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Abstract— We consider the problem of average consensus
in a distributed system comprising a set of nodes that can
exchange information among themselves. We focus on a class
of algorithms for solving such a problem whereby each node
maintains a state and updates it iteratively as a linear com-
bination of the states maintained by its in-neighbors, i.e.,
nodes from which it receives information directly. Averaging
algorithms within this class can be thought of as discrete-
time linear time-varying systems without external driving inputs
and whose state matrix is column stochastic. As a result, the
algorithms exhibit a global invariance property in that the
sum of the state variables remains constant at all times. In
this paper, we report on another invariance property for the
aforementioned class of averaging algorithms. This property
is local to each node and reflects the conservation of certain
quantities capturing an aggregate of all the values received by a
node from its in-neighbors and all the values sent by said node
to its out-neighbors (i.e., nodes to which it sends information
directly) throughout the execution of the averaging algorithm.
We show how this newly-discovered invariant can be leveraged
for detecting errors while executing the averaging algorithm.

I. INTRODUCTION

We consider distributed systems that consist of a set of
nodes that can exchange information among themselves. In
such systems, it is often necessary for all or some of the
nodes to calculate a function of certain parameters, with
each of these possessed by an individual node [1], [2]. For
example, when all nodes calculate the average of these pa-
rameters, they are said to reach average consensus. Because
of its usage in numerous distributed control, computing, and
communication applications, average consensus algorithms
for distributed systems have been researched extensively over
the last few years (see, e.g., [1]–[3]).

An important class of such distributed averaging algo-
rithms rely on each node maintaining a state that is updated
iteratively as a linear combination of the states maintained
by in-neighbors, i.e., nodes from which it receives informa-
tion directly (see, e.g., [1]–[3] and the references therein).
Such class includes, e.g., gossip algorithms [4], the push-
sum algorithm and its variants [5], [6], the ratio-consensus
algorithm and its variants [7]–[9], and several others. As it
turns out, one can think of the linear iterations on which
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the aforementioned class of algorithms rely as discrete-
time linear time-varying systems without external driving
inputs and whose state matrix is column stochastic. Thus,
many results in this area can be leveraged when analyzing
the behavior of such algorithms (the book by Seneta [10],
originally published in 1973, is a must-read reference).

Because of the aforementioned column-stochasticity prop-
erty, the linear-iterative average consensus algorithms of
interest in this paper exhibit the following (well-known)
invariance property: if one assumes that the computations
performed by each node in updating its state are error free,
the sum of the states for all nodes in the system must remain
constant and equal to the sum of the initial values. However,
this invariance property might not hold in general if such
computations contain errors. Thus, one could leverage this
property to detect the presence of computation errors.

An issue with the invariance property discussed above is
that in order to check it, one needs to have access to all
the states of the system. This implies that if this property
were to be used to implement an error detection scheme,
it would be necessary to have a processor with access to
the states of all individual nodes, i.e., such error detection
would be essentially centralized. In this paper, we report on
another invariance property for the aforementioned class of
averaging algorithms that we have discovered. To the best
of our knowledge, the existence of such property has not
been reported in the literature before. As it turns out, the
newly-discovered invariant is local to each node and reflects
a conservation property involving certain quantities capturing
an aggregate of all the values received by a node from its
in-neighbors and all the values sent by said node to its out-
neighbors (i.e., nodes to which it sends information directly)
during the execution of the averaging algorithm.

The local nature of the newly-discovered invariant makes
it ideal for implementing distributed schemes for detecting
errors in the computations performed by the nodes of a
distributed system executing any averaging algorithm within
the class of interest. In this paper, we propose one such error
detection scheme that allows each node in the system to
check whether or not its in-neighbors have performed their
updates correctly. In particular, each node uses information
that it receives periodically from two-hop in-neighbors, i.e.,
the in-neighbors of its in-neighbors. Using two-hop infor-
mation is also leveraged in [11] in the context of detection
of faulty/malicious nodes in a distributed system. However,
unlike our proposed error detection scheme, this scheme
requires two-hop information at each iteration.
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II. COMMUNICATION TOPOLOGY MODEL

Consider a distributed system comprising N nodes, de-
noted by vi, i = 1, 2, . . . , N . Assume that the nodes can
potentially exchange information among themselves. We cap-
ture such exchange of information by a strongly connected
directed graph G = {V, E}, with V = {v1, v2, . . . , vN} and
E ⊆ V × V − {(vj , vj) | vj ∈ V} such that (vj , vi) ∈ E if
node vj may receive information from node vi.1 Note that
the exchange of information between pairs of nodes may be
asymmetric, i.e., vj may receive information from node vi
but not vice-versa; in such case, we have that (vj , vi) ∈ E
but (vi, vj) /∈ E .

