after DoS attacks.
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Fig. 3. Switching law σ and its estimate σ̂.
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Fig. 4. State x and its estimate x̂.

Figure 2 depicts the measured output and the output post-
DoS attacks, with the gray shaded area denoting DoS attack
times. Post-attack, the measured output remains constant
for a period starting from the attack onset. Figure 3 shows
the estimation response curve of discrete states, revealing a
brief estimation error at the switching moment but quickly
identifying the true switching law. Figure 4 depicts the
estimation response curve for continuous states. After 4

switches (at 4 s), the observer’s output accurately estimates
the true system state. These results validate the effectiveness
and the accuracy of our approach.

VI. CONCLUSION

This paper investigates secure state estimation in NSSs
under noise, disturbances, and suitably bounded DoS attacks.
Leveraging a high-order sliding mode approach, we de-
velop discrete and continuous state observers enabling active
mode identification and continuous state estimation. The
proposed method ensures accurate estimation within finite
time, accommodating DoS attacks with bounded frequency
and duration characteristics without constraints on the timing
or order of switching laws.
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