Nodes that can potentially send information to node vj
directly are said to be its in-neighbors and belong to the set
N−j := {vi ∈ V | (vj , vi) ∈ E}, which is referred to as
the in-neighborhood of node vj . Similarly, nodes that can
potentially receive information from node vj directly are
said to be its out-neighbors and belong to the set N+

j :=
{vl ∈ V | (vl, vj) ∈ E}, which is referred to as the out-
neighborhood of node vj . The cardinality of N−j , which we
denote by D−j , is referred to as the in-degree of vj , whereas
the cardinality of N+

j , which we denote by D+
j , is referred

to as the out-degree of vj .

III. DISTRIBUTED AVERAGING VIA LINEAR ITERATIONS

Consider an N -node distributed system whose communi-
cation topology is described by a strongly connected directed
graph G = {V, E}. Assume that each node vj possesses a
value Vj and the objective for all the nodes is to compute
the average of the Vj’s, i.e.,

V :=

∑N
l=1 Vl
N

. (1)

Next, we describe a family of iterative algorithms that allow
each node vj ∈ V to compute V ; such algorithms are
distributed in the sense that they conform to the constraints
imposed on the exchange of information among nodes as
captured by G = {V, E}.

At discrete time instants indexed by k = 0, 1, 2, . . . , each
node vj sends some information to a subset of its out-
neighbors, which we denote by N+

j [k] ⊆ N+
j . This implies

that at each time instant k, node vj only receives information
from a subset of nodes in N−j ; we denote such set by
N−j [k] ⊆ N−j . Each node vj maintains two state variables,
yj [k] and zj [k], and uses them to obtain V as follows. Let
xj [k] =

[
yj [k], zj [k]

]>
; then, each node vj performs the

following operations:

O1. Initially, it sets xj [0] = [Vj , 1]
>.

O2. At each k = 0, 1, 2, . . . , it sends the value wlj [k]xj [k]
to each vl ∈ N+

j [k], where wlj [k] is some time-varying
weight whose choice is described later.

1We say that a directed graph G = {V, E} is strongly connected if for
each pair of nodes vj , vi ∈ V , vj 6= vi, there exists a directed path from vi
to vj , i.e., we can find a sequence of nodes vi =: vl0 , vl1 , . . . , vlt := vj
such that (vlτ+1

, vlτ ) ∈ E for τ = 0, 1, . . . , t− 1.

O3. At each k = 0, 1, 2, . . . , it receives the value wji[k]xi[k]
from each vi ∈ N−j [k].

O4. It updates the value of xj [k] at each k = 0, 1, 2, . . . , as
follows:

xj [k + 1] = wjj [k]xj [k] +
∑

vi∈N−j [k]

wji[k]xi[k], (2)

where wjj [k] is a time-varying weight whose choice is
described later.

O5. At each k = 0, 1, 2, . . . , it also calculates

rj [k] :=
yj [k]

zj [k]
.

Below, we will argue that proper choice of the wji[k]’s
together with some standard assumption regarding how often
nodes receive information from their in-neighbors will result
in the rj [k]’s asymptotically converging to V .

A. Weight Choice

Let y[k] =
[
y1[k], y2[k], . . . , yN [k]

]>
and z[k] =[

z1[k], z2[k], . . . , zN [k]
]>

, and define

X[k] =
[
y[k], z[k]

]
=
[
x1[k], x2[k], . . . , xN [k]

]> ∈ RN×2;

then we can rewrite (2) in matrix form as follows:

X[k + 1] =W [k]X[k], (3)

where W [k] =
[
wl,j [k]

]
∈ RN×N is referred to as the

weight matrix at time instant k with wl,j [k] = wlj [k] if
vl ∈ N+

j [k]∪{vj}, and wl,j [k] = 0 otherwise. Now, choose
the entries of the weight matrix W [k] so as to satisfy the
following properties:

W1. wl,j [k] = 0, vl /∈ N+
j [k] ∪ {vj},

W2. wl,j [k] ∈ (ε, 1− ε), where ε > 0 is small and bounded
away from zero, and

W3. wj,j [k] = 1−
∑

l∈N+
j [k] wl,j [k], such that wj,j [k] > ε,

for all vj ∈ V .
Such choice of weights, which results in W [k] being a

column stochastic matrix, is appealing because each node vj
can easily implement it independently of all other nodes as
illustrated in the following two special cases.

1) Ratio-Consensus Algorithm: Consider the particular
case in which each node vj ∈ V sends information at each
k = 0, 1, 2 . . . , to all its out-neighbors, i.e., N+

j [k] = N+
j

for all k, which implies that N−j [k] = N−j for all k.
Assume that each node vj ∈ V sets wlj [k] = 1

1+D+
j

for

all vl ∈ N+
j [k] ∪ {vj} = N+

j ∪ {vj}, where D+
j =

∣∣N+
j

∣∣.
Then, (2) reduces to

xj [k + 1] =
1

1 +D+
j

xj [k] +
∑

vi∈N−j

1

1 +D+
i

xi[k], (4)

with xj [0] = [Vj , 1]
> for all vj ∈ V . The specific instance

of the algorithm described by Operations O1–O5 that results
from this choice of weights was proposed in [7], [8], and is
referred to as the ratio-consensus algorithm.
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2) Generalized Push-Sum: Consider the general iteration
described earlier and let D+

j [k] denote the number of out-
neighbors of node vj to which it sends information at instant
k, i.e., D+

j [k] =
∣∣N+

j [k]
∣∣; then, node vj can set wlj [k] =

1
1+D+

j [k]
, vl ∈ N+

j [k] ∪ {vj}. In this case, (2) reduces to

xj [k + 1] =
1

1 +D+
j [k]

xj [k] +
∑

vi∈N−j [k]

1

1 +D+
i [k]

xi[k],

with xj [0] = [Vj , 1]
> for all vj ∈ V . The specific instance

of the algorithm described by Operations O1–O5 that results
from this choice of weights was proposed in [6], and it is
a generalized version of the so-called push-sum algorithm,
which was first proposed in [5].

B. Convergence Analysis

Since each node vj ∈ V may not receive information from
all its in-neighbors at each time instant, we can describe
the exchange of information among nodes at instant k by a
directed graph G[k] =

{
V, E [k]

}
, where (vl, vj) ∈ E [k] if

vl ∈ N+
j [k]. In the remainder of the paper, we make the

following assumption about the collection of graphs G[k] ={
V, E [k]

}
, k = 0, 1, 2 . . . , which is standard in the literature

of average consensus (see, e.g., [2]).
Assumption A1. There exists a finite K such that

GK(τ) :=
{
V,∪K−1t=0 E [τK + t]

}
, τ = 0, 1, 2, . . . ,

is strongly connected.
Now by using (3), we have that

X[k] =W [k − 1]W [k − 2] · · ·W [0]︸ ︷︷ ︸
=:T [k]

X[0];

thus, convergence of X[k] as k → ∞ is governed by the
column stochastic matrix T [k]. Then, under Assumption A1,
as k goes to infinity, we have that

T [k] = π[k]1>N , (5)

where π[k] =
[
π1[k], π2[k], . . . , πN [k]

]>
with 0 < πi[k] < 1

for all i = 1, 2, . . . , N, such that
∑N

i=1 πi[k] = 1, and
1N denotes the N -dimensional all-ones vector. In words,
the columns of T [k] will equalize asymptotically, but they
do not necessarily converge, i.e., in general they will still
depend on k. The literature of stochastic matrices refers to
this convergence result as weak ergodicity of the sequence of
W [k]’s, whereas if π[k] converges to a limit, it is said that
strong ergodicity of the sequence of W [k]’s obtains [10].
Finally, by using (5), as k goes to infinity, we have that

yj [k] = πj [k]
( N∑

l=1

yl[0]
)
,

zj [k] = πj [k]
( N∑

l=1

zl[0]
)
.

Thus, the ratio rj [k] = yj [k]/zj [k] asymptotically converges

to the average of the initial values, i.e.,

lim
k→∞

rj [k] =
yj [k]

zj [k]
=

∑N
l=1 yl[0]∑N
l=1 zl[0]

= V , ∀vj ∈ V,

despite the fact that yj [k] and zj [k] do not converge in
general.

Balanced Weights: Under Assumption A1, there is one
special case that guarantees convergence of T [k] to a limit.
Namely, when the matrices W [k], k = 0, 1, 2, . . . , are dou-
bly stochastic, i.e., in addition to satisfying Properties W1–
W3, the entries of W [k] are such that

∑N
i=1 wj,i[k] = 1 for

all vj ∈ V; in such case, we say the weights are balanced.
Then, it can be shown that

lim
k→∞

T [k] =
1

N
1N1>N ;

thus,

lim
k→∞

yj [k] =

∑N
l=1 yl[0]

N
=

∑N
l=1 Vl
N

= V ,

lim
k→∞

zj [k] = 1.

Clearly, in such case, each node vj only needs to maintain
one variable, namely yj [k], to be able to obtain the average.
However, it is not easy to obtain, in a distributed manner, a
weight matrix W [k] that is doubly stochastic and conforms to
a general directed graph G[k] =

{
V, E [k]

}
(see, for example,

[12]), unless the exchange of information between pairs of
nodes is symmetric, i.e., if at instant k node vj receives
information from node vi then node vi receives information
from node vj . In such case, we have that (vj , vi) ∈ E [k]
if and only if (vi, vj) ∈ E [k], from where it follows that
N+

j [k] = N−j [k] =: Nj [k]. Then, each vj ∈ V can set
wlj [k] =

1
N , vl ∈ Nj [k], and wjj [k] = 1 − Dj [k]

N , where
Dj [k] =

∣∣Nj [k]
∣∣; otherwise, if vl /∈ Nj [k] ∪ {vj}, node vj

sets wlj [k] = 0. Other choices also exist.

IV. INVARIANT PROPERTIES OF LINEAR-ITERATIVE
DISTRIBUTED AVERAGING ALGORITHMS

In this section, we first review a well-known invariant
property of the class of linear-iterative distributed averaging
algorithms discussed in Section III. Then, we introduce
another invariance property that we have discovered. Specif-
ically, we show that there is a quantity associated to each
node that must remain invariant throughout the execution
of the algorithm if there are no errors in the computations
performed by each node in updating its state. If said quantity
varies from the value it is supposed to have, it could be
an indicator that there are errors in the computations that a
particular node is performing; such application of the newly-
discovered invariant is discussed in Section V. The proofs of
all results in this and next section can be found [13].

A. Global Invariant

As discussed earlier, and shown in (3), the averaging
algorithms of interest are undriven discrete-time linear time-
varying systems whose state matrix is column stochastic. As
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a result, the sum of the state variables remains constant at all
times; such invariance property is formally established next.

Lemma 1: Consider (2) with the wji[k]’s chosen so that
the weight matrix W [k] =

[
wj,i[k]

]
∈ RN×N in (3) satisfies

Properties W1–W3. Then,
N∑
j=1

xj [k] =

N∑
j=1

xj [0],

for all k = 0, 1, 2, . . . .
Note that because the invariance property is global, one

would need to have access to all the states of the system in
order to check it. In fact, because of the way (2) is initialized,
if such global information were readily available, one would
immediately know the value of the sum of the Vj’s and
the number of nodes in the system, and thus it would be
straightforward to compute V .

B. Local Invariant

Next, we introduce another invariance property satisfied
by the averaging algorithms considered in this paper. This
invariance property is local to each node and reflects a con-
servation property involving certain quantities that amount
to aggregates of all the values received by a node from
its in-neighbors and all the values sent by said node to
its out-neighbors throughout the execution of the averaging
algorithm. The property is formally stated as follows.

Lemma 2: Consider (2) with the wji[k]’s chosen so that
the weight matrix W [k] =

[
wj,i[k]

]
∈ RN×N in (3) satisfies

Properties W1–W3. For each vj ∈ V , and each vl ∈ N+
j ,

define

σlj [k + 1] =

{
σlj [k] + wlj [k]xj [k], if vl ∈ N+

j [k],

σlj [k], if vl ∈ N+
j \N

+
j [k],

for k = 0, 1, 2, . . . , with σlj [0] = 0. Then,

ηj [k] := xj [k] +
∑

vl∈N+
j

σlj [k]−
∑

vi∈N−j

σji[k]

= xj [0],

for all k = 0, 1, 2 . . . .
For the special case in (4), i.e., the so-called ratio-

consensus algorithm, the invariant quantity associated with
each vj ∈ V is slightly simpler in that we do not need
separate σlj [k]’s for each vl ∈ N+

j ; this is captured by the
result in the following lemma.

Lemma 3: Consider the linear iteration in (4). For each
vj ∈ V , define

σj [k + 1] = σj [k] +
1

1 +D+
j

xj [k], k = 1, 2, . . . , (6)

with σj [0] = 0. Then, for all k = 0, 1, . . . , we have that

ηj [k] := xj [k] +D+
j σj [k]−

∑
vi∈N−j

σi[k]

= xj [0]. (7)

V. ERROR DETECTION

The possible presence of malfunctioning nodes is one of
the biggest headaches in distributed averaging schemes. It is
easy to see that a faulty node can single handedly cause
a deviation of the consensus value from the average V .
For example, if node vi is “stubborn” in the sense that it
does not follow the update in (2) but maintains its value at
all time instants, i.e., xi[k] = Vi for all k, then the final
consensus value for all nodes will be Vi [14], [15]. Thus,
in order to ensure that averaging algorithms work properly,
it is desirable to have a mechanism built-in the algorithm to
detect such errors during execution, and correct them. In this
paper, we focus on the detection part.

Next, we will briefly discuss some existing approaches,
based on modular/time redundancy or parity checking tech-
niques, for detecting/correcting such computational errors in
discrete-time linear time-varying systems whose dynamics
is similar to those of the averaging algorithms in the class
discussed in Section III. Then, we will introduce a novel
approach, which we refer to as any-time consistency check-
ing, that is related to parity checking, and discuss its key
properties that make it appealing for detecting computational
errors in faulty nodes that are executing distributed averaging
algorithms within the class of iterest. Finally, we illustrate
how any-time consistency checking can be leveraged against
error detection using the invariants identified in Section IV.

A. Existing Techniques for Error Detection/Correction

Error detection and correction techniques typically rely on
introducing redundancy in the computation by performing
the same computation, either multiple times (time redun-
dancy) or over multiple system replicas (modular redun-
dancy) [16]. For example, in a modular redundancy scheme,
one would utilize several replicas of the given system,
initialized identically and driven by the same inputs, and
would compare the (ideally identical) results provided by
them; in case of a disagreement, one would choose the
most likely result (e.g., the one agreed upon by the majority
of the system replicas) [16]. In dynamic settings where
a computation is performed over several time steps, one
can choose to perform checks concurrently (i.e., at the end
of each time step) or non-concurrently (e.g., periodically).
Modular (time) redundancy schemes impose hardware (time)
overhead; concurrent checking can also impose significant
delays, whereas non-concurrent checking has to deal with
error propagation over time (since an error is not caught
immediately and it is allowed to propagate, at least until the
next check is performed).

Parity check techniques offer an alternative to
time/modular redudancy schemes, but have to identify
inherent invariant properties among the given system’s
variables (if any). The validity of an invariant is checked
during execution and is associated with a parity check
[17]; when the later is violated, an error is detected and (if
possible) the outcomes of the parity checks can be leveraged
towards error correction. In computational systems, when
inherent invariant properties cannot be identified (or are
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not sufficient to capture all errors of interest), one can
attempt to introduce such invariant properties by using
encoding techniques; resulting approaches are referred to as
information redundancy [16]. For linear dynamic systems,
information redundancy has led to approaches that introduce
and update at each time step a small number of additional
variables, whose values can be used to perform concurrent
or non-concurrent detection/identification of computational
errors that may have been introduced in the system variables
(or even in the additional variables themselves) [18].

The implementation of the above approaches can be chal-
lenging in distributed settings like the one in (2), because
of constraints on the information that is available to the
added redundancy or the checker. One such example appears
in [11], both of which focus on distributed systems with
symmetric exchange of information between pairs of nodes,
and aim at detecting errors due to malicious activity in one
or more nodes. The authors proposed a concurrent checking
scheme where, at each time step k, each node vj checks
each neighbor vi assuming that node vj has access to all
its “inputs” (values provided to vi by its neighbors, which
are generally two-hop neighbors of node vj). Distributivity
constraints aside, this approach amounts to multiple time
redundancy schemes in which checks are performed con-
currently. Also in the context of (2) for the case when the
exchange of information between pairs of node is symmetric,
the approach in [19] explored the application of the non-
concurrent checking schemes in [18] towards distributed
detection and identification of malicious nodes.

B. Any-Time Consistency Checking

Considering the linear iteration in (2), we are interested
in any-time consistency checks (ATC’s) that resemble parity
checks (in the sense that they can be used to detect computa-
tional errors) but can be performed at any point in time (i.e.,
they do not need to be checked at each time step). Moreover,
such ATC’s must have the following two properties:
P1. If all ATC’s at time step k0 are valid, then if the nodes

continue the iteration in (2) for k = k0, k0 + 1, k0 +
2, . . . , without any subsequent errors, they will converge
to the correct average of their initial values, V .

P2. If one or more ATC’s at iteration k0 are invalid, then
there have been errors by at least one node at one or
more time steps before k0.

Note that the above two properties leave out the possibility
for the checks at time step k0 to be valid even though there
have been errors within the time window 0, 1, . . . , k0 − 1,
as long as this behavior does not affect the outcome of
the distributed computation. In other words, the nodes will
still converge to V if they continue the computation without
further errors. Next we describe how to utilize the invariant
properties established in Section IV to build any-time check-
ing schemes with the aforementioned desired properties.

C. Invariant-Based Error Detection

In the remainder, we focus on a special case of the linear
iterative scheme in (2); namely, the ratio-consensus algorithm

described in Section III. However, we believe the results can
be extended to the general case; we plan to pursue such
extension in future work.

We are given an N -node distributed system whose com-
munication topology is described by a strongly connected
directed graph G = {V, E}; the objective of the nodes is to
compute the average V in (1) utilizing the linear iteration
in (4). We are interested in detecting computational errors
that corrupt the entries of the xi[k] vector of a particular
node vi at one or more time steps. Apart from special cases
(such as stalling or power failure which are easily detected),
the effect of computational errors can be modeled via an
additive error vector ei[k], i.e., xi[k] changes to xi[k]+ei[k]
at iteration step k. If no action is taken to remedy the error,
it will subsequently propagate to the out-neighbors of node
vi (through the linear iteration in (4)), then to their out-
neighbors, and eventually to the whole network (since the
corresponding graph is assumed to be strongly connected).

Instead of checking at each time step for the presence of
errors (like ei[k] in the above discussion), we will build any-
time checks based on the invariants in (7). More specifically,
the invariant associated with each node vi will be checked
by each of its out-neighbors. Since the running sums in
(6) are needed to check the invariant, we modify a bit the
implementation of the iteration in (4). More specifically, each
node executes the iteration as

xj [k + 1] =
1

1 +D+
j

xj [k] +
∑

vi∈N−j

(σi[k + 1]− σi[k]),

which requires each node vj to maintain the following
variables at each iteration k:

V1. The value σj [k + 1] (broadcasted to its out-neighbors
at iteration k), in order to be able to update its own
running sum (using (6)) at the next iteration.

V2. The values σi[k] for each in-neighbor vi ∈ N−j (broad-
casted by node vi at the previous time-step).

In addition, we make the following mild assumption.
Assumption A2. Each node vj knows the local topology

around each of its in-neighbors, i.e., node vj is aware of
the in-neighbors and out-neighbors of each vi ∈ N−j ; in
particular, node vj knows the out-degree D+

i of each in-
neighbor vi ∈ N−j .

Now, let us consider an arbitrary node vj and an arbitrary
in-neighbor of it denoted by vi (i.e., vi ∈ N−j ). We use vi′ to
denote an arbitrary in-neighbor of node vi (i.e., vi′ ∈ N−i )
and vl′ to denote an arbitrary out-neighbor of node vi (i.e.,
vl′ ∈ N+

i ). Suppose that periodically (say once every K
iteration steps where K is a design parameter), node vj
receives additional information from the in-neighbors of
node vi. Specifically, if we use k0 to denote the index of one
such iteration step, we assume that node vj receives the value
of σi′ [k0] from each vi′ ∈ N−i . This could be easily achieved
by having each node vi′ transmit (every K steps) its running
sum σi′ [k0] at a higher power, so that this running sum is
received not only by its out-neighbors but also by the out-
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neighbors of its out-neighbors.2 [Alternatively, we can start
with a dense directed graph, but then limit the immediate
neighborhood of each node in order to enable the checking
properties that we need (i.e., we design the network topology
of the distributed system so that the information needed at
each node vj is available).]

Now, since node vj also receives the values of xi[k] at
each iteration, this node can check whether the invariant in
(7) holds for node vi, i.e., whether the following any-time
consistency check (performed by node vj on node vi at time
step k0)

c
(j)
i [k0] := η

(j)
i [k0]− xi[0]

is zero or not, where η(j)i [k0] can be calculated by node vj
via

η
(j)
i [k0] = xi[k0] +D+

i σi[k0]−
∑

vi′∈N
−
i

σi′ [k0]

as all needed information is available to it. Note that the
value xi[0] for each in-neighbor vi ∈ N−j can be obtained
from σi[1] transmitted by vi at time step k = 0 as xi[0] =
(1 + D+

i )σi[1]. It is also worth pointing out that other
out-neighbors of node vi will also be checking node vi
through ATC’s like the above; in fact, all such ATC’s will
evaluate at the same value since they are based on identical
information. For this reason, we can drop the superscript
j and simply refer to the ATC ci. The following result
establishes Property P1 for the any-time consistency checks.

Lemma 4: Suppose that ATC’s satisfy ci[k0] = 0 for all
vi ∈ V . If nodes continue the distributed averaging algorithm
in (4) for iterations k0, k0 + 1, . . . , without any errors, then
they will reach consensus to the average V in (1).

As mentioned earlier, if a computational error corrupts the
value of xi[k] at time step k, the error will next propagate to
its out-neighbors, by affecting the values σi[k + 1] that are
transmitted to its out-neighbors (and thus the xj [k+2] values
computed by each out-neighbor vj , vj ∈ N+

i ); subsequently,
the error will affect the values of nodes further away from
vi. It can be shown that, in such case, the error will show as
a violation of the invariant for node vi for time steps after
k, but will not affect the validity of the invariants of other
nodes. This opens the door to the possibility of developing
error identification and correction, however, we leave such
developments for future work.

It is possible for multiple errors to corrupt xi[k] over
several time steps in a way that the invariant for node vi still
holds at the end of the period (when ATC’s are evaluated).
In such case, the errors go undetected but, as established by
Lemma 4, the nodes will converge to the correct average
(at least as long as no more errors are introduced in the
computation after the evaluation of ATC’s). This also gives
an opportunity to nodes that suffer temporal faults to make
appropriate corrections.

2In the case of symmetric information exchange, these messages are
equivalent to the two-hop information utilized in [11]. Such transmissions
are likely more expensive and undesirable, and that is one of the reasons we
propose a checking scheme that requires this information only infrequently.

VI. CONCLUDING REMARKS

In this paper we have reported on a newly-discovered
invariant property for a class of linear-iterative algorithms
used in distributed systems to solve the average consen-
sus problem. Such property is local to each node in the
distributed system, which makes it ideal for implementing
distributed schemes for detecting errors during the execution
of the algorithms. We have proposed one such error detection
scheme for one of the algorithms within the class considered
in this paper; namely the ratio-consensus algorithm.
